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Dietary supplementation of vitamin D prevents
the development of western diet-induced
metabolic, hepatic and cardiovascular
abnormalities in rats
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Abstract
Background: The western diet high in fat and fructose may cause metabolic disorders and cardiovascular diseases.

Objective: To evaluate whether long-term daily vitamin D3 supplementation prevents hepatic steatosis and cardiovascular

abnormalities and restores insulin sensitivity caused by fat diet in rats without vitamin D deficiency.

Methods: Three groups of rats were fed for 6 months with standard diet (SD), western diet (WD) or WD containing 23 IU/day/

rat vitamin D3, respectively. Tail-cuff systolic blood pressure (SBP)measurements in conscious rats and transthoracic echo-

cardiography were performed in basal condition, and after 3 and 6 months of diet. Hepatic steatosis and myocardial fibrosis

were assessed in liver and cardiac tissues using standard methods. Serum insulin and 25(OH)D3 concentrations were

determined using rat-specific ELISA kits. Insulin resistance was determined according to the homeostasis model assessment

of insulin resistance (HOMA-IR) method.

Results: Sixty-one per cent of hepatocytes in WD rats had steatotic vacuoles compared with just 27% in rats on a WD plus

vitamin D3 (p< 0.05).HOMA-IR was reduced in rats with vitamin D supplementation compared with WD alone (19.4� 5.2 vs

41.9� 8.9, p< 0.05). Rat blood pressure and left ventricular mass were both reduced by vitamin D3 supplementation.

Conclusion: In animal models of liver and cardiovascular metabolic damage, the supplementation of vitamin D3 shows liver

and cardio-protective effects.
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Key summary
. The novelty of this study is the demonstration that supplementation with vitamin D exerts its beneficial

effects even in the absence of vitamin depletion.
. Dietary supplementation with vitamin D abolishes the detrimental effects induced by a WD on the

development of insulin resistance, liver steatosis and CV risk profile.
. These results shed new light on the controversial role of vitamin D in liver and cardiac changes resulting

from fatty diets.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is now the
most common cause of chronic liver disease in western
countries,1,2 and is associated with insulin resistance,
type 2 diabetes mellitus, dyslipidaemia and heart fail-
ure.3 Western diet (WD) and sedentary lifestyle increase
cardiovascular (CV) risk profile through the develop-
ment of hypertension and metabolic syndrome.4–6 One
of the pathogenic mechanisms shared between the deter-
minants of CV risk and the NAFLD is insulin resistance
(IR). Clinical and experimental evidence show that IR is
involved in the pathogenesis of essential hypertension,
diabetes, obesity, metabolic syndrome and NAFLD.7–9

Vitamin D is a group of steroid molecules that play a
canonical role in calcium and bone homeostasis.
However, nowadays it is known that vitaminD regulates
in many organs and tissues several biological functions
through their receptors (VDR), which are widespread in
the body.10 A growing body of experimental and clinical
evidence indicates that an association exists between
vitaminD deficiency and the prevalence ofmany chronic
morbid conditions, including CV and liver diseases.11,12

In particular, an association between vitamin D defi-
ciency and the occurrence of major adverse CV events
was found among Framingham Offspring Study partici-
pants.13 Moreover, several studies showed an associ-
ation between deficit of vitamin D, hypertension,
diabetes14,15 and pathogenesis of NAFLD.12,15

Interestingly, a deficiency of vitamin D contributes
also to the onset of IR.11 Furthermore, a recent paper
shows a trophic action of vitaminD onmuscle fibres, not
only in rats fed with regular diet, but also in the case of a
diet mimicking the Mediterranean diet.16 Nevertheless,
the relationship among vitamin D, CV risk profile and
liver damage is still a debated issue. In particular, it is
unclear whether the supplementation of vitamin D inter-
feres with the determinant of CV risk and the develop-
ment of NAFLD even in the presence of physiological
ranges of vitamin D. Therefore, we planned this study in
an animal model in the presence of normal dietary intake
of vitamin D to: (1) evaluate the effects of WD on the
development of metabolic, hepatic and CV abnormal-
ities; and (2) verify whether dietary supplementation
with vitamin D, in this experimental setting, pre-
vents the development of liver damage and ameliorates
the CV risk profile.

