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Abstract

Motivation: Recent advances in sequencing technologies promise ultra-long reads of �100 kb in

average, full-length mRNA or cDNA reads in high throughput and genomic contigs over 100 Mb

in length. Existing alignment programs are unable or inefficient to process such data at scale,

which presses for the development of new alignment algorithms.

Results: Minimap2 is a general-purpose alignment program to map DNA or long mRNA

sequences against a large reference database. It works with accurate short reads of �100 bp in

length, �1 kb genomic reads at error rate �15%, full-length noisy Direct RNA or cDNA reads

and assembly contigs or closely related full chromosomes of hundreds of megabases in length.

Minimap2 does split-read alignment, employs concave gap cost for long insertions and dele-

tions and introduces new heuristics to reduce spurious alignments. It is 3–4 times as fast as

mainstream short-read mappers at comparable accuracy, and is �30 times faster than long-

read genomic or cDNA mappers at higher accuracy, surpassing most aligners specialized in

one type of alignment.

Availability and implementation: https://github.com/lh3/minimap2

Contact: hengli@broadinstitute.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single Molecule Real-Time (SMRT) sequencing technology and

Oxford Nanopore technologies (ONT) produce reads over 10 kbp

in length at an error rate �15%. Several aligners have been devel-

oped for such data (Chaisson and Tesler, 2012; Li, 2013; Lin and

Hsu, 2017; Liu et al., 2016, 2017; Sedlazeck et al., 2018; Sovi�c

et al., 2016). Most of them were five times as slow as mainstream

short-read aligners (Langmead and Salzberg, 2012; Li, 2013) in

terms of the number of bases mapped per second. We speculated

there could be substantial room for speedup on the thought that

10 kb long sequences should be easier to map than 100 bp reads

because we can more effectively skip repetitive regions, which are

often the bottleneck of short-read alignment. We confirmed our

speculation by achieving approximate mapping 50 times faster than

BWA-MEM (Li, 2016). Suzuki and Kasahara (2018) extended our

work with a fast and novel algorithm on generating base-level

alignment, which in turn inspired us to develop minimap2 with

added functionality.

Both SMRT and ONT have been applied to the sequencing of

spliced mRNAs (RNA-seq). While traditional mRNA aligners work

(Iwata and Gotoh, 2012; Wu and Watanabe, 2005), they are not opti-

mized for long noisy sequence reads and are tens of times slower than

dedicated long-read aligners. When developing minimap2 initially for

aligning genomic DNA only, we realized minor modifications could

enable the base algorithm to map mRNAs as well. Minimap2

becomes a first RNA-seq aligner specifically designed for long noisy

reads. We have also extended the original algorithm to map short

reads at a speed faster than several mainstream short-read mappers.

In this article, we will describe the minimap2 algorithm and its

applications to different types of input sequences. We will evaluate

the performance and accuracy of minimap2 on several simulated

and real datasets and demonstrate the versatility of minimap2.
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2 Materials and methods

Minimap2 follows a typical seed-chain-align procedure as is used

by most full-genome aligners. It collects minimizers (Roberts et al.,

2004) of the reference sequences and indexes them in a hash table,

with the key being the hash of a minimizer and the value being a

list of locations of the minimizer copies. Then for each query

sequence, minimap2 takes query minimizers as seeds, finds exact

matches (i.e. anchors) to the reference, and identifies sets of coli-

near anchors as chains. If base-level alignment is requested, mini-

map2 applies dynamic programming (DP) to extend from the ends

of chains and to close regions between adjacent anchors in chains.

Minimap2 uses indexing and seeding algorithms similar to mini-

map (Li, 2016), and furthers the predecessor with more accurate

chaining, the ability to produce base-level alignment and the support

of spliced alignment.

2.1 Chaining
2.1.1 Finding the optimal chaining scores

An anchor is a 3-tuple (x, y, w), indicating interval x�wþ 1; x½ � on

the reference matching interval y�wþ 1; y½ � on the query. Given a

list of anchors sorted by ending reference position x, let f(i) be the

maximal chaining score up to the i-th anchor in the list. f(i) can be

calculated with dynamic programming:

f ið Þ ¼ maxfmax
i>j�1
ff jð Þ þ a j; ið Þ � b j; ið Þg;wig (1)

where a j; ið Þ ¼ minfminfyi � yj; xi � xjg;wig is the number of

matching bases between the two anchors. b j; ið Þ > 0 is the gap cost.

