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Abstract

Motivation: Cell movement in the early phase of Caenorhabditis elegans development is regulated

by a highly complex process in which a set of rules and connections are formulated at distinct

scales. Previous efforts have demonstrated that agent-based, multi-scale modeling systems can in-

tegrate physical and biological rules and provide new avenues to study developmental systems.

However, the application of these systems to model cell movement is still challenging and requires

a comprehensive understanding of regulatory networks at the right scales. Recent developments

in deep learning and reinforcement learning provide an unprecedented opportunity to explore cell

movement using 3D time-lapse microscopy images.

Results: We present a deep reinforcement learning approach within an agent-based modeling

system to characterize cell movement in the embryonic development of C.elegans. Our modeling

system captures the complexity of cell movement patterns in the embryo and overcomes the local

optimization problem encountered by traditional rule-based, agent-based modeling that uses

greedy algorithms. We tested our model with two real developmental processes: the anterior

movement of the Cpaaa cell via intercalation and the rearrangement of the superficial left-right

asymmetry. In the first case, the model results suggested that Cpaaa’s intercalation is an active

directional cell movement caused by the continuous effects from a longer distance (farther than

the length of two adjacent cells), as opposed to a passive movement caused by neighbor cell

movements. In the second case, a leader-follower mechanism well explained the collective cell

movement pattern in the asymmetry rearrangement. These results showed that our approach to

introduce deep reinforcement learning into agent-based modeling can test regulatory mechanisms

by exploring cell migration paths in a reverse engineering perspective. This model opens new

doors to explore the large datasets generated by live imaging.

Availability and implementation: Source code is available at https://github.com/zwang84/

drl4cellmovement.
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1 Introduction

Recent developments in cutting-edge live microscopy and image

analysis provide an unprecedented opportunity to systematically in-

vestigate individual cells’ dynamics and quantify cellular behaviors

over an extended period of time. Systematic single-cell analysis of

Caenorhabditis elegans has led to the highly desired quantitative

measurement of cellular behaviors (Du et al., 2014, 2015; Murray

et al., 2012). Based on 3D time-lapse imaging, the entire cell lineage

can be automatically traced, and quantitative measurements can be

made on every cell to characterize its developmental behaviors

(Giurumescu et al., 2012; Hench et al., 2009; Kyoda et al., 2012;

Schnabel et al., 1997). These massive recordings, which contain

hundreds to thousands of cells over hours to days of development,

provide a unique opportunity for cellular-level systems behavior rec-

ognition as well as simulation-based hypothesis testing.

Agent-based modeling (ABM) is a powerful approach to analyze

complex tissues and developmental processes (Hoehme and Drasdo,

2010; Olivares et al., 2016; Setty, 2012). In our previous effort, an

observation-driven, agent-based modeling and analysis framework

was developed to incorporate large amounts of observational/

phenomenological data to model the individual cell behaviors with

straightforward interpolations from 3D time-lapse images (Wang

et al., 2016, 2017a). With the ultimate goal being to model individ-

ual cell behaviors with regulatory mechanisms, tremendous chal-

lenges still remain to deal with the scenarios where regulatory

mechanisms lag data collection and potential mechanistic insights

need to be examined against complex phenomena.

Directional cell movement is critical in many physiological proc-

esses during C.elegans development, including morphogenesis, struc-

ture restoration and nervous system formation. It is known that, in

these processes, cell movements can be guided by gradients of various

chemical signals, physical interactions at the cell-substrate interface

and other mechanisms (Lee and Goldstein, 2003; Lo et al., 2000;

Shook and Keller, 2003). It remains an open and interesting challenge

as to what and how one could learn about the rules and mechanisms

of cell movement from the movement tracks recorded in live imaging.

This paper presents a new approach to study cell movement by

adopting deep reinforcement learning approaches within an agent-

based modeling framework. Deep reinforcement learning is good at

dealing with high-dimensional inputs and can optimize complex poli-

cies over primitive actions (Mnih et al., 2013), which naturally aligns

with the complex cell movements patterns that occur during C.elegans

embryogenesis. Even in some biological scenarios where regulatory

mechanisms are not completely studied, deep neural networks can be

adopted to characterize the cell movement within an embryonic sys-

tem. The neural network takes information from 3D time-lapse images

as direct inputs, and the output is the cell’s movement action opti-

mized under a collection of regulatory rules. Since deep reinforcement

learning can optimize the cell migration path over considerable tem-

poral and spatial spans in a global perspective, it overcomes the local

optimization problem encountered by traditional rule-based, agent-

based modeling that uses greedy algorithms.

