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Abstract

Checkpoint blockade immunotherapies enable the host immune system to recognize and destroy 

tumor cells1. Their clinical activity has been correlated with activated T-cell recognition of 

neoantigens, which are tumor-specific, mutated peptides presented on the surface of cancer 

cells2,3. Here, we present a fitness model for tumors based on immune interactions of neoantigens 

that predicts response to immunotherapy. Two main factors determine neoantigen fitness: its 

likelihood of presentation by the major histocompatibility complex (MHC) and its subsequent T-

cell recognition. We estimate these two components using a neoantigen’s relative MHC binding 

affinity and a non-linear dependence on its sequence similarity to known antigens. To describe the 

evolution of a heterogeneous tumor, we evaluate its fitness as a weighted effect of dominant 

neoantigens in the tumor’s subclones. Our model predicts survival in anti- CTLA-4 treated 

melanoma patients4,5 and anti-PD-1 treated lung cancer patients6. Importantly, low-fitness 

neoantigens identified by our method may be leveraged for developing novel immunotherapies. By 

using an immune fitness model to study immunotherapy, we reveal broad similarities between the 

evolution of tumors and rapidly evolving pathogens7–9.

Although T-cell receptors are capable of recognizing and eliminating tumors, cancers evolve 

resistance mechanisms by utilizing checkpoint blockade molecules to disrupt the processes 

of immune recognition and attack. Clinical trials using immune checkpoint blocking 

antibodies, such as anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) or anti-

programmed cell death protein-1 (anti-PD-1), have improved overall survival in many 

malignancies by inhibiting these checkpoints1. Though only a minority of patients achieve 

durable clinical benefit, multiple studies have shown genetic determinants of response. 

Nonsynonymous de novo somatic mutations can create neoantigens - novel protein epitopes 

specific to tumors which may be presented by MHC molecules and recognized by T-cells as 

non-self2,3. An elevated number of mutations or putative neoantigens has been linked to 

improved response to checkpoint blockade therapy in multiple malignancies4–6,10. Hence, 

inferred neoantigen load is a coarse-grained proxy for whether a tumor is likely to respond. 

Other implicated biomarkers of response include T-cell receptor (TCR) repertoire profiles11, 

assays of checkpoint status12,13, immune microenvironment landscape4,14,15 and tumor 

heterogeneity16. Despite high overall neoantigen load, a heterogeneous tumor may have 

immunogenic neoantigens present only in certain subclones. Therapies targeting a fraction 

of the tumor could disrupt clonal competitive balance and inadvertently stimulate growth of 

untargeted clones17. Worldwide efforts are being undertaken to model neoantigens and 

quantify their features from genomic data. A predictive neoantigen-based model for 

immunotherapy response, complementing mass spectrometry-based neoantigen validation18, 

is therefore a highly sought-after goal.
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We propose a fitness model of tumor-immune interactions as a general mathematical 

framework to describe the evolutionary dynamics of cancer cell populations under 

checkpoint-blockade immunotherapy and provide a proof of concept regarding its utility 

(Fig. 1). Analogous fitness models based on immune interactions have been successfully 

applied to human influenza7, HIV8 and chronic viral infections9. Checkpoint blockade 

exposes cancer cells to strong immune pressure on their neoantigens, reducing their 

reproductive success. Our model predicts the evolutionary dynamics of a cancer cell 

population after a finite time under such pressure. We compute (𝜏), the predicted future 

effective size of a cancer cell population in a tumor relative to its effective size at the start of 

therapy. The size is a weighted sum over tumor’s genetic clones (Fig. 1a, Methods),

n(τ) = ∑
α

Xαexp Fατ (1)

where Fα is the fitness, Xα is the initial frequency of clone α and 𝜏 is a characteristic time 

scale when predictions are evaluated. As tumors may include other cell types, it is not to be 

interpreted as a direct measure of physical tumor size. Patients with less immunologically fit 

tumors will have more significant effective size reductions and, presumably, improved 

overall survival after therapy. The ancestral dependencies between clones determine the 

mutations and neoantigens inherited by clones from their ancestors (Fig. 1a). Our fitness 

model assigns to subclones the same or lower fitness than their ancestral clones, depending 

on whether they acquired new dominant neoantigens.

Our approach quantifies essential factors in determining immunogenicity of a neoantigen: an 

amplitude, A, determined by mutant and wildtype class I MHC-presentation and an intrinsic 

TCR-recognition probability, R (both are defined below). We call the product of these two 

factors, A×R, a neoantigen’s recognition potential. We quantify total fitness for cancer cells 

in a clone by aggregating over the fitness effects due to immune recognition of its 

neoantigens (Fig 1b, Methods). Here, we model the fitness of a given clone α by the 

recognition potential of its dominant neoantigen,

Fα = − max
i ∈  Clone α

Ai × Ri (2)

where index 𝑖 runs over all neoantigens in clone α (we discuss other choices for aggregating 

neoantigen fitness effects in Methods).

We utilize nonamer neoantigens inferred by a consistent identification pipeline with 

affinities, standing in for dissociation constants, for both mutant and wildtype peptides for a 

patient’s HLA type19 (SI); we define the amplitude A using the relative MHC affinity 

between the wildtype and the mutant peptide (Methods). Despite their differing only by a 

single mutation, inferred binding affinities for these peptides can be substantially different 

(Extended Data Fig. 1). Unlike considering solely mutant or wildtype affinities, the 

amplitude has consistent predictive value within our model (Extended Data Table 1). A 

simple interpretation of this observation is that the amplitude is related to the quantity of 
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TCRs available to recognize the neoantigen. A neoantigen needs to have low dissociation 

constant (i.e. high binding affinity) to be presented and generate a TCR response. However, 

if the wildtype peptide also has a low dissociation constant, tolerance mechanisms could 

have removed wildtype peptide specific TCRs. Due to cross-reactivity, the quantity of 

mutant specific TCRs could be reduced (see discussion in Methods).