It equals 1 if yj � yi or maxfyi � yj;xi � xjg > G (i.e. the distance

between two anchors is too large); otherwise

b j; ið Þ ¼ cc yi � yj

� �
� xi � xj

� �� �
(2)

In implementation, a gap of length l costs

cc lð Þ ¼
0:01 � �w � jlj þ 0:5 log2jlj l ¼ 0ð Þ

0 l ¼ 0ð Þ

(

where �w is the average seed length. For N anchors, directly comput-

ing all f �ð Þ with Equation (1) takes O N2
� �

time. Although theoreti-

cally faster chaining algorithms exist (Abouelhoda and Ohlebusch,

2005), they are inapplicable to generic gap cost, complex to imple-

ment and usually associated with a large constant. We introduced a

simple heuristic to accelerate chaining.

We note that if anchor i is chained to j, chaining i to a predecessor

of j is likely to yield a lower score. When evaluating Equation (1), we

start from anchor i � 1 and stop the process if we cannot find a better

score after up to h iterations. This approach reduces the average time

to O(hN). In practice, we can almost always find the optimal chain

with h¼50; even if the heuristic fails, the optimal chain is often close.

2.1.2 Backtracking

Let P(i) be the index of the best predecessor of anchor i. It equals 0

if f ið Þ ¼ wi or argmaxjff jð Þ þ a j; ið Þ � b j; ið Þg otherwise. For each

anchor i in the descending order of f(i), we apply P �ð Þ repeatedly to

find its predecessor and mark each visited i as ‘used’, until P(i)¼0

or we reach an already ‘used’ i. This way we find all chains with no

anchors used in more than one chains.

2.1.3 Identifying primary chains

In the absence of copy number changes, each query segment should

not be mapped to two places in the reference. However, chains

found at the previous step may have significant or complete overlaps

due to repeats in the reference (Li and Durbin, 2010). Minimap2

used the following procedure to identify primary chains that do not

greatly overlap on the query.

Let Q be an empty set initially. For each chain from the best to the

worst according to their chaining scores: if on the query, the chain

overlaps with a chain in Q by 50% or higher percentage of the shorter

chain, mark the chain as secondary to the chain in Q; otherwise, add

the chain to Q. In the end, Q contains all the primary chains. We did

not choose a more sophisticated data structure (e.g. range tree or k-d

tree) because this step is not the performance bottleneck.

For each primary chain, minimap2 estimates its mapping quality

with an empirical formula:

mapQ ¼ 40 � 1� f2=f1ð Þ �minf1;m=10g � log f1

where log denotes natural logarithm, m is the number of anchors on

the primary chain, f1 is the chaining score, and f2 � f1 is the score

of the best chain that is secondary to the primary chain. Intuitively,

a chain is assigned to a higher mapping quality if it is long and its

best secondary chain is weak.

2.1.4 Estimating per-base sequence divergence

Suppose a query sequence harbors n seeds of length k, m of which

are present in a chain. We want to estimate the sequence divergence

� between the query and the reference sequences in the chain. This is

useful when base-level alignment is too expensive to perform.

If we model substitutions with a homogeneous Poisson process

along the query sequence, the probablity of seeing k consecutive

bases without substitutions is e�k�. On the assumption that all

k-mers are independent of each other, the likelihood function of � is

L �jn;m; kð Þ ¼ e�m�k� 1� e�k�
� �n�m

The maximum likelihood estimate of � is

b� ¼ 1

k
log

n

m
:

In reality, sequencing errors are sometimes clustered and k-mers are

not independent of each other, especially when we take minimizers as

seeds. These violate the assumptions in the derivation above. As a

result, b� is only approximate and can be biased. It also ignores long

deletions from the reference sequence. In practice, fortunately, b� is

often close to and strongly correlated with the sequence divergence

estimated from base-level alignments. On the several datasets used in

Section 3.1, the Spearman correlation coefficient is around 0.9.

2.1.5 Indexing with homopolymer compressed k-mers

SmartDenovo (https://github.com/ruanjue/smartdenovo; J. Ruan,

personal communication) indexes reads with homopolymer-

compressed (HPC) k-mers and finds the strategy improves overlap

sensitivity for SMRT reads. Minimap2 adopts the same heuristic.