We tested our model through two representative scenarios dur-

ing C.elegans embryogenesis: the anterior movement of Cpaaa via

intercalation and the rearrangement of the superficial left-right

asymmetry. In the first case, we proposed two hypotheses for the

intercalation of Cpaaa, and simulation results indicated that Cpaaa

experienced an active directional movement towards the anterior,

which is caused by the continuous effects from a longer distance, ra-

ther than a passive process in which it is squeezed to the target loca-

tion by its neighbors’ movements. In the second case, the frequently

occurring ‘leader-follower’ mechanism was also supported by the

simulation results of the asymmetry rearrangement. In summary,

this framework presents a reverse engineering perspective to investi-

gate regulatory mechanisms behind a certain developmental process:

By formulating the reward functions as the representation of regula-

tory mechanisms, different hypotheses can be tested via reinforce-

ment learning procedures. By comparing the extent of similarities

between the simulation cell migration paths and the observation data,

such hypotheses can either be supported or rejected, which can facili-

tate new explanations of certain cell movement behaviors. The model

can also be used to study cell migration paths in C.elegans mutants or

other metazoan embryo/tissue systems when related data are given.

2 Modeling approach

In our modeling framework, an individual cell is modeled as an

agent that contains a variety of information on its fate, size, division

time and group information. For a wild-type C.elegans simulation,

the cell fate and division information can be directly derived from

predefined observation datasets. For more complicated cases that in-

volve gene mutation and manipulation, the developmental landscape

can be incorporated for the purpose of modeling (Du et al., 2015).

More detailed design information on the agent-based model can

be found in (Wang et al., 2016). In this study, the cellular movements

are treated as results of inherited and genetically controlled behaviors

regulated by inter- or intracellular signals, and these cell movements

are also constricted by the neighbor cells and the eggshell.

We further assume that the migration path of an individual cell

is the optimal path that a cell can use to migrate under a collection

of regulatory networks and/or constraints within a physical environ-

ment. Then we can transform the cell movement problem into a

neural network construction and learning problem using observed

and/or predefined rules. Therefore, a neural network can be con-

structed for each cell to represent its behaviors, and the reinforce-

ment learning method can be used to train the neural networks from

3D time-lapse imaging [with information on locations of cells, their

neighbor lists, and other cell interactions after automated cell lineage

tracing (Bao et al., 2006)]. After training, the neural networks can de-

termine a feasible and optimal cell migration path in a dynamic embry-

onic system, but the migration path is still controlled and constrained

by the underlying regulatory networks and the physical environment.

While the regulatory networks can be defined at cellular, group,

tissue, or even embryonic levels, only the individual cell movement

and group movement are examined and modeled in this study.

2.1 Individual cell movements
Two basic kinds of individual cell movements are investigated. The

first movement pattern is directional movement, in which the regula-

tory network presents strong signals [such as morphogen gradient or

planar cell polarity (Heisenberg and Bellaı̈che, 2013)] and results in

directional individual cell movements. The second type of cell move-

ment, defined as passive cell movement, represents the scenarios in

which no explicit movement patterns are observed when the signals

from regulatory networks are weak or canceled out.

2.1.1 Directional cell movement

At this stage, with strong signals from regulatory networks, cell move-

ment is mainly controlled by the potential destination and physical

pressures from neighbor cells or the eggshell. The destination of cell

movement can be defined as a spatial location or region within the
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embryonic system when regulatory mechanisms are not well studied,

or it can be defined as a location next to a specific cell.

2.1.2 Passive cell movement

At this stage, without strong overall regulatory mechanisms, cell

movement is mainly controlled by the physical pressures between

neighbor cells or the eggshell. Therefore, it is defined as passive cell

movement with a high level of randomness.

2.2 Collective cell migration
In a C.elegans embryonic system, individual cells can also be a part

of functional group with group-specific communication and regula-

tory mechanisms. In collective cell migration, all the cell movements

are directional. However, depending on the role of cell movement,

the cells in collective migration can be further categorized as leading

cells and following cells.

3 Materials and methods

3.1 ABM framework
An ABM platform was adopted to present fundamental cell behav-

iors, including cell fate, division, and migration for a wild-type

C.elegans in which all cell fates are predefined. The framework,

which retains two fundamental characteristics (cell movement and

division) for C.elegans early embryogenesis is illustrated in Figure 1.

Since only single cell movement is modeled in this study, we use the

terminologies ‘migration cell’ and ‘environment cell’ to distinguish

the cell that learns its migration path, and those that move based on

the observation dataset, respectively. At each time step, each cell

first moves to its next location determined by either the output ac-

tion from the neural network (if the cell is a ‘migration cell’) or the

observation data (if the cell is a ‘environment cell’). After that, if it is

at the right time for division, a new cell is hatched. A global timer is

updated when all the cells have acted at a single time step, and such

a loop repeats until the end of the process.