Materials and methods

Study design

Eighteen male Wistar rats from Harlan Italy (Udine,
Italy) weighing 120–150 g were randomly housed in
wire-bottomed cages. Animals were maintained at a
temperature of 21� 1�C with a 12-hour light/dark

cycle and had free access to food and liquids. We
avoided the use of metabolic cages for two main rea-
sons: first because we did not need to collect faeces and
urine separately and second to avoid the stress caused
to the animals by long-term housing in such cages.17

Three groups of six rats each were treated as follows:
(i) standard diet (SD) containing 1000 IU/kg of vitamin
D; (ii) WD containing 1000 IU/kg of vitamin D and a
12.5% w/v sweet drinking solution; and (iii) WD and a
12.5% w/v sweet drinking solution plus additional
750 IU/kg vitamin D (WDþVitD). The SD consisted
of 18% fat, 24% proteins and 58% carbohydrates
(3.3 kcal/g). The WD consisted of 58% energy fat,
18% proteins and 24% carbohydrates (5.6 kcal/g).
The sweet solution was constituted of 55% fructose
and 45% glucose. The diets were purchased from
Harlan Laboratories (Udine, Italy). The experiment
was conducted for 6 months. The weight and caloric
intake of each rat were recorded weekly. Blood pressure
and echocardiography were measured in basal condi-
tions and after 3 and 6 months. The rats were painlessly
killed with anaesthetics according to the approved
protocol by the Ethics Committee of the University of
Naples ‘Federico II’ (N. 0124285).

Serum measurements

At 6 months, vitamin D, glucose, total cholesterol and
triglyceride concentrations were measured in the serum
of rats using a Modular Autoanalyzer. Serum insulin
and 25(OH)D3 concentrations were determined with
rat-specific ELISA kits (EMD Millipore, USA, and
DIAsource SA, Belgium, respectively). Homeostasis
model assessment of insulin resistance (HOMA-IR)
was evaluated as the product of fasting plasma glucose
(mM) and insulin concentration (ng/ml): HOMA-
IR¼ [glucose]� [insulin]/22.5.

Cardiovascular measurements

Systolic blood pressure and heart rate in conscious
restrained rats were measured noninvasively by tail-
cuff plethysmography (PE-300, Narco Biosystems Inc)
using a heating pad to obtain a body temperature of
35–37�C taking care to ensure minimal stress to the
animals. We used the last 5 out of 10 measurements
per cycle for our analyses.18 Transthoracic echocardi-
ography was performed using a dedicated small-animal
high-resolution ultrasound system (VeVo 770,
Visualsonics Inc. Toronto, ON, Canada) equipped
with a 7.5MHz transducer (RMV-716). Left ventricu-
lar (LV) end-diastolic and end-systolic diameters
(LVEDD and LVESD, respectively) were measured at
the level of the papillary muscles from the parasternal
short-axis view as recommended. Interventricular
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septal (IVS) and LV posterior wall thickness were mea-
sured at end diastole. Left ventricular mass (LVM) was
calculated according to the following formula, repre-
senting the M-mode cubic method: LVM¼ 1.05�
[(IVSþLVEDDþLVPW)3 � (LVEDD)3]; LVM was
corrected by body weight. All measurements were aver-
aged on five consecutive cardiac cycles and analyzed by
two experienced investigators blinded to treatment.

Tissue collection

At the time of sacrifice, hearts were harvested, rinsed in
cold phosphate buffer saline (PBS) and blotted dry,
weighed, divided into left and right ventricles, and
then fixed in 10% formalin. The fixed tissues were dehy-
drated, embedded in paraffin and sectioned at 6 -mm
thickness. Collagen analysis was determined using the
Sirius red stained sections of LV myocardium using a
Nikon E800 microscope connected to a computer with
Metamorph image. Twenty fields from each of three
LV sections (base, mid, apex) were examined, and col-
lagen area percent for each animal was expressed as the
average of all fields examined. The liver was collected,
weighed and subjected to macroscopic evaluation.
Liver biopsies were used for histology, and the remain-
der was frozen and stored at �80�C. Frozen liver

sections were stained with Oil Red O to identify the
presence of steatosis. Histology was evaluated by path-
ologists blinded to the source of the material. NAFLD
was defined taking into account the presence of stea-
tosis, lobular inflammation and ballooning degener-
ation. Fatty area percent for each animal was
expressed as the average of all fields examined.
Epididymal fat, reflecting the fat accumulated in
response to a fatty diet,19 was surgically removed
during the autopsy, weighted and expressed as a quo-
tient with respect to the body weight.