We also estimate the intrinsic probability of TCR-recognition of a neoantigen. Here we 

utilize the strength of neoantigen’s alignments to positively recognized, class-I restricted T-

cell antigens from the Immune Epitope Database20 (IEDB).

This approach does not assume preexisting host immunity due to this epitope set. Rather, we 

posit high-scoring neoantigens are more “non-self”. As TCRs have intrinsic biases in their 

generation probability and can recognize large classes of peptides via cross reactivity21,22, 

such neoantigens would be more likely recognized. We use a consistent thermodynamic 

model to estimate this probability (Methods): for a neoantigen with peptide sequence 𝐬 and 

IEDB epitope with sequence 𝐞, the alignment score between 𝐬 and 𝐞 estimates the binding 

free energy between 𝐬 and a TCR that recognizes 𝐞. Importantly, the probability a neoantigen 

is bound by a TCR is given by a nonlinear logistic dependence on sequence alignment 

scores to the epitope set (Methods).

We apply our model to three datasets: two melanoma cohorts treated with anti- CTLA-44,5, 

and a non-small-cell lung cancer cohort treated with anti-PD-16. Efficacy is assessed using 

overall survival of patients from the beginning of immunotherapy (Methods). Neoantigen 

anchor positions 2 and 9, for the majority of HLA types, are constrained by hydrophobic 

bias, as reflected by decreased amino-acid diversity at these positions23 (Extended Data Fig. 

2). We observe computational predictions of MHC affinities for wildtype peptides with non-

hydrophobic anchor residues led to non-informative amplitudes. Hence, neoantigens with 

mutations generated from non-hydrophobic wildtype residues at positions 2 and 9 are 

excluded. The parameter 𝜏 in equation (1) sets the characteristic time scale of response to 

therapy. At this time, clones with dominant neoantigens having amplitudes larger than 1/𝜏 
will have been suppressed. The model has two other free parameters: the midpoint and 

steepness defining R (Methods). For each cohort, we infer parameters by maximizing the 

survival log-rank test score on independent training data.

We use the Snyder melanoma cohort with 64 patients to train parameters for the 103 

metastatic patients in the Van Allen cohort and vice versa; we use the total score of both 

melanoma cohorts to train parameters for the smaller lung cancer cohort from Rizvi et al. 

with 34 patients (Methods). For each cohort, we obtain significant stratification of patients: 

log-rank test p-values are p=0.0049 for the Van Allen et al., p=0.0026 for Snyder et al., and 

p=0.0062 for Rizvi et al. (Extended Data Table 1). The parameters thereby obtained are 

consistent between datasets and mutually included within each other’s error bars (Extended 

Data Table 1, Methods). We further performed a joint optimization of the cumulative log-

rank test score of the three cohorts, obtaining a single set of parameters with predictions 

highly stable around these values (Extended Data Fig. 3). The alignment threshold parameter 

is consistently set to 26 (Extended Data Table 1), which in our datasets is obtained by 

alignments of average length of 6.8 amino-acids, just above the length of peptide motifs one 
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would expect the TCR repertoire to discriminate (SI). The slope parameter is set to 4.87 

defining a strongly nonlinear dependence on alignment score, with the recognition 

probability dropping below 0.01 for score 25 and reaching above 0.99 at score 27 (Extended 

Data Fig. 4). The 𝜏 parameter is set to 0.09, meaning clones with amplitudes larger than 11.1 

are, on average, suppressed at prediction time. At these consistent parameters, separation of 

patients does not change for Van Allen et al. and Rizvi et al. (log-rank score increases by 

less than 1 unit, p=0.004 for Van Allen et al. and p=0.0062 for Rizvi et al.), and it improves 

to p=0.00026 for Snyder et al. (Fig. 2). Patient segregation by (𝜏) evaluated at infinitesimally 

small 𝜏 (equivalent to average tumor fitness over clones, Methods) is also significant 

(Extended Data Fig. 3, Extended Data Table 1), suggesting predictive power depends more 

on the model’s ability to capture immune interactions than the duration of evolutionary 

projections. Finally, the predicted evolutionary dynamics of tumors separate therapy 

responders and non-responders, using patient classifications defined in the original 

studies4,5,6. In all datasets responders are predicted to have significantly faster decreasing 

relative sizes (𝜏) across a broad interval of 𝜏 values (Fig. 3). The performance of the model 

deteriorates when we disrupt the biological relevance of input data. When using the IEDB 

epitopes not supported by positive T-cell assays, the model loses predictive ability in both 

melanoma cohorts (Methods, Extended Data Table 1, and Extended Data Fig. 5). Similarly, 

the model generally does not give significant patient separations when using neoantigens 

derived with randomized patient HLA types (Extended Data Fig. 6, SI).

The success of our model strongly depends on the joint contribution of 𝐴 and 𝑅 in equation 

(2). We construct partial models with only one component and repeat the same training and 

validation procedure, with survival analysis separating patients into equal size groups as in 

the full model (Fig. 2, and Extended Data Table 1). In all datasets, partial models have lower 

log-rank scores than the full model and neither 𝐴 nor 𝑅-only models result in significant 

segregation for any cohort. We also compare our full model with a neoantigen load model, 

which assigns a uniform fitness cost to each neoantigen. This model does not significantly 

separate patients by median in either cohort (Fig. 2, Extended Data Table 1). Finally, we 

assess the importance of tumor clonal structure in our identification of dominant 

neoantigens. In all data sets, our full clonal model performs significantly better than an 

alternative model assuming homogenous tumor structure (Fig. 2). Clonality appears less 

crucial in partial models, which have either marginal or no statistical significance (Fig. 2, 

Extended Data Table 2). Moreover, our model is predictive independent of other clinical 

correlates (Proportional Hazard model, Extended Data Table 3).

Our framework allows for straightforward incorporation of information about the tumor’s 

microenvironment. For the cohort from Van Allen et al., gene expression data is available on 

40 patients and local cytolytic activity is significantly associated with benefit (p=0.04, 

Methods), as also observed in the original study by Van Allen et al5. As a proof of principle, 

we incorporated cytolytic score24 as an amplitude multiplying the T-cell recognition 

probability. Its inclusion improves predictions on these 40 patients, as assessed with survival 

analysis, (p=0.043 and p=0.0025 respectively, Extended Data Fig. 7).