3.2 Cell movement via deep Q-network
As mentioned in the Modeling Approach section, cell movement has

been modeled as a reinforcement learning process (Sutton and Barto,

1998) in which an agent (cell) interacts with the environment (other

cells in the embryo and the eggshell) to achieve predefined goals. In an

individual cell movement case, a migration cell always tends to seek

the optimal migration path towards its destination based on the regu-

latory rules. At each discrete time step t, the cell senses its environmen-

tal state St 2 S from the embryo and selects an action At 2 A, where

the set of A includes the candidate actions at that state. The embryo

returns a numerical reward Rt 2 R to the cell as an evaluation of that

action based on the state. Finally, the cell enters the next state Stþ1

and repeats the process until a terminal condition is triggered. The mi-

gration cell’s objective is to maximize the overall rewards collected

during the process. The whole process is demonstrated in Figure 2.

Traditionally, tabular-based Q-learning approaches were largely

used for reinforcement learning tasks with modest numbers of input

states. However, a dynamic agent-based embryogenesis model usually

contains hundreds of cells that act at high temporal and spatial resolu-

tions. Millions of different states are generated during a single embryo-

genesis process, which cannot be handled by traditional tabular-based

Q-learning algorithms. Furthermore, a traditional Q-learning algo-

rithm requires large computational resources and cannot be tightly

integrated within an agent-based modeling framework for large-scale

simulations with high-dimensional inputs. Recent breakthroughs in re-

inforcement learning that incorporate deep neural networks as map-

ping functions allow us to feed in high-dimension states and obtain the

corresponding Q-values that indicate a cell’s next movement (Mnih

et al., 2013, 2015). Such a deep Q-network (DQN) outperforms most

of the previous reinforcement learning algorithms.

3.2.1 Framework

We implemented a DQN customized for cell movement modeling. It

contains two main loops: a cell migration loop and a network train-

ing loop (Fig. 3). At each time step in the cell migration loop, a state

tracker is used for collecting the input state as a representation of

the environmental conditions (details in Section 3.4.1). An �-greedy

strategy is implemented to balance the exploration and exploitation.

Specifically, � is a hyperparameter in 0;1½ �. A random number x is

sampled from a uniform distribution U(0, 1) each time before the se-

lection of an action. If x 2 e;1½ �, the migration cell selects a random

action, obtains a reward and moves to the next location. Otherwise,

the movement action is calculated by feeding the input state to the

neural network. Such a process repeats until a terminal condition is

triggered. For the training loop, the DQN is established based on

traditional Q-learning algorithms. Rather than searching a Q-table

to find the maximal value of Q St;Atð Þ, Q-values are obtained through

a neural network parameterized by a set of weights h. The training

samples are the tuples St;At;Rt; Stþ1ð Þ gathered from the migration

loop. The update process (Eq. (1)) can be achieved by minimizing the

Fig. 1. The ABM framework. Cells move at each time step based on the output

of the neural network (migration cell) or reading the observed locations (en-

vironment cells). After a cell’s movement, if it is at the right time for division,

a new cell is hatched. Such a process repeats until the end of the simulation

Fig. 2. The reinforcement learning framework. A cell interacts with the em-

bryo. At each time step, the cell receives a state St, selects an action At, gets a

reward Rt and enters the next state Stþ1. The cell’s objective is to maximize

the total rewards received
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loss function L (Eq. (2)) and backpropagating the loss through the

whole neural network to update h by htþ1 ¼ ht � arhL htð Þ (Egorov,

2016). Therefore, the migration cell will gradually select better

actions as the training process proceeds.

Q St;Atjhtð Þ  Q St;Atjhtð Þ

þa Rt þ c max
Atþ1

Q Stþ1;Atþ1jhtð Þ �Q St;Atjhtð Þ
� �

;
(1)

L St;Atjhtð Þ ¼ Rt þ c max
Atþ1

Q Stþ1;Atþ1jhtð Þ �Q St;Atjhtð Þ
� �2

; (2)

where a is the learning rate and c 2 0; 1ð Þ is the discount factor, which

determines the present value of future rewards (Sutton and Barto, 1998).

In order to improve the system’s performance, we utilized two

mechanisms, i.e. experience replay (Mnih et al., 2013) and target

network (Mnih et al., 2015), in the framework. Experience replay cuts

off the correlation (which is one of the sources of instabilities) between

samples by storing the movement tuples St;At;Rt; Stþ1ð Þ from mul-

tiple training runs in a replay memory and sampling them randomly

during the training process. This is because the capacity of the replay

buffer is much larger than the number of samples generated in a single

training epoch, and the randomly selected samples for training at each

time will come from various processes, which are much less related to

each other than those consecutive samples from a single process. In a

DQN with a single neural network, the target for gradient descent is

always shifting as h is updated at each time step. Therefore, rather

than calculating the future maximal expected reward maxAtþ1
Q

Stþ1;Atþ1jhtð Þ and updating the weights in a single neural network, a

target network, which has the same architecture as the original

network (called the online network in the new scenario) but

parameterized with h�t , was implemented for the calculation of

maxaQ Stþ1;Atþ1jh�t
� �

. The weights h�t remain unchanged for all n

iterations until they are updated with ht from the online network. This

mechanism reduces the oscillations and improves the stabilities of the

framework. The improved process is represented in Eq. (3).