Statistical analysis

Statistically significant differences between the three
groups of rats were determined with one-way analysis
of variance (ANOVA) followed by the Tukey’s multiple
comparison test; p< 0.05 was considered statistically
significant.

Results

Food intake, body weight and fat body storage

Food intake was significantly higher in the SD group
than in WD and WDþVitD (p< 0.01 in both cases)
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Figure 1. Food intake (a), calorie intake (b) and body weight (c) of three groups of rats fed different diets for 6 months. SD: standard diet;

WD: western diet; WDþVitD: western diet plus vitamin D (*p< 0.05 vs SD).
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(Figure 1(a)), nevertheless, caloric intake was signifi-
cantly lower in SD than in WD and WDþVitD rats
(p< 0.01 in both cases) (Figure 1(b)). The rat body
weight did not differ significantly among the three
groups (Figure 1(c)). The epididymal fat/body weight
ratio was higher in WD than in SD rats (1.16� 0.03 vs
0.94� 0.05, p< 0.05) and was significantly lower in
WDþVitD compared with WD rats (0.75� 0.07 vs
1.16� 0.03, p< 0.01).

Serum metabolic parameters

Despite a daily intake of the same adequate dose of
vitamin D (1000 IU/kg), WD rats had lower serum
levels of 25(OH)D3 than SD rats. As expected, the
levels of 25(OH)D3 were significantly higher in
WDþVitD rats than in WD rats (p< 0.01) (Figure 2).

Table 1 shows the rat serum lipid and metabolic pro-
files. The total cholesterol level did not differ among
groups, whereas triglyceride levels were significantly
higher in the WD than in the SD group. Serum trigly-
ceride levels were reduced byWDþVitD compared with
WD rats, although the difference was not statistically
significant. Interestingly, all SD and WDþVitD rats
had normal glycaemia values (<120mg/dl), whereas

all rats in the WD group were diabetic, and had signifi-
cantly higher glycaemia values compared with SD rats.
Insulin was higher in WD than in SD and WDþVitD
rats. HOMA-IR was significantly higher in WD than
in SD rats, and was significantly lower in WDþVitD
than in WD rats (p< 0.05).

Liver status

The liver of SD rats was of normal volume, smooth to
the touch and brownish-red (Figure 3(a)). Rats fed a
WD were affected by hepatomegaly, and the liver was
largely pale yellow suggesting infiltration of adipose
tissue in the parenchyma (Figure 3(d)). The livers of
WDþVitD rats were, like the livers of WD rats,
enlarged and pinkish in colour (Figure 3(g)). To
avoid bias arising from intra-group differences with
respect to liver weight, we calculated the ‘liver/body
weight ratio’. This ratio was significantly lower in SD
rats than in WD rats (2.01� 0.04% vs 2.90� 0.05%,
p< 0.001). Moreover, it was lower in WDþVitD than
in WD rats, although the difference was not significant
(2.75� 0.07% vs 2.90� 0.05%; NS). Histology of the
livers of SD rats was unremarkable: hepatocytes were
free of fat, and lobules were visible, each of which was a
hexagonal structure consisting of a central vein sur-
rounded by radiating hepatocyte plates, and the
nucleus (blue-stained) was located in the centre of
each hepatocyte (Figure 3(b)). In the WD group, hep-
atocytes were disordered with reduced cytoplasm and
ballooning degeneration, and they featured abundant
lipid droplets and widespread vacuolation; the blue-
stained nucleus was located in the border of the cell
(Figure 3(e)). In WDþVitD animals, hepatocytes were
similar to those in SD rats: the lipid droplets were
clearly less abundant than in the WD group, the hep-
atocytes were less disordered and most had a normal
aspect (Figure 3(h)). In the WD group, 61% of hepato-
cytes contained steatotic vacuoles versus 27% in the
WDþVitD group (p< 0.05). Oil Red O staining of

Table 1. Serum lipid and metabolic profile of rats fed a standard diet, a western diet or a western diet plus vitamin Da

SD WD WDþ VitD p-value

Total cholesterol (mg/dl) 92.3� 5.4 73.2� 6.6 83.7� 4.1 NS

Triglyceride (mg/dl) 46.8� 4.8 113.5� 19.1 94.8� 17.0 SD vs WD p< 0.05

Glycaemia (mg/dl) 98.7� 8.1 139.0� 9.6 103.2� 6.1 SD vs WD p< 0.01

WD vs WDþ VitD p< 0.05

Insulin (ng/ml) 1.07� 0.21 5.37� 1.22 3.23� 0.80 SD vs WD p< 0.01

HOMA-IR 6.17� 1.30 41.90� 8.89 19.38� 5.25 SD vs WD p< 0.01

WD vs WDþ VitD p< 0.05

aValues are expressed as mean� SE.