Immune interactions govern the evolutionary dynamics of cancers under checkpoint 

blockade immunotherapy and many rapidly evolving pathogens; fitness models can predict 
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such dynamics over limited periods into the future, as recently shown for seasonal human 

influenza7. However, influenza evolution is determined by antigenic similarity with previous 

strains in the same lineage, whereas cancer cells acquire somatic mutations in a large set of 

proteins. Hence, the cancer immune interactions are distributed in a larger and less 

homogenous antigenic space. The fitness effects of these interactions have a specific 

interpretation: they capture neoantigen “non-selfness”. Our model formalizes what makes a 

tumor immunologically different from its host, analogously to models for innate recognition 

of non-self nucleic acids25.

The approach can be naturally extended to other fitness effects, such as positive selection 

due to acquisition of driver mutations, the impact of additional components in the 

microenvironment or the hypothesized role of the microbiome26,27. Further advances in 

predicting proteosomal processing18 and stability28 of neoantigen-MHC binding could 

improve predictions. Our framework should be useful in studies of acquired resistance to 

therapy and may be crucial for understanding when cross-reactivity with self-peptides may 

result in side effects29,30. Because our fitness model is based on specific interactions 

underlying presentation and recognition of neoantigens, it may also inform the choice of 

therapeutic targets for tumor vaccine design.

Methods

1. Evolutionary dynamics of a cancer cell population in a tumor

The fitness of a cancer cell in a genetic clone α is its expected replication rate, i.e.

dNα
dτ = FαNα (3)

where Nα is the population size of clone α and Fα is that clone’s fitness. Checkpoint-

blockade immunotherapy introduces a strong selection challenge, which we anticipate 

overshadows pre-therapy fitness effects in a productive response. For a given clone α the 

dynamics of its absolute size are therefore given by N(𝜏) = Nα (0)exp(Fα𝜏), and the total 

cancer cell population size is computed as a sum over its clones

N(τ) = ∑
α

Nα(τ) = ∑
α

Nα(0)exp Fατ . (4)

The absolute size N(𝜏) is an effective population size, the number of cells estimated to have 

generated the observed clonal diversity.

As our measure of survival, we use the evolved relative effective population size 𝑛(𝜏) = N 
(𝜏) /N (0), which compares the predicted future population size after a characteristic 

dimensionless time scale of evolution 𝜏 to the initial pretreatment effective size N(0), the 

assumption being that successful responders to therapy will have their future effective cancer 

cell population size more strongly suppressed. We denote the initial frequency of clone α as 

Łuksza et al. Page 6

Nature. Author manuscript; available in PMC 2018 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Xα = N(0)/N(0), these frequencies are inferred from bulk exome reads from a tumor sample, 

as described in the Supplementary Information. Hence, to compute (𝜏) we only require 

estimates of the initial frequencies and fitness values for each clone, as shown in equation 

(1); the absolute population size estimates are not needed. We model the hypothesis that due 

to the unleashing of a T-cell mediated immune response by checkpoint-blockade 

immunotherapy, the deleterious effects due to recognition of neoantigens are a dominant 

fitness effect, and tumors with the greatest degree of selective immune challenge are better 

responders to therapy.

Clonal structure of a tumor and clone frequencies.—To reconstruct the clonal tree 

structure of a tumor from exome sequencing data, we use a likelihood scheme based on the 

allele frequencies of its mutations31 (SI). The trees estimate the nested clonal structure of the 

tumor and the frequency of each clone, Xα. The differences between the high scoring trees 

are marginal on our data, concerning only peripheral clones and small differences in 

frequency estimates. We compute the predicted relative size of a cancer population, (𝜏), as 

an averaged prediction over the 5 trees with the highest likelihood score, weighting their 

contribution proportionally to their likelihood.

2. Fitness model based on neoantigen recognition potential

Neoantigen recognition based fitness cost for a tumor clone.—Our model 

associates each neoantigen with a fitness cost, which we term the recognition potential of a 

neoantigen. The recognition potential of a neoantigen is the likelihood it is productively 

recognized by the TCR repertoire. It is defined by two components. The first is the 

amplitude A which is given by the relative probability that a neoantigen will be presented on 

class I MHC and the relative probability that its wildtype counterpart will not be presented. 

The second is the probability R that a presented neoantigen will be recognized by the TCR 

repertoire. For a given neoantigen their product defines its recognition potential, AxR. Both 

components are described in detail below.

To assess the total fitness effect for a clone α with multiple neoantigens, we aggregate 

individual neoantigen fitness effects as Fα = - maxi∈Cloneα(Ai×Ri), where i is an index 

iterating over neoantigens in the clone. Therefore, the full form of the predicted relative 

cancer cell population size is given by

n(τ) = ∑
α

Xαexp − max
i ∈ Cloneα

Ai × Ri τ . (5)

One could use a more general model for aggregating neoantigen fitness effects within a 

clone,

n(τ, β) = ∑
α

Xαexp ∑
i ∈ Cloneα

exp −β f i
Z(β) f iτ , (6)
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where fi = − Ai×Ri and Z(β) = Σiϵ Clone α exp(−βfi)In addition to equation (5), which 

corresponds to the limit β→∞, we show the case where β = 0 (uniform summation over all 

neoantigens, Extended Data Table 1). In that sense equation (6) represents a general 

mathematical framework for weighing neoantigen contributions, with weights reflecting the 

probability of their productive recognition. The choice of β could be informed by additional 

data sources or defined in a clone specific manner, and it would then become an additional 

model parameter (or parameters). Taking the highest score within a clone as in equation (5) 

is consistent with notions of immunodominance - that a relatively small set of antigens drive 

the immune response.