The HPC string of a string s, denoted by HPC sð Þ, is constructed by

contracting homopolymers in s to a single base. An HPC k-mer of s is a

k-long substring of HPC sð Þ. For example, suppose s ¼ GGATTTTCCA,

HPC sð Þ ¼ GATCA and the first HPC 4-mer is GATC.

To demonstrate the effectiveness of HPC k-mers, we performed

read overlapping for the example E. coli SMRT reads from PBcR

(Berlin et al., 2015), using different types of k-mers. With normal

15 bp minimizers per 5 bp window, minimap2 finds 90.9% of �2 kb

overlaps inferred from the read-to-reference alignment. With HPC

19-mers per 5 bp window, minimap2 finds 97.4% of overlaps.
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It achieves this higher sensitivity by indexing 1/3 fewer minimizers,

which further helps performance. HPC-based indexing reduces the

sensitivity for current ONT reads, though.

2.2 Aligning genomic DNA
2.2.1 Alignment with 2-piece affine gap cost

Minimap2 performs DP-based global alignment between adjacent

anchors in a chain. It uses a 2-piece affine gap cost (Gotoh, 1990):

ca lð Þ ¼ minfqþ jlj � e; ~qþ jlj � ~eg (3)

Without losing generality, we always assume qþ e < ~qþ ~e. On the

condition that e > ~e, it applies cost qþ jlj � e to gaps shorter than d
~q� qð Þ= e� ~eð Þe and applies ~qþ jlj � ~e to longer gaps. This scheme

helps to recover longer insertions and deletions (INDELs).

The equation to compute the optimal alignment under ca �ð Þ is

Hij ¼ maxfHi�1;j�1 þ s i; jð Þ;Eij; Fij; ~Eij; ~Fijg

Eiþ1;j ¼ maxfHij � q;Eijg � e

Fi;jþ1 ¼ maxfHij � q; Fijg � e

~Eiþ1;j ¼ maxfHij � ~q; ~Eijg � ~e

~Fi;jþ1 ¼ maxfHij � ~q; ~Fijg � ~e

8>>>>>>>>><>>>>>>>>>:
(4)

where s(i, j) is the score between the i-th reference base and j-th

query base. Equation (4) is a natural extension to the equation under

affine gap cost (Altschul and Erickson, 1986; Gotoh, 1982).

2.2.2 The Suzuki–Kasahara formulation

When we allow gaps longer than several hundred base pairs,

nucleotide-level alignment is much slower than chaining. SSE accel-

eration is critical to the performance of minimap2. Traditional SSE

implementations (Farrar, 2007) based on Equation (4) can achieve

16-way parallelization for short sequences, but only 4-way paralleli-

zation when the peak alignment score reaches 32 767. Long

sequence alignment may exceed this threshold. Inspired by Wu et al.

(1996) and the following work, Suzuki and Kasahara (2018) pro-

posed a difference-based formulation that lifted this limitation. In

case of 2-piece gap cost, define

uij¢Hij �Hi�1;j vij¢Hij �Hi;j�1

xij¢Eiþ1;j �Hij ~xij¢ ~Eiþ1;j �Hij

yij¢Fi;jþ1 �Hij ~yij¢
~Fi;jþ1 �Hij

8>><>>:
We can transform Equation (4) to

zij ¼ maxfs i; jð Þ;xi�1;j þ vi�1;j; yi;j�1 þ ui;j�1;

~xi�1;j þ vi�1;j; ~yi;j�1 þ ui;j�1g

uij ¼ zij � vi�1;j

vij ¼ zij � ui;j�1

xij ¼ maxf0; xi�1;j þ vi�1;j � zij þ qg � q� e

yij ¼ maxf0; yi;j�1 þ ui;j�1 � zij þ qg � q� e

~xij ¼ maxf0; ~xi�1;j þ vi�1;j � zij þ ~qg � ~q� ~e

~yij ¼ maxf0; ~yi;j�1 þ ui;j�1 � zij þ ~qg � ~q� ~e

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

(5)

where zij is a temporary variable that does not need to be stored.