Q St;Atjhtð Þ  Q St;Atjhtð Þ

þa Rt þ c max
Atþ1

Q Stþ1;Atþ1jh�t
� �

�Q St;Atjhtð Þ
� �

(3)

The neural network, which is fed with the environmental state

and outputs a Q-value for each action, contains three hidden layers,

with 512, 1024 and 1024 nodes, respectively. The Rectified Linear

Units (ReLU) was implemented as the activation function after all

the hidden layers except for the output layer. The details of the

hyperparameter selection can be found in the Supplementary

Material S1.1.

3.2.2 Regulatory mechanisms and reward settings

In the reinforcement learning scenario, the regulatory mechanisms

that guide cell movements can be transformed to reward functions

as an evaluation of how well a cell moves during a certain period of

time based on those mechanisms. For the physical constraints of the

cell movement, we defined the following two rules:

• Collision: Cells cannot squeeze too closely together. The closer

two cells are, the larger the penalty (negative reward) they

receive.
• Boundary: Cells cannot break through the eggshell. The closer

the cell is to the eggshell, the larger the penalty (negative reward)

it receives.

For both of the above rules, as a threshold of distance is reached, a

terminal condition is triggered and the process ends and restarts. For

the directional cell movement, an explicit destination is given as a sim-

plified third rule when other regulatory mechanisms are missing:

• Destination: A cell always seeks the optimal path towards its tar-

get location.

This rule can be replaced as more specific regulatory mechanisms

are discovered (e.g. following a leading cell or becoming the neigh-

bor of a certain cell), or new hypotheses are formulated. Details of

the reward settings are illustrated in Section 4 and Supplementary

Material S1.2.

3.3 Behaviors of the environment cells
The automated cell lineage tracing technology (Bao et al., 2006) was

utilized to obtain the information of cells’ identities and locations

from 3D time-lapse microscopy images. This information was used

to model the environment cells’ movement. Because the temporal

resolution of our observation data is one minute, and an ABM simu-

lation often requires a much smaller tick interval, a linear interpol-

ation was implemented between two consecutive samples to

calculate the next locations of these cells. Additionally, we added

random noise for each movement by sampling it from a normal dis-

tribution whose mean value and standard deviation were averaged

from the locations of the cells of 50 wild-type C.elegans embryos

(Moore et al., 2013).

3.4 Behaviors of the migration cell
For the migration cell, an �-greedy strategy was implemented, which

not only makes it act based on past experiences to maximize the

accumulated rewards most of the time but also gives it a small

chance to randomly explore unknown states. Usually, the value of

� is set to increase (the probability of random exploration decreases)

as the training process proceeds. This is because the demands of ex-

ploration narrow down as the migration cell moves towards the des-

tination. The selection of � varies from case to case and the details

are demonstrated in the Supplementary Material S1.1. In the follow-

ing sub-sections, we give a description of the settings of the migra-

tion cell’s input states and output actions.

Fig. 3. The deep Q-network framework for cell movement, which contains a

cell migration loop and a network learning loop. The migration cell’s move-

ment is selected via the �-greedy mechanism, from either a random sampling

of all the possible actions or the output of the neural network. Then it gets a

reward, moves to the next location and repeats this process. The samples

generated from the cell migration loop are used to update the parameters of

the neural network via backpropagation. Experience replay (dashed lines)

and target network are implemented to improve the performance
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3.4.1 Input states

Representing the input state accurately and efficiently is a key issue

for the deep reinforcement learning framework of cell movement.

Besides the location of the migration cell, which is indispensable, an

intuitive assumption is that its neighbors, which represent the envir-

onment, should be incorporated to form the input state. We imple-

mented a neighbor determination model (which takes a set of

features of two cells, such as the distance between them, their radii,

etc., and determines whether they are neighbors with each other

with machine learning algorithms) (Wang et al., 2017b) in a conser-

vative manner for this purpose. Specifically, we extracted a number

of candidate cells that might influence the migration cell with a rela-

tively relaxed condition, so that more cells would be selected to

guarantee that the input state is sufficiently represented. This was

done by running the agent-based model in a non-reinforcement

learning mode (all cells move based on the observation data) and

recording the neighbors of the migration cell at each time step.

Finally, we combined the locations of all these cells (selected cumu-

latively in the whole process) in a fixed order as the input for the

neural network.