MHC-amplitude.—The amplitude, A, is the ratio of the relative probability that a 

neoantigen is bound on class I MHC times the relative probability that a neoantigen’s 

wildtype counterpart is not bound. The amplitude is defined asA = PU
WT /PB

WT × PB
MT /PU

MT , 

where PB
MT is binding probability of a neoantigen, PB

WTis the binding probability of its 

wildtype counterpart, and PU
WT = 1 − PB

WT andPU
MT = 1 − PB

MT. As a result, the amplitude 

rewards cases where the discrimination energy between a mutant and wildtype peptide by 

the same class I MHC molecule (i.e. the same HLA allele) is large32, while the mutant 

binding energy is kept low. The 𝜏 parameter effectively sets this energy scale for dominant 

neoantigens in a clone when R = 1. Assuming similar concentrations for mutant and 

wildtype peptides, the amplitude is the ratio of wildtype to mutant dissociation constants,

A = Kd
WT /Kd

MT . (6)

Negative thymic selection on TCRs is not absolute, but rather “prunes” the repertoire 

recognizing the self proteome33,34 We therefore use A as a proxy for the availability of 

TCRs in the repertoire to recognize a neoantigen. Neoantigens differ from their wildtype 

peptides by only a single mutation. Given the uniqueness of nonamer sequences in the self-

proteome due to finite genome size (SI) it is highly improbable that the mutant peptide 

would have another 8-mer match in the human proteome, so we only account for the 

comparison with the respective wildtype peptides. We verified that the above is the case for 

92% of all neoantigens, with the remainder largely emanating from gene families with many 

paralogs (SI). The amplitude can be interpreted as a multiplicity of receptors available to 

cross-reactively recognize a neoantigen.

MHC-binding probabilities are derived from the dissociation constants, which are 

themselves estimated from computationally predicted binding affinities, as justified below. 

Affinities are inferred for each peptide sequence and patient HLA type19; all mutant peptide 

sequences considered as neoantigens meet a standard 500 nM cutoff for their affinities (SI). 

NetMHC 3.4 occasionally predicts affinities with very high values where training may be 

limited, and creating small denominators that can inflate the amplitude. In melanoma and 

lung cancer a high mutational burden inflates the frequency of such events. As a remedy, a 

pseudocount, 𝜀, is introduced so that, for both mutant and wildtype peptides Pu/Pb →(Pu + 
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𝜀)/(Pb + 𝜀). In this case the new dissociation constant divided by peptide concentration 

becomes

Kd /[L] + ε 1 + Kd /[L]
1 + ε 1 + Kd /[L] ≈

Kd /[L]
1 + εKd /[L] (7)

for small 𝜀, where Kd was the original dissociation constant and [L] is the peptide 

concentration. Consequently 1/𝜀 sets a scale at which dissociation constants are not reliable 

for large Kd at a given concentration. To fix these scales, we note that assays to determine 

dissociation constants for peptide-MHC binding are typically performed at 0.1–1 nM where 

the ligand concentration is typically small compared to the dissociation constant35. In this 

regime, affinities can be interpreted as dissociation constants and 3687 nM is the outer range 

of predictability for the assays upon which NetMHC 3.4 is trained at no more that unit 

peptide concentrations. 𝜀/[L] is therefore chosen to be 0.0003≈1/3687 across datasets.

As the affinity is always less than 500 nM for the mutant peptide this correction is only 

relevant for the wildtype peptides. The corrected amplitude then becomes

A ≈
Kd

WT

Kd
MT ⋅ 1

1 + (ε/[L]) ⋅ Kd
WT . (8)

The amplitude in this form, combined with the TCR-recognition term discussed below, has a 

high predictive value for patient survival predictions (Fig. 3), consistently over the three 

patient cohorts, which is not the case of either the mutant or wildtype dissociation constants 

on their own (Extended Data Table 1).

TCR-recognition.—We estimate R, the probability that a neoantigen will be recognized 

by the T-cell receptor repertoire by alignment with a set of epitopes given by the Immune 

Epitope Database and Analysis Resource20 (IEDB, described in the Supplementary 

Information). We restrict ourselves to linear epitopes from human infectious diseases that 

are positively recognized by T-cells after class I MHC presentation. In this approach, we 

assume that a neoantigen predicted to cross-react with a TCR from this pool of 

immunogenic epitopes is a neoantigen more likely to be immunogenic itself, as members of 

the T-cell receptor repertoire both recognize a high number of presented antigens36,37 and 

have intrinsic biases in their generation probabilities21.

We use a multistate thermodynamic model to define R. In this model, we treat sequence 

similarities as a proxy for binding energies. To assess sequence similarity between a 

neoantigen with peptide sequence 𝐬 and an IEDB epitope 𝐞, we compute a gapless alignment 

between the two sequences with a BLOSUM62 amino-acid similarity matrix38 and we 

denote their alignment scores as |𝐬, 𝐞|, Given these sequence similarities, for a given 

neoantigen with peptide sequence 𝐬, we compute the probability that it is bound by a TCR 

specific to some epitope e from the IEDB pool as
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R = Z(k)−1 ∑
e∈IEDB

exp[ − k(a − s, e )], (9)

where a represents the horizontal displacement of the binding curve, k sets the steepness of 

the curve at a, and

Z(k) = 1 + ∑
e∈IEDB

exp[ − k(a − s, e )] (10)

is the partition function over the unbound state and all bound states. In the model, k 
functions as an inverse temperature and a - |𝐬, 𝐞| functions as a binding energy. These 

parameters define the shape of the sigmoid function (Extended Data Fig. 4) and, along with 

the characteristic time scale 𝜏, are free parameters to be fit in our model (see below).

The parameters which give consistently informative predictions across all three datasets are 

a = 26 and k = 4.87. The logistic function is therefore a strongly nonlinear function of the 

effective alignment score, log(∑e∈IEDB exp[− k(a − |s,e|)]). The average alignment length 

corresponding to score 26 is 6.8 for neoantigens in our datasets, but the effective alignment 

score is occasionally increased by multiple contributions of shorter alignments. Under the 

interpretation where, for a sufficiently presented neoantigen, A represents the multiplicity of 

available TCRs and R represents an intrinsic probability of recognition, A×R represents the 

effective size of the overall TCR response. We present it as a core quantity that can be 

modulated by additional environmental factors such as the T- cell infiltration (discussed 

below).