An important property of Equation (5) is that all values are

bounded by scoring parameters. To see that,

xij ¼ Eiþ1;j �Hij ¼ maxf�q;Eij �Hijg � e

With Eij � Hij, we have

�q� e � xij � maxf�q; 0g � e ¼ �e

and similar inequations for yij, ~xij and ~yij. In addition,

uij ¼ zij � vi�1;j � maxfxi�1;j; ~xi�1;jg � �q� e

As the maximum value of zij ¼ Hij �Hi�1;j�1 is M, the maximal

matching score, we can derive

uij � M� vi�1;j � Mþ qþ e

In conclusion, in Equation (5), x and y are bounded by �q� e;�e½ �,
~x and ~y by �~q½ � ~e;�~e�, and u and v by �q� e;Mþ qþ e½ �. When

�128 � �q� e < Mþ qþ e � 127, each of them can be stored

as a 8-bit integer. This enables 16-way SSE vectorization regardless

of the peak score of the alignment.

For a more efficient SSE implementation, we transform the row-

column coordinate to the diagonal-antidiagonal coordinate by let-

ting r iþ j and t i. Equation (5) becomes:

zrt ¼ maxfs t; r� tð Þ;xr�1;t�1 þ vr�1;t�1; yr�1;t

þur�1;t; ~xr�1;t�1 þ vr�1;t�1; ~yr�1;t þ ur�1;tg

urt ¼ zrt � vr�1;t�1

vrt ¼ zrt � ur�1;t

xrt ¼ maxf0; xr�1;t�1 þ vr�1;t�1 � zrt þ qg � q� e

yrt ¼ maxf0; yr�1;t þ ur�1;t � zrt þ qg � q� e

~xrt ¼ maxf0; ~xr�1;t�1 þ vr�1;t�1 � zrt þ ~qg � ~q� ~e

~yrt ¼ maxf0; ~yr�1;t þ ur�1;t � zrt þ ~qg � ~q� ~e

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
In this formulation, cells with the same diagonal index r are inde-

pendent of each other. This allows us to fully vectorize the computa-

tion of all cells on the same anti-diagonal in one inner loop. It also

simplifies banded alignment (500 bp band width by default), which

would be difficult with striped vectorization (Farrar, 2007).

On the condition that qþ e < ~qþ ~e and e > ~e, the initial values

in the diagonal-antidiagonal formuation are

xr�1;�1 ¼ yr�1;r ¼ �q� e

~xr�1;�1 ¼ ~yr�1;r ¼ �~q� ~e

ur�1;r ¼ vr�1;�1 ¼ g rð Þ

8>><>>:
where

g rð Þ ¼

�q� e r ¼ 0ð Þ

�e r <

�
~q� q

e� ~e
� 1

�� 	
r � e� ~eð Þ � ~q� qð Þ � ~e r ¼

�
~q� q

e� ~e
� 1

�� 	
�~e r >

�
~q� q

e� ~e
� 1

�� 	

8>>>>>>>>>>><>>>>>>>>>>>:
These can be derived from the initial values for Equation (4).

When performing global alignment, we do not need to compute

Hrt in each cell. We use 16-way vectorization throughout the align-

ment process. When extending alignments from ends of chains, we

need to find the cell (r, t) where Hrt reaches the maximum. We resort

to 4-way vectorization to compute Hrt ¼ Hr�1;t þ urt. Because this

computation is simple, Equation (5) is still the dominant perform-

ance bottleneck.

In practice, our 16-way vectorized implementation of global

alignment is three times as fast as Parasail’s 4-way vectorization
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(Daily, 2016). Without banding, our implementation is slower than

Edlib (�So�si�c and �Sikic, 2017), but with a 1000 bp band, it is consid-

erably faster. When performing global alignment between anchors,

we expect the alignment to stay close to the diagonal of the DP

matrix. Banding is applicable most of the time.

2.2.3 The Z-drop heuristic

With global alignment, minimap2 may force to align unrelated

sequences between two adjacent anchors. To avoid such an artifact,

we compute accumulative alignment score along the alignment path

and break the alignment where the score drops too fast in the diago-

nal direction. More precisely, let S(i, j) be the alignment score along

the alignment path ending at cell (i, j) in the DP matrix. We break the

alignment if there exist i0; j0ð Þ and (i, j), i0 < i and j0 < j, such that

S i0; j0ð Þ � S i; jð Þ > Zþ e � j i� i0ð Þ � j� j0ð Þj

where e is the gap extension cost and Z is an arbitrary threshold.