3.4.2 Output actions

It is intuitive to give the migration cell as many candidates of actions

as possible (or a continuous action space) so that it can make the

most eligible choice during the simulation. The diversity of the ac-

tion includes different speeds and directions. However, the number

of output nodes grows exponentially as we take more relaxed strat-

egies to select the action. Based on our extensive experiments,

we discovered that an enumeration of eight directions of action,

with 45
�

between each of them, is good enough for this scenario.

Moreover, we fixed the speed based on an estimation of the average

movement speed during the embryogenesis, which was measured

from the observation data.

Finally, we give an example of a specific evaluation step for a

single action selection process (Fig. 4). We collect all the locations of

the selected cells by the neighbor determination model, concatenate

them to form a vector in a fixed order, and feed it into the neural

network. The outputs of the neural network are the Q-values (i.e. a

probability for selecting each action). The action that corresponds to

the maximal probability (or a random action as the �-greedy sug-

gested) is selected as the migration cell’s next movement.

4 Experiments

4.1 Computational environment and platform
The agent-based model was implemented with Mesa, an ABM

framework in Python 3þ. We used Python’s GUI package Tkinter

for the purpose of visualization. The cell movement behavior model

was built with 3D coordinates, and a certain slice of the whole em-

bryo was visualized in a 2D manner to illustrate where emergent

behaviors specifically happen. We used Pytorch to achieve reinforce-

ment learning algorithms with the advantage of GPU acceleration

during the training process. The reinforcement learning architecture

was integrated as part of the agent-based model. All the computa-

tions were executed in a DELLVR Precision workstation, configured

with a 3.6 GHz 4-core IntelV
R

XeonVR CPU, 64 GB main memory and

a 16-GB NVIDIAVR QuadroVR P5000 GPU.

4.2 Model setup
Live 3D time-lapse images of C.elegans embryogenesis data were

used to study cell movement. Cell lineage (Sulston et al., 1983) was

traced by Starrynite II (Santella et al., 2014) and manually corrected

in Acetree (Boyle et al., 2006). Acetree was also used to visualize the

observation data. Detailed information on live imaging can be found

in the Supplementary Material S2.

Two special C.elegans biological phenomena, the intercalation

of Cpaaa and left-right asymmetry rearrangement, were investi-

gated. The first case is a remarkable process during C.elegans early

morphogenesis of dorsal hypodermis. Cpaaa is born at the dorsal

posterior. About 10 min later after its birth, Cpaaa moves towards

the anterior and intercalates into two branches of ABarp cells, which

will give rise to left and right seam cells, respectively. The intercal-

ation of Cpaaa is consistent among wild-type embryos. It leads to

the bifurcation of ABarp cells and the correct positioning of seam

cells. The second case is left-right asymmetry rearrangement. It is a

significant development scenario: At the 4-cell stage, the left-right

symmetry is broken after the skew of ABa/ABp spindle. The right

cell ABpr is positioned more posterior than the left cell ABpl. At the

AB64 (64 AB cells, 88 total cells) stage, the movement of ABpl and

ABpr cells start to restore the spatial symmetry, i.e. ABpl cells move

towards the posterior and ABpr cells move towards the anterior. By

350-cell stage, ABpl and ABpr cells are again in symmetry on the AP

axis. This asymmetry rearrangement achieves a superficially sym-

metric body plan (Pohl and Bao, 2010).

The embryo is considered to be an ellipsoid for the volume esti-

mation. The mounting technique aligns the DV axis in the embryo

with the z-axis of the data (Bao et al., 2006; Bao and Murray,

2011), and the lengths of the other two axes (AP and LR) are

obtained by finding the minimum and maximum cell positions along

them (Moore et al., 2013). For the estimation of the cell radius, the

ratio of the cell volume to the entire embryo is determined based on

its identity. Then, the radius is estimated by considering a cell as a

sphere (Wang et al., 2017b).

We utilized linear functions to define the rewards in our simula-

tions. Specifically, for the Collision rule, penalties (negative rewards)

are exerted as the distance between two cells reached a threshold. As

their distance becomes smaller, the penalty linearly grows until a ter-

minal threshold is reached (Eq. (4)). Similarly, for the Boundary

rule, the penalty is calculated based on the distance between the mi-

gration cell and the eggshell. Finally, for the Destination rule, bigger

positive rewards are given as the cell moves towards the destination.

Details are demonstrated in Supplementary Material S1.2.

r ¼ d � dl

dh � dl
� rh � rlð Þ þ rl; (4)

where d is the distance between two cells and dh and dl represent the

highest and lowest bounds of the distance between two cells where a

penalty is generated. rh and rl indicate the range of the penalty.