IEDB sequences.—The predictive value of R depends on the input set of IEDB 

sequences. The set we used in our analysis contained 2552 unique epitopes (SI). We tested 

how the predictions depend on the content and size of the dataset by performing iterative 

subsampling of IEDB sequences at frequencies varying from 10% to 90% of the total set 

size. We repeated the survival analysis and log-rank test score evaluation (Extended Data 

Figure 5). For all three datasets removal of sequences has on average a negative impact on 

their predictive power, which monotonically decreases with the subsampling rate. In the Van 

Allen et al. cohort median performance was below significance already at 70% subsampling 

and lower, and for Snyder et al. and Rizvi et al. at 20% and lower. To investigate the 

biological input associated with the set of curated IEDB sequences that we use, we also 

evaluated the R component using an alternative set of IEDB sequences, coming from T-cell 

assays that did not have a positive validation. This is a larger set of 4657 sequences. In the 

two melanoma datasets, the predictions have gotten worse, not giving significant separation 

of patients in the survival analysis. This effect was also not due to the different sequence set 

size - subsampling of sequences did not improve the outcome. While in the Rizvi et al. 

dataset the predictions were still significant, this significance was not supported by 

consistency between all three datasets which is observed on the IEDB sequence set with 

positive assays.
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Inclusion of microenvironment and proteosomal processing in fitness model.
—The role of the microenvironment in the likelihood of productive T-cell recognition of 

tumor neoantigens can be incorporated in a natural manner into our modeling framework. 

We utilize the cytolytic score (CYT), the geometric mean of the transcript per kilobase 

million of perforin and granzyme24. We do so for the 40 patients from the Van Allen, et al, 

anti-CTLA4 melanoma dataset, which have matched genome and transcriptome sequencing 

and where CYT had shown predictive value. For this set we also derive the CD8 T-cell 

fraction using CIBERSORT39. The two values have a Pearson correlation coefficient of 

0.938. Given their encapsulation of similar information we used CYT as it had previously 

been show to give significant segregation of patient benefit5. The score provides an 

additional amplitude ACYT and the recognition potential becomes ACYT×A×R. Therefore, 

the cytolytic score amplifies the recognition potential by the degree of cytolytic activity. We 

attempted to include proteosomal processing into our model as an additional criterion, as 

evaluated with NetCHOP40 We tested this procedure on the Rizvi et al. cohort; however, the 

imposed stronger filtering of neoantigens leads to the loss of predictive power of the model.

3. Model parameters

Parameter training.

To choose model parameters a and k in equation (9) and the characteristic time 𝜏 at which 

the prediction is evaluated (equations (2) and (5)), we select the parameters that maximize 

log-rank-test scores of survival analysis on patient cohorts. The survival analysis is 

performed by splitting patient cohort by the median value of (𝜏) into high and low fitness 
groups. For each cohort, we perform parameter training on independent data: we use the 

melanoma cohorts to train parameters for each other by using the maximal score of one to 

define parameters for the other, and we use both melanoma cohorts and maximization of 

their total log-rank test score to train parameters for the lung cohort. To infer consistent 

parameters between all datasets, we maximize the total log-rank test score over the three 

cohorts.

For a given training set we compute the optimal parametersΘ = [a, k, τ], as an average 

Θ = Θ w over a distribution w(Θ) defined by the log-rank test score landscape on this set

w(Θ) = Z−1(λ)exp[λ Smax − S(Θ) , (11)

where Z(𝜆) is the probability distribution normalization constant, S(Θ) is the value of the 

log-rank test score with parameters Θ and Smax is the maximal score value obtained over all 

possible parameters. The weight parameter 𝜆 is chosen such that the total statistical weight 

of the suboptimal parameter region is less than 0.01, the suboptimal scores are those less 

than max(3.841, Smax - 2) (where 3.841 is the score value corresponding to 5% significance 

level of the log-rank test score). Using a smooth local neighborhood of parameters around 

the optimal values prevents over-fitting on a potentially rugged score landscape. For each 

individual parameter, the error bars reported in Extended Data Tables 1 and 2 are computed 

as standard deviation using marginalized probability distribution w (Θ) for this parameter.
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The survival score landscapes (Extended Data Fig. 3) are consistent between the datasets. 

The optimal value of parameter a, the midpoint of the logistic binding function, is around 26 

and parameter k, the steepness of the logistic function, lives on a trivial axis above value 4, 

suggesting strong nonlinear fitness dependence on the sequence alignment score.

4. Model selection

Alternative fitness models.

We compare our full model in equation (5) to alternative models. We perform simple model 

decompositions, where only one component is used

Fα = − max
i ∈ Cloneα

Ai, (12)

Fα = − max
i ∈ Cloneα

Ri . (13)

Further, we decompose the amplitude A = Kd
WT × 1

Kd
MT  and test various variants of the 

model, with and without the R component,

Fα = − max
i ∈ Clone α

Kd
WT

i × Ri , (14)

Fα = − max
i ∈ Clone α

1
Kd

MT
i

× Ri . (15)

We investigate how informative the alignments contributing to the Ri components are and we 

test a model where alignments are restricted to the 6 residues in- between anchor positions, 

on positions 3–8. We also demonstrate the loss of predictive power of a model that does not 

implement any filtering of neoantigens mutated on position 2&9 (see discussion in section 2 

of Methods and Extended Data Fig. 2).

We reduce the problem of choosing the neoantigen aggregating function to that of model 

selection. We test a model where fitness is defined by the total effect of all neoantigens in 

the clone (which is the limit case of β = 0 in equation (6)),

Fα = − ∑i ∈ Cloneα Ai × Ri . (16)

Finally, we formulate a simple fitness model that associates a constant fitness cost with each 

neoantigen,
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Fα = − Lα, (17)

where Lα is the number of neoantigens in clone α, referred to as the neoantigen load of 

clone α.

Homogenous structure models.