This strategy is first used in BWA-MEM. It is similar to X-drop

employed in BLAST (Altschul et al., 1997), but unlike X-drop, it

would not break the alignment in the presence of a single long gap.

When minimap2 breaks a global alignment between two

anchors, it performs local alignment between the two subsequences

involved in the global alignment, but this time with the one subse-

quence reverse complemented. This additional alignment step may

identify short inversions that are missed during chaining.

2.2.4 Filtering out misplaced anchors

Due to sequencing errors and local homology, some anchors in a

chain may be wrong. If we blindly align regions between two mis-

placed anchors, we will produce a suboptimal alignment. To reduce

this artifact, we filter out anchors that lead to a>10 bp insertion

and a>10 bp deletion at the same time, and filter out terminal

anchors that lead to a long gap towards the ends of a chain. These

heuristics greatly alleviate the issues with misplaced anchors, but

they are unable to fix all such errors. Local misalignment is a limita-

tion of minimap2 which we hope to address in future.

2.3 Aligning spliced sequences
The algorithm described above can be adapted to spliced alignment.

In this mode, the chaining gap cost distinguishes insertions to and

deletions from the reference: cc lð Þ in Equation (2) takes the form of

cc lð Þ ¼
0:01 � �w � l þ 0:5 log2l l > 0ð Þ

minf0:01 � �w � jlj; log2jljg l < 0ð Þ

(

Similarly, the gap cost function used for DP-based alignment is

changed to

ca lð Þ ¼
qþ l � e l > 0ð Þ

minfqþ jlj � e; ~qg l < 0ð Þ

(

In alignment, a deletion no shorter than d ~q� qð Þ=ee is regarded

as an intron, which pays no cost to gap extensions.

To pinpoint precise splicing junctions, minimap2 introduces

reference-dependent cost to penalize non-canonical splicing:

Hij ¼ maxfHi�1;j�1 þ s i; jð Þ;Eij;Fij; ~Eij � a ið Þg

Eiþ1;j ¼ maxfHij � q;Eijg � e

Fi;jþ1 ¼ maxfHij � q; Fijg � e

~Eiþ1;j ¼ maxfHij � d ið Þ � ~q; ~Eijg

8>>>>><>>>>>:
(6)

Let T be the reference sequence. d(i) is computed as

d ið Þ ¼

0 if T iþ 1; iþ 3½ � is GTA or GTG

p=2 if T iþ 1; iþ 3½ � is GTC or GTT

p otherwise

8>><>>:
where T i; j½ � extracts a substring of T between i and j inclusively. d(i)

penalizes non-canonical donor sites with p and less frequent

Eukaryotic splicing signal GT C=T½ � with p=2 (Irimia and Roy,

2008). Similarly,

a ið Þ ¼

0 if T i� 2; i½ � is CAG or TAG

p=2 if T i� 2; i½ � is AAG or GAG

p otherwise

8>><>>:
models the acceptor signal. Equation (6) is close to an equation in

Zhang and Gish (2006) except that we allow insertions immediately

followed by deletions and vice versa; in addition, we use the Suzuki–

Kasahara diagonal formulation in actual implementation.

If RNA-seq reads are not sequenced from stranded libraries, the

read strand relative to the underlying transcript is unknown. By

default, minimap2 aligns each chain twice, first assuming GT–AG as

the splicing signal and then assuming CT–AC, the reverse comple-

ment of GT–AG, as the splicing signal. The alignment with a higher

score is taken as the final alignment. This procedure also infers the

relative strand of reads that span canonical splicing sites.

In the spliced alignment mode, minimap2 further increases the

density of minimizers and disables banded alignment. Together with

the two-round DP-based alignment, spliced alignment is several

times slower than genomic DNA alignment.

2.4 Aligning short paired-end reads
During chaining, minimap2 takes a pair of reads as one fragment

with a gap of unknown length in the middle. It applies a normal gap

cost between seeds on the same read but is a more permissive gap

cost between seeds on different reads. More precisely, the gap cost

during chaining is (l ¼ 0):

cc lð Þ ¼
0:01 � �w � jlj þ 0:5 log2jlj if two seeds on the same read

minf0:01 � �w � jlj; log2jljg otherwise

(

After identifying primary chains (Section 2.1.3), we split each frag-

ment chain into two read chains and perform alignment for each

read as in Section 2.2. Finally, we pair hits of each read end to find

consistent paired-end alignments.