Fig. 4. An example of a specific evaluation step for a single action. A list of

cells are pre-selected as the state cells via the cell neighbor determination

model. Their locations are concatenated and sent to the neural network, and

the output action with the maximal probability is selected as the migration

cell’s next movement
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4.3 An agent-based deep reinforcement learning frame-

work for C.elegans embryogenesis
The ABM environment was initialized with the observation data

from live imaging with automated cell lineage tracing. We first

tested the performance of our ABM framework. The ABM platform

was configured to track the movements of the intercalation cell,

namely, Cpaaa in the first process, for the purpose of illustration.

Although the embryo we measured had a length of 30 lm in the

dorsal-ventral axis, we only considered the space that is 5–9 lm to

the dorsal side, where Cpaaa’s intercalation happens. The entire

space was visualized by projecting all cells in this space to the center

plane (7 lm to the dorsal side). Based on the result (Fig. 5) we found

that the movement path of Cpaaa is consistent with that in the 3D

time-lapse images. The visualized cell sizes are largely consistent

with the observation data, except for the fact that a few of them, es-

pecially located in the planes that are far away from the center

plane, have slightly different sizes visually. However, those differen-

ces have an insignificant impact on cell movement modeling.

Unlike supervised learning tasks, such as classification and

regression, evaluating the performance is quite challenging in deep

reinforcement learning tasks. We followed the evaluation metric in

Mnih et al. (2013) to quantify the general performance of the

system. The total reward a cell collects in a single movement path

generally goes upward, but tends to be quite noisy since very tiny

changes in the weights of the neural network result in large changes

in the actions a cell chooses (Mnih et al., 2013) (Fig. 6a). Training

loss tends to oscillate over time (Fig. 6b), and the reason behind this

is the implementation of the experience replay and the target

network, which cut off the correlation between training samples.

Finally, we extracted a set of states by running the model in a non-

reinforcement learning way and collecting the state cells’ locations.

We then fed these predefined states to the neural network during the

training process. It turns out that the average action values of these

states grow smoothly during the training process (Fig. 6c). We did

not encounter any divergence problems, though the convergence of

DQN is still an active research area. Sometimes, we experienced a

few unstable training scenarios, but these problems could be solved

by implementing a learning rate decay strategy.

4.4 Regulatory mechanisms of individual cell

movements
We examined our hypotheses of individual cell movement in the

Cpaaa intercalation case (see Section 2.1). Specifically, we tested (i)

whether Cpaaa’s intercalation results from an active directional move-

ment or a passive movement, and (ii) whether a passive movement

mechanism is sufficient for explaining the migration path of Cpaaa’s

neighbors. In this case, the observed fact is that during the first four

minutes of the process, the intercalating cell Cpaaa moves randomly.

After extensive divisions of the ABarp cells, Cpaaa changes its behav-

ior to a directional movement until the end of the process. The signal

triggering the switch may come from the newborn ABarp cells.

In the directional cell movement process, unexpected regulariza-

tion signals or irregular movement patterns have to be considered.

In our study, we defined the possibility of selecting a directional

movement from the neural network by a ratio between 0 and 1. The

value of zero means a completely random movement, and the value

of one means a completely directional cell movement.

4.4.1 Regulatory mechanisms in the Cpaaa intercalation case

We trained individual neural networks (parameters were initialized

by random sampling from a Gaussian distribution) for directional

and passive movements with different sets of regulatory mecha-

nisms. Specifically, we trained the neural network for passive move-

ment with the Collision and Boundary rules, and the one for

directional movement with an addition of the Destination rule. The

different behaviors of Cpaaa (random movement for the first four

minutes and directional movement after that) were controlled by

manipulating the probability of random movement � in the action

selection procedure. The results of the simulation of Cpaaa with the

Destination rule (Fig. 7b) show that during the first four minutes,

the migration cell didn’t have an explicit destination and, to a large

extent, acted randomly. After that, Cpaaa switched its behavior and

began to move directionally to the destination, as well as kept

proper distances from its neighbors and the eggshell. The whole mi-

gration path largely reproduced that in the live microscopy images

(Fig. 7a). However, when we trained Cpaaa without the Destination

rule, it failed to identify the migration path and fell into a subopti-

mal location where it kept proper distances with its neighbors

(Fig. 7c). We also trained a neighbor of Cpaaa, namely, Caaaa, as a

passive movement cell during the process (Fig. 7d), and its migration

path in this scenario also reproduced that in the images, which indi-

cated that Caaaa played a passive role during Cpaaa’s intercalation.

For the verification of the generality of the model, random noise

was added to the initial positions of all the cells (including the migra-

tion cell) and to all the migration paths of the environment cells during

the training process. It turns out that the neural networks could still

provide the most proper actions under a large variety of input states

after the policy converges, though the optimization process took lon-

ger to converge than that in the scenarios without random noise.