For each fitness model, we can define its homogenous structure equivalent, which assumes a 

tumor is strictly clonal with all neoantigens in the same clone at frequency 1. In a 

homogenous model the population size is thus modeled by a simple exponential,

n(τ) = exp [Fτ], (18)

where F is the fitness of the homogenous tumor. Since in this model tumors show a constant 

decay over time, ranking of (𝜏) values for patients is defined only by fitness and does not 

depend on 𝜏. Therefore, 𝜏 is not a free parameter in these models when optimizing log-rank 

test score in survival analysis.

Average fitness.

We also investigate the average fitness of clones,

〈F〉 = ∑
α

XαFα, (19)

as a predictive marker for patients and an alternative to 𝑛(𝜏). The average fitness reflects the 

rate at which the tumor cell population is decreasing in size at the beginning of therapy. For 

the purpose of patient ranking, it is equivalent to (𝜏) at infinitesimally small values of the 

time parameter 𝜏. This is a lower complexity model because 𝜏 is not a free parameter. 

However, this measure is less robust to outliers - small clones with very low fitness can 

dominate the average fitness, while the evolutionary projection in (𝜏) removes such effects.

Predictive power.

We assess the predictive power of all models with survival analysis, separating patients into 

equal size groups by the median value of (𝜏) or the median value of the average fitness ⟨F⟩ 
within the cohort. We use a log- rank test, the results of this comparison are reported in 

Extended Data Table 1 and in Extended Data Table 2 for models that disregard tumor 

subclonal composition. To assign error bars to fluctuations of the log-rank test score we 

perform a leave-one-out analysis. That is, we repeat the survival analysis for each dataset 

after leaving out one sample in a cohort and compute standard deviation of the test statistic 

over all leave-one-out iterations. We claim a fitness model is predictive if it gives patient 

segregation of highly significant scores in all datasets with the same consistent set of 

parameters. Only the full neoantigen fitness model meets these criteria. The results are 

highly significant when patient segregation is based on (𝜏) values. The average fitness 
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criterion from (equation 19) marginally meets the above requirements for predictiveness, but 

with smaller significance (Extended Data Table 1).

Comparison with thresholded neoantigen load.

In our survival analysis, we use a standard, non-optimized partitioning of patients into two 

equally sized groups by the median value of (𝜏). This approach allows for unbiased 

comparison of models, and assigns a stringent predictive value. Our results do not contradict 

the earlier reported predictive quality of neoantigen load. Consistent with Snyder et al.4, we 

observe a significant split at a threshold value of 100 neoantigens or less. This threshold 

classifies more than 70% of the patients in a long-term surviving group; separation by total 

neoantigen load is not significant at lower fractional partitions, including the median. In Van 

Allen et al., survival analysis was not originally presented and we did not see a significant 

separation of patients at any possible splitting by a neoantigen load threshold. Finally, the 

significant separation for the Rizvi et al. cohort is observed for the range a 32–50% range of 

partitions, including by the median (Fig. 2, Extended Data Table 1). It is worth noting that 

for this cohort we use previously unpublished overall survival data, which differs from the 

progression free survival data used by the original study6. In all cohorts, our neoantigen 

fitness model and partitioning based on (𝜏) measure give significant separations at a larger 

range of partitions: 40–60% for the Van Allen et al. cohort, above 40% for the Snyder et al. 

cohort and 47–80% for the Rizvi et al. cohort.

Data availability

Sequencing data from the three cohorts are publicly available and deposited in dbGap (Van 

Allen et al. - accession number phs000452.v2.p1, Snyder et al. - accession number 

phs001041.v1.p1 and Rizvi et al. - accession number phs000980.v1.p1). Mutations, inferred 

neoantigen peptides, survival data for each dataset are submitted as supplementary data. We 

also submit neoantigen fitness predictions for clones and neoantigens of all cohorts, and the 

sets of IEDB sequences used in this analysis.

Code availability

Custom script examples for computation of neoantigen fitness cost are included as 

Supplementary Data 7. Additional custom code will be made available upon reasonable 

request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Extended Data

Extended Data Figure 1 |. Inferred MHC binding affinities of mutant versus wildtype peptides.
Neoantigens used in this study are 9-residue long peptides affinities predicted to be less than 

500nM by NetMHC3.419 (SI). We plot predicted affinities of mutant peptides, designated

Kd
MT, versus the predicted dissociation affinities of the wildtype peptides, which generated 

them, designatedKd
WT. A single point mutation can lead to predicted dissociation constant 

difference of up to 4 orders of magnitude.
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Extended Data Figure 2 |. Positions 2 and 9 have a subset of neoantigens with less predictive 
value.
The violin plots represent data density at a given value on a vertical axis. a, Neoantigens 

coming from mutations at position 2 or 9 tend to have wildtype peptides with larger 

predicted affinities. In particular, this is magnified if the corresponding wildtype residue is 

non-hydrophobic. b, Those biases are reflected in a wider distribution of amplitudes 

(Methods, equation (6)) for wildtype peptides with non-hydrophobic residues at positions 2 

and 9. c, Shannon entropy of amino acid diversity by position in neoantigens, shown for all 

distinct HLA-types and computed based on neoantigens across all datasets. Positions 2 and 9 

have lower entropy than other residues. Other sites have the same entropy as the overall 

proteome23 and are therefore unconstrained. Five HLA with non-canonical entropy profiles 

are singled out in the plot. These HLA- types contributed only 5 informative neoantigens 

across all datasets and therefore are not treated differentially in our model.
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Extended Data Figure 3 |. Survival analysis score landscape as a function of model parameters
a-c, The landscape of log-rank test scores as the function of the parameters of the TCR 

binding model (a and 1/k), shown for the consistent choice of 𝜏 = 0.09, colors represent the 

significance level of the long-rank test. The regions of high scores are similar across all three 

datasets. The point corresponding to consistent parameters (a = 26 and k = 4.87) is marked 

by a black dot in each plot. d-f, Log-rank score for fitness model at consistent binding 

function parameters, plotted as a function of 𝜏. Dashed vertical lines are at 𝜏 = 0.09, thin 

solid lines mark the score values corresponding to significance of 0.05, 0.01 and 0.005. 