SD: standard diet; WD: western diet; WDþ VitD: western diet plus vitamin D.
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Figure 2. Serum 25-(OH) D3 in three groups of rats fed different

diets for 6 months. SD: standard diet; WD: western diet; WDþVitD:

western diet plus vitamin D (*p< 0.05 vs SD; **p< 0.05 vs WD).
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liver tissue was higher in the WD rats (Figure 3(f)) than
in SD rats (Figure 3(c)) and was strongly reduced in
WDþVitD rats (Figure 3(i)).

Cardiovascular status

WD enhanced systolic blood pressure (SBP) by
27� 12%, p< 0.001, at 3 months, and by 47� 11%,
p< 0.001, at 6 months. Supplementation with vitamin
D abolished theWD-induced increase in SBP (Figure 4).

WD rats showed a significant increase of LVM
during the study period while the supplement with vita-
min D abolished this increase of LVM (Figure 5(a)). In
basal conditions, indexed LVM (LVMi), was similar in
the three groups. In SD and WDþVitD groups LVMi
significantly decreased throughout the study period. On
the contrary, it increased in the WD group, resulting, at
6 months, in higher values than in both SD and
WDþVitD groups (Figure 5(b)).

Heart weight/body weight ratio was enhanced by
WD (Figure 6(a)) while no difference was detected
between SD and WDþVitD groups.

Cardiac fibrosis is characterized by net accumulation
of collagen and other extracellular matrix proteins in
the cardiac interstitium and around the vessels. As
shown in Figure 6(b), myocardial fibrosis was more

evident in the WD group. There was a significant
increase of interstitial fibrosis in the left ventricle in
the WD group versus the SD group (1.36� 0.27% vs
0.76%� 0.09%, respectively, p< 0.001) (Figure 6(c)).

Figure 3. Macroscopic appearance of the liver, histology and Oil Red O staining in three groups of rats fed different diets for 6 months.

Rats fed a standard diet (a�c); rats fed a western diet (d�f); rats fed a western diet plus vitamin D (g�i). Original magnification� 40;

scale bar: 50 mm.
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Figure 4. Changes of systolic blood pressure in the three study

groups during the study. SD: standard diet (n¼ 6); WD: western

diet (n¼ 6); WDþvitD: western dietþ vitamin D supplement

(n¼ 6). *p< 0.05 vs baseline, **p< 0.05 vs baseline and 3 months

(by ANOVA). Other significance values are shown in the figure.
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Interstitial fibrosis was significantly reduced by vitamin
D supplementation in the WD group (1.02� 0.07%,
p< 0.05 vs WD); however, fibrosis was still present in
the WDþVitD vs SD group (Figure 6(b) and (c)).

Discussion

The main result of this study is that, in rats, dietary
supplementation with vitamin D eliminates the detri-
mental effects induced by WD on the development of
IR, liver steatosis and CV risk profile.

As expected, a western diet (WD) induces hypertri-
glyceridaemia, IR and liver steatosis, in addition to

increasing systolic blood pressure, enhancing LVM
and inducing myocardial fibrosis. These abnormalities,
which resemble the metabolic syndrome, are prevented
by dietary supplementation with vitamin D. The nov-
elty of this study is the demonstration that vitamin D
supplementation exerts its beneficial effects even in the
absence of vitamin depletion.

It is interesting to note that the levels of vitamin D
were lower in rats fed with a WD compared with rats
fed with a SD. This result confirms similar recent find-
ings of an association between a fatty diet, adiposity
and lower serum levels of vitamin D.20 This phenom-
enon observed both in human studies and in animal
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models20,21 has been pathogenically interpreted as accu-
mulation of vitamin D in adipose tissue.22 Nonetheless,
the addition of a supplementary dose of vitamin D
partly reverses this effect and reduces the metabolic
abnormalities (hyperglycaemia, hypertriglyceridaemia,
hyperinsulinaemia and IR) associated with a fatty
diet. On the other hand, no effect has been observed
on the levels of total cholesterol, even if recent obser-
vations suggest a role of vitamin D in modulating
HDL-cholesterol also.23 The mechanism by which vita-
min D exerts its beneficial effect is incompletely known,
although oxidative stress leading to IR has been docu-
mented in hepatic cell lines with vitamin D-induced
deficiency.24