4.4.2 Migration path of the migration cell

We found that qualitatively, the migration cell Cpaaa adopted a

similar migration path to the destination with the directional move-

ment setting, as compared to the observation case (Fig. 8a), though

from the 13th to 19th minute, the observation movement of

Cpaaa went towards the anterior faster than the simulation path.

The difference between the simulation and observation results

indicates that extra regulatory mechanisms (such as cell adhesion, or

intermediate sub-mechanisms, see the Discussion section) could be

considered to control cell movement during the whole Cpaaa

(a)

(b)

Fig. 5. Comparison between (a) the 3D time-lapse images and (b) the visual-

izations of the ABM simulation results. Simulation results closely reproduce

the observed patterns
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intercalation process. On the other hand, without the Destination

rule, Cpaaa’s simulated path is quite far away from the observed

path (Fig. 8b). We used the mean square error (MSE) as a quantita-

tive measurement of the simulated path and the observed path. It

turns out that the MSE in Figure 8a is much smaller than that in

Figure 8b (4.05 versus 237.60). In conclusion, the above results

show that Cpaaa’s intercalation is regulated by an active directional

movement mechanism, which is strongly influenced by the

Destination rule (or its alternatives), rather than by a passive move-

ment mechanism. Moreover, another interesting finding is that the

(a) (b) (c)

Fig. 6. Performance evaluation of the deep reinforcement learning algorithm for cell movement modeling. (a) The cumulative rewards generally goes upward,

but tends to be noisy. (b) The loss tends to oscillate because of the implementation of the experience replay and the target network. (c) The average action value

grows smoothly over time

(a)

(b)

(c)

(d)

Fig. 7. Results of the Cpaaa intercalation case. (a) Observation results visualized by Acetree from 3D time-lapse images. (b) Simulation results of the intercalating

cell Cpaaa with the Destination rule. (c) Simulation results when training Cpaaa only with the Boundary and Collision rules, without the Destination rule, which in-

dicate that Cpaaa fell into a suboptimal location. (d) Simulation results of the cell Caaaa, a neighbor of Cpaaa. Red, yellow and green circles represent the migra-

tion cell, input state cells and non-related cells, respectively. The white circle indicates the destination of the migration cell. All four sets of data were collected at

the following time steps: 0, 4, 8, 12, 17 and 22 (minutes from the beginning of the simulation) (Color version of this figure is available at Bioinformatics online.)
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standard deviation of the migration path of Cpaaa with the

Destination rule is controlled in a proper range, whereas that of the

path without the Destination rule diverges as time goes by. Such a

result indicates that the migration cell achieves an error correction

mechanism in its migration path to the destination.

4.5 Regulatory mechanisms of group cell migration
In this experiment, we trained the neural network to test the cell

movement in group migration via the case of left-right asymmetry

rearrangement. Rather than explicitly pointing out the destination,

we let the migration cell (ABplpaapp) follow the leading cell

(ABplppaa, or its daughter cells). The reward setting was then modi-

fied accordingly: When the distance between the leading cell and

the following cell is in a proper range, a positive reward is given.

The results (Fig. 9b) show that ABplpaapp always moves following

the leading cell, and keeps proper distances from its neighbors.

Although we did not identify which cell is the leading cell, the mi-

gration cell will gradually figure out which nearby cell is the leading

cell through the training process, because following the leading cell

will achieve a big reward. The results are consistent with the obser-

vation data (Fig. 9a), which shows the flexibility of our model by

replacing the Destination rule with more concrete ones.

5 Discussion

In this study, we presented a novel approach to model cell move-

ment using deep reinforcement learning within an agent-based mod-

eling framework. Our study showed that neural networks can be

adopted to characterize cell movement and that the deep reinforce-

ment learning approach (i.e. DQN) can be used to find the optimal

migration path of a cell under certain regulatory mechanisms. As

compared to the heuristic rule-based, agent-based models, with

which macroscopic behaviors (such as tissue/organ morphogenesis)

can be studied (Setty, 2012; Setty et al., 2008), this model provides a

new point of view in which single cell movements can be defined

and optimized over a considerable period of time. In the Cpaaa

intercalation case, we tested two hypotheses (active directional

movement versus passive movement) that might explain Cpaaa’s mi-

gration towards the anterior by manipulating the reward settings

(use the Destination rule or not). Simulation results rejected the pas-

sive movement assumption after comparisons between simulated

and observed paths of Cpaaa. Such results indicated that target site

specification (the Destination rule), as a simplified representation of

morphogen gradient, is an effective approach for cell migration path

learning, especially when regulatory mechanisms lag data collection.