(n=103 (a, d), n=64 (b, e), n=34 (c, f)).
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Extended Data Figure 4 |. Alignments to IEDB epitopes.
The TCR recognition probability for a neoantigen is a sigmoidal function of the 

neoantigen’s alignment scores with IEDB epitopes, here shown as evaluated for the set of 

neoantigens from Van Allen et al. cohort patients, using the consistent set of parameters.

Extended Data Figure 5 |. Effect of IEDB sequence content on predictive power of neoantigen 
fitness model.
Predictions were performed using subsampled IEDB epitope sequences, with subsampling 

rate varying between 0.1 and 0.9. For each rate, 10,000 iterations were performed to obtain a 

distribution of log-rank test scores. The violin plots represent data density at a given value 

on a vertical axis (n=10,000). Solid black lines mark the log-rank test score of the prediction 

on the full set of epitope sequences and gray thick lines mark the median scores on 

subsampled data. a-c, Subsampling of the original set of IEDB sequences, supported by 
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positive T-cell assays, shows that quality of predictions decreases with subsampling rate. 

Prediction quality is more robust in the Snyder et al. and Rizvi et al. datasets. d-f, Analogous 

subsampling procedure was repeated on IEDB sequences not supported by positive T-cell 

assays. For Van Allen et al. and Snyder et al. model performance is substantially lowered.

Extended Data Figure 6 |. Reshuffling patient HLA-types reduces predictive power of neoantigen 
fitness model.
In each cohort, we performed 10 iterations of reshuffling patient HLA-types, followed by 

computational neoantigen prediction, fitness model calculation and survival analysis. We 

report the distribution of log-rank test scores over these iterations: boxes mark 75% 

confidence intervals and whiskers mark the range of scores (n=10). The score values for the 

model on original data are marked with blue squares.

Extended Data Figure 7 |. Cytolytic score improves prediction quality.
a, Kaplan-Meier curves of overall survival shown for our model applied to Van Allen et al. 

for n=40 patient subset with transcriptional data. Samples are split by the median value of 

their tumor’s relative population size (𝜏) (equation (1)). Error bars represent standard error 

due to sample size. b, Model optimized for cytolytic score significantly separates patients 

(Methods). c, Inclusion of cytolytic score in our model improves prediction on 40 patient 

subset. The p-values from log-rank tests comparing the two KM curves re shown above 
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each plot. In a and c, we use consistent parameters trained on the three cohorts (Extended 

Data Fig. 2); in b parameter 𝜏 is optimized.
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Extended Data Table 2 |
Ranking of fitness models disregarding subclonal 
composition of tumors.

Fitness models from Extended Data Table 1 evaluated without accounting for subclonal 

composition of tumors on the same three cohorts, Van Allen et al. (n=103), Snyder et al. 

(n=64) and Rizvi et al. (n=34). As in Extended Data Table 1, we report parameters used for 

predictions and error bars for these parameters (Methods). Parameter 𝜏 is not a free 

parameter when disregarding subclonal composition of tumors (Methods) and is not 

reported. We report log-rank test scores for all models and the log-rank test p-value for 

models with significant patient segregation (p<0.05). The significant models are highlighted: 

yellow for models significant in a single cohort, orange for models significant across two 

cohorts, and red for models significant in all three cohorts.

Van Allen et al.,
Melanoma anti-CTLA-4

Parameters trained on
Snyder et al. dataset Log-rank test

Models
a k Score

Significance Equation
Mean Std Mean Std Mean Std

Ax R 18.5 ±0.152 0.59845 ±0.001 0.61 ±0.24 (2)

Partial models:

A - - - - 0.05 ±0.03 (12)

R 18.2 ±2.995 4.54981 ±0.001 0.2 ±0.03 (13)

1/kdMxR 26.6 ±1.609 1.34421 ±0.001 1.41 ±0.61 (14)

1/kdM - - - - 0.69 ±0.23 (14)

kdWxR 23.7 ±2.593 3.83397 ±0.001 1.35 ±0.34 (15)

kdW _ _ _ _ 0.46 ±0.2 (15)

Alternative models:

Neoantigen load _ _ _ _ 0.24 ±0.12 (17)

A x R, sum over 
neoantigens

25.1 ±3.308 4.89176 ±0.001 1.57 ±0.39 (16)

Ax R, alignments at 
positions 3–8

21.9 ±2.871 3.1276 ±0.001 0.35 ±0.36 (2)

Ax R, negative IED3 assays 14.4 ±2.58 2.20223 ±0.001 0.04 ±0.03 (2)

A x R, all neoantigens 29.2 ±2.892 3.88642 ±0.001 0.24 ±0.19 (2)

Snyder et al.,
Melanoma anti-CTLA-4

Parameters trained on
Van Allen et al. dataset Log-rank test

Models
a k Score

Significance Equation
Mean Std Mean Std Mean Std

Ax R 26.4 ±0.892 1.0851 ±0.001 6.55 ±0.9 0.01047 * (2)

Partial models:

A - - - - 4.44 ±0.68 0.03507 * (12)

R 29.7 ±4.829 2.51962 ±0.001 1.26 ±0.34 (13)

1/kdM x R 26 ±1.929 0.82074 ±0.001 3.65 ±0.81 (14)
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1/kdM _ _ _ _ 3.44 ±0.61 (14)

kdWxR 26.9 ±2.735 3.73387 ±0.001 1.67 ±0.22 (15)

kdW - - - - 3.11 ±0.75 (15)

Alternative models:

Neoantigen load - - - - 0.42 ±0.21 (17)

A x R, sum over 
neoantigens

27 ±3.005 5.08369 ±0.001 1.63 ±0.53 (16)

Ax R, alignments at 
positions 3–8

30 ±4.023 1.35553 ±0.001 2.73 ±0.65 (2)

Ax R, negative IED3 assays 36 ±9.57 10.1531 ±0.001 0.23 ±0.65 (2)

Ax R, all neoantigens 26 ±1.95 5.22216 ±0.001 0.59 ±0.92 (2)