Both histological analysis and staining with Oil Red
O showed that WD leads to severe liver steatosis asso-
ciated with altered hepatocyte structure. Daily adminis-
tration of an additional dose of vitamin D induces a
cytoprotective effect on hepatocytes in animals sub-
jected to a typical WD. Altered serum levels of insulin,
glucose and triglycerides following a WD are both the
cause and consequence of IR, as they are biochemical
precursors and metabolic signals of steatosis.25

Hyperinsulinaemia and hyperglycaemia activate tran-
scription factors in the liver, namely, SREBP-lc (Sterol
Regulator Element-Binding Protein) and ChREBP
(Carbohydrate Response Element-Binding Protein),
which, in turn, activate enzymes required for the con-
version of excess glucose into fatty acids.26,27 The
increased intrahepatic concentration of free fatty acids
and triglycerides induces the synthesis and secretion of
tumour necrosis factor alpha (TNF-a), which interferes
with the signalling of insulin at receptor level;28 this, in
turn, induces the IR characteristic of the metabolic syn-
drome associated with obesity.29 This cascade of events
results in further accumulation of intrahepatic fat. In
our experiment, the extra supplementation of vitamin
D improves serum levels of glucose, triglycerides and
insulin, and the HOMA-IR index, and reduces hepatic
steatosis. In other words, vitamin D improves the bio-
chemical and histological parameters of metabolic syn-
drome, probably by interfering with some metabolic
pathways in the mechanisms of synthesis and accumu-
lation of lipids in the liver. Furthermore, according to a
previous study,30 it is likely that vitamin D downregu-
lates the inflammatory pathway mediated by Toll-like
receptor 4 reducing the expression of TLR4, NF-kB,
and TNF-a in the liver tissue and attenuating the
hepatic inflammation and fibrosis.

Our results are consistent with previous reports that
demonstrated the association between WD, hyperten-
sion and hypertension-related target organ damage.31

In particular, at the end of our study, SBP in the
group fed with a WD increased by 46% compared
with the control group.Furthermore, WD elicited a

significant increase of both LVM and interstitial fibro-
sis. It must be underlined that LVM increased by
123%. It is reasonable to hypothesize that this inappro-
priate growth together with the development of inter-
stitial fibrosis is the result of the action of trophic
factors rather than the slight increase in SBP. In this
regard, the pivotal role of the renin-angiotensin-aldos-
terone system (RAAS) in the pathogenesis of LVH and
myocardial fibrosis has been well documented.32

Interestingly, RAAS has a key role also in the develop-
ment of hypercaloric diet-induced hypertension.33 It is
noteworthy that vitamin D modulates the transcription
of several genes including the gene that codes for renin.
In particular, it has been reported that vitamin D inhi-
bits the expression of the renin gene.34 For these rea-
sons, the deficit of vitamin D is associated with the
development of hypertension and ventricular hypertro-
phy. For instance, it has been demonstrated, in 1-alpha-
hydroxylase knockout mice, that administration of
activated vitamin D rescues the hypertensive phenotype
and normalizes LVM.35 Therefore, it is reasonable to
speculate that in our experimental model, supplemen-
tation with vitamin D, by blunting the WD-evoked
activation of the RAAS, interferes with the increase
in SBP and inhibits the development of LVH and myo-
cardial fibrosis.

It is important to emphasize that this study was
designed to evaluate whether the vitamin D supplement
was able to reverse the detrimental effects of a WD, and
not to explore the molecular mechanisms involved.

In conclusion, in an animal model of liver and car-
diovascular metabolic damage supplementation with
vitamin D3 shows liver and cardio-protective effects.
Furthermore, two aspects of this study need to be under-
lined. First, the results of the present study indicate the
existence, in response to a WD, of a tight association
between cardiovascular and liver damage, which high-
lights the need for extensive investigations on the cross-
talk between the cardiovascular system and liver in
humans. Second, the strength of the present study is
that the results can easily be translated to clinical prac-
tice. Furthermore, these results suggest that in clinical
practice, the determination of vitamin D3 status should
always be considered in patients at high risk for CV dis-
eases and/or NAFLD, since its supplementation could
ameliorate sub-clinical organ damage. Clinical studies in
primary prevention are needed to test this hypothesis.
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