The left-right asymmetry rearrangement case demonstrated that the

framework has the capability to generalize the Destination rule to

more specific mechanisms (a leader-follower mechanism in this

case) to explain certain cell movement behaviors. By comparing

simulated cell migration paths regulated by the proposed assump-

tions and the observed path in a reverse engineering perspective, this

framework can be used for facilitating new hypotheses during cer-

tain developmental processes not only in C.elegans, but in other tis-

sues/organisms as well.

This model captures the main aspects of cell movement and pro-

vides a new idea that represents cell behaviors with neural networks

trained by deep reinforcement learning algorithms. More powerful

models can be implemented in the following aspects: (i) Multi-agent

reinforcement learning (Busoniu et al., 2008; Tampuu et al., 2017)

can be used for studying cooperative/competitive cell behaviors by

manipulating the rewards in the framework. Such an extension can

provide further biological insights. For example, for the Cpaaa inter-

calation case, we may investigate whether the certain group of cells

(i.e. Cpaaa and its neighbors) works cooperatively (as a result of the

intercalation of Cpaaa) or its neighbors actually act competitively

with their own rules (but the regulatory rule of Cpaaa is over-

dominant). More specifically, we observed that during the last few

minutes of the process, the cell ABarpaapp moves to the posterior to

become a neighbor of Cpaaa. It is interesting to study whether

ABarpaapp helps Cpaaa to intercalate towards the anterior (co-

operative behavior, give both cells rewards when the intercalation of

Cpaaa is achieved), or such a migration of ABarpaapp is just due to

its dislocation (competitive behavior, ABarpaapp will not be

rewarded when Cpaaa achieves the intercalation). (ii) The hierarch-

ical regulatory mechanism is another area of interest. Although the

Destination rule provides a simplified representation of the morpho-

gen gradient, it can be generalized with the formation of certain cell

(a) (b)

Fig. 8. (a) Migration paths of Cpaaa with directional movement. (b)

Simulation results when training Cpaaa only with the Boundary and Collision

rules, without the Destination rule. Results indicate that Cpaaa fell into a sub-

optimal location. Both simulation paths are the averages over 50 runs, and

the shaded regions indicate ranges of one standard deviation greater/less

than the average values. The horizontal axis represents the developmental

time in minutes. The vertical axis represents the projected position of Cpaaa

on the AP-axis to the center of the embryo

(a)

(b)

Fig. 9. The simulation of left-right asymmetry rearrangement. (a) Observation

data. The migration cell and the leading cell are circled. (b) Simulation results.

The cyan circle represents the leading cell, and the others are color coded, as

in Figure 7. The white circle here indicates the destination of the migration

cell only for the purpose of visualization. Both sets of data were collected at

the following time steps: 0, 3, 6, and 9 (minutes from the beginning of the

simulation) (Color version of this figure is available at Bioinformatics online.)
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neighbor relationships. In the Cpaaa intercalation case, the migra-

tion cell experiences a series of changes of neighbor relationships be-

fore reaching the target site. It is worth investigating whether these

relationships play as significant sub-goals to serve the ultimate goal.

As presented in (Mnih et al., 2015), the deep Q-network performs

poorly on hierarchical tasks. Such tasks require more advanced

strategies that are obtained by prior knowledge, which can hardly

be represented by the input state. Therefore, future work is immedi-

ately needed to implement hierarchical deep reinforcement learning

architectures to meet such demands (Kulkarni et al., 2016). (iii)

Other advanced training strategies and reinforcement learning algo-

rithms are also worth investigating to improve the performance of

the model, such as learning rate decay (Zeiler, 2012), continuous

control (Lillicrap et al., 2015) and asynchronous methods (Mnih

et al., 2016). (iv) Finally, we hope to incorporate more biological

domain knowledge in the model to simulate more complex cell

movement behaviors. As one of our previous efforts, we have devel-

oped a developmental landscape for mutated embryos (Du et al.,

2014, 2015). The mutated cell fate information from this research

can be integrated as part of the input state to study a cell’s migration

path in a mutant. With fate-related adjustments of the regulatory

mechanisms and the reward functions behind them, we can verify/

reject the hypotheses of certain cell movement behaviors in a mutant

based on the extent of similarities between the simulated path and the

observed path. Furthermore, by comparing the simulation and obser-

vation paths, we can design more biological experiments for follow-up

investigations. Other concepts, such as cell–cell adhesion, as environ-

mental factors (like the Collision and the Boundary rule) can also be

incorporated to improve the performance of the model.

6 Conclusion

In this paper, we successfully developed a cell movement modeling

system by integrating deep reinforcement learning with an ABM

framework. Our modeling system can learn a cell’s optimal path

under certain regulatory mechanisms, and thus it can examine

hypotheses by comparing the similarities between the simulation cell

migration paths and the observation data. These two capabilities, in

turn, provide new opportunities to explore the large datasets gener-

ated by live imaging.
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