Rizvi et al.,
Lung anti-PD-1

Parameters trained on
Van Allen et al. and Snyder et al.

datasets
Log-rank test

Models
a k Score

Significance Equation
Mean Std Mean Std Mean Std

Ax R 27 ±0.787 1.00032 ±0.001 6.48 ±1.14 0.01088 * (2)

Partial models:

A - - - - 4.65 ±1.17 0.03099 * (12)

R 19.6 ±3.355 4.29127 ±0.001 1.53 ±0.29 (13)

1/kdM x R 21 ±2.027 0.53498 ±0.001 0.02 ±0.07 (14)

1/kdM - - - - 0.17 ±0.13 (14)

kdWxR 23 ±2.737 5.37707 ±0.001 10.48 ±1.71 0.00121 *** (15)

kdW - - - - 4.49 ±0.75 0.03416 * (15)

Alternative models:

Neoantigen load - - - - 4.93 ±1.15 0.02639 * (17)

A x R, sum over 
neoantigens

25 ±4.316 4.03113 ±0.001 3.09 ±1.09 (16)

Ax R, alignments at 
positions 3–8

22 ±3.042 5.2228 ±0.001 2.3 ±0.82 (2)

Ax R, negative IED3 assays 14.5 ±2.806 1.90577 ±0.001 1 ±0.45 (2)

Ax R, all neoantigens 29 ±4.469 1.87092 ±0.001 0.75 ±0.62 (2)
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Extended Data Table 3 |
Multivariate analysis with a Cox proportional hazards 
model.

A multivariate analysis with a Cox proportional hazards model, was performed to adjust for 

important clinical covariates, while assessing for the predictive value of (𝜏) values. In 

melanoma cohorts (Van Allen et al., n=103 and Snyder et. al, n=64), we controlled for stage, 

gender, and age. Stage IIIC and IVa are combined together, as both of these stages had 

limited number of patients in either cohort. Stage IIIc/IVa serve as the reference in the table. 

In both the Van Allen et al. and Snyder et al. cohorts, (𝜏) predictions are independently 

associated with overall survival after anti-CTLA4 therapy. In the lung cancer cohort (Rizvi 

et al., n=34), all patients are Stage IV, so we correct for age, gender, and number of pack 

years smoked, and continued to find that 𝑛(𝜏) predictions are independently associated with 

overall survival after anti-PD1 therapy.

Variable

Snyder Van Allen

HR 95% Cl p-value HR 95% Cl p-value

n(τ)> Median 3.88 1.72 –8.75 0.001 1.99 1.25 – 3.15 0.004

Stage M1b 1.36 0.3 –6.15 0.69 0.8 0.27 – 2.40 0.703

Stage M1c 2.41 0.69 – 8.40 0.168 1.52 0.60 – 3.88 0.372

Age 1 0.98 –1.03 0.802 1 0.99 – 1.02 0.43

Gender (Male) 0.82 0.40 –1.69 0.59 0.72 0.43 – 1.21 0.218

Variable

Rizvi

HR 95% Cl p-value

n(τ)> Median 4.85 1.34 – 17.45 0.016

Age 1 0.95 –1.05 0.962

Gender (Male) 1.61 0.61 –4.25 0.339

Pack-Years Smoked 1 0.98–1.03 0.534
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Figure 1 |. Evolutionary tumor dynamics under strong immune selection and a neoantigen fitness 
model based on immune interactions.
a, Clones are inferred from a tumor’s genealogical tree. We predict (𝜏), the future effective 

size of the cancer cell population, relative to its size at the start of therapy (equation (1)) by 

evolving clones under the model over a fixed time-scale, 𝜏. Application of therapy can 

decrease fitness of clones depending on their neoantigens. Clones with strongly negative 

fitness have greater loss of population size than more fit ones. b, Our model accounts for the 

presence of dominant neoantigens within a clone, α, by modeling presentation and 

recognition of inferred neoantigens, assigning fitness to a clone, Fα.
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Figure 2 |. Neoantigen fitness model is predictive of survival after checkpoint blockade 
immunotherapy.
a-c, Tumor fitness is calculated across two melanoma cohorts treated with anti-CTLA-44,5 

and one lung cancer cohort treated with anti-PD-16. Kaplan-Meier curves of overall survival 

are displayed for each, with samples split by the median value of their tumor’s relative 

population size (𝜏) (equation (1)). Error bars represent standard error due to sample size (SI). 

The p-values from log-rank tests comparing the two KM curves are shown above each plot. 

d-f, Log-rank test score for the full neoantigen fitness model (navy blue), for partial models 

accounting for a single feature of the full model (light blue and yellow) and for the 

neoantigen load model (red). All models are evaluated both over a tumor’s clonal structure 

(heterogenous, left) and without clonality (homogenous, right). All model scores are 

presented for parameters obtained on independent training data (Methods). Error bars are the 

standard deviation of the log-rank test score acquired from survival analysis with one sample 

removed at a time (d, n=64, e, n=103, f, n=34). Dashed lines correspond to 5% significance.

Łuksza et al. Page 30

Nature. Author manuscript; available in PMC 2018 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3 |. Predicted evolutionary dynamics in cohorts.
a, Distribution of predicted relative population size 𝑛(𝜏) for responders and non-responders 

at consistent parameters across a, Van Allen et al.4 b, Snyder et al.5; and c, Rizvi et al.6 

cohorts. Responders and non-responders were defined within those studies; samples not 

classified as either are excluded. Error bars are 95% confidence intervals around the 

population average. The dashed line indicates the consistent time-scale, 𝜏 = 0.09, used across 

all three datasets for survival predictions (Methods and Extended Data Fig. 3). The 

significance of separation of the two groups was computed with Kolmogorov-Smirnov test, 

p-values at 𝜏 = 0.09 are 0.0016 (Van Allen et al.), 0.00084 (Snyder et al.) and 0.00071 (Rizvi 

et al.). Background shading represents significance of separation of the two groups as a 

continuous function of 𝜏 (**p<0.01, ***p<0.001).
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