3 Results

Minimap2 is implemented in the C programming language and

comes with APIs in both C and Python. It is distributed under the

MIT license, free to both commercial and academic uses. Minimap2

uses the same base algorithm for all applications, but it has to apply

different sets of parameters depending on input data types. Similar

to BWA-MEM, minimap2 introduces ‘presets’ that modify multiple

parameters with a simple invocation. Detailed settings and

command-line options can be found in the minimap2 manpage (sup-

plementary information). In addition to the applications evaluated

in the following sections, minimap2 also retains minimap’s function-

ality to find overlaps between long reads and to search against large

multi-species databases such as nt from NCBI.
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3.1 Aligning long genomic reads
As a sanity check, we evaluated minimap2 on simulated human

reads along with BLASR (v1.MC.rc64; Chaisson and Tesler, 2012),

BWA-MEM (v0.7.15; Li, 2013), GraphMap (v0.5.2; Sovi�c et al.,

2016), Kart (v2.2.5; Lin and Hsu, 2017), minialign (v0.5.3; https://

github.com/ocxtal/minialign) and NGMLR (v0.2.5; Sedlazeck et al.,

2018). We excluded rHAT (Liu et al., 2016) and LAMSA (Liu et al.,

2017) because they either crashed or produced malformatted out-

put. In this evaluation, minimap2 has higher power to distinguish

unique and repetitive hits, and achieves overall higher mapping

accuracy (Fig. 1a). Minimap2 and NGMLR provide better mapping

quality estimate: they rarely give repetitive hits high mapping qual-

ity. Apparently, other aligners may occasionally miss close subopti-

mal hits and be overconfident in wrong mappings. On run time,

minimap2 took 200 CPU seconds, comparable to minialign and

Kart, and is over 30 times faster than the rest. Minimap2 consumed

6.8GB memory at the peak, more than BWA-MEM (5.4GB), similar

to NGMLR and less than others.

On real human SMRT reads, the relative performance and frac-

tion of mapped reads reported by these aligners are broadly similar

to the metrics on simulated data. We are unable to provide a good

estimate of mapping error rate due to the lack of the truth. On ONT

�100 kb human reads (Jain et al., 2018), BWA-MEM failed. Kart,

minialign and minimap2 are over 70 times faster than others. We

have also examined tens of �100 bp INDELs in IGV (Robinson

et al., 2011) and can confirm the observation by Sedlazeck et al.

(2018) that BWA-MEM often breaks them into shorter gaps. The

issue is much alleviated with minimap2, thanks to the 2-piece affine

gap cost.

3.2 Aligning long spliced reads
We evaluated minimap2 on SIRV control data (AC: SRR5286959;

Byrne et al., 2017) where the truth is known. Minimap2 predicted

59 918 introns from 11 018 reads. 93.8% of splice juctions are pre-

cise. We examined wrongly predicted junctions and found the

majority were caused by clustered splicing signals (e.g. two adjacent

GT sites). When INDEL sequencing errors are frequent, it is difficult

to find precise splicing sites in this case. If we allow up to 10 bp dis-

tance from true splicing sites, 98.4% of aligned introns are approxi-

mately correct. It is worth noting that for SIRV, we asked minimap2

to model the GT::AG splicing signal only without extra bases. This

is because SIRV does not honor the evolutionarily prevalent signal

GT A=G½ �:: C=T½ �AG (Irimia and Roy, 2008).

We next aligned real mouse reads (Byrne et al., 2017) with

GMAP (v2017-06-20; Wu and Watanabe, 2005), minimap2, SpAln

(v2.3.1; Iwata and Gotoh, 2012) and STAR (v2.5.3a; Dobin et al.,

2013). In general, minimap2 is more consistent with existing anno-

tations (Table 1): it finds more junctions with a higher percentage

being exactly or approximately correct. Minimap2 is over 40 times

faster than GMAP and SpAln. While STAR is close to minimap2 in

speed, it does not work well with noisy reads.

We have also evaluated spliced aligners on a human Nanopore

Direct RNA-seq dataset (http://bit.ly/na12878ont). Minimap2

aligned 10 million reads in<1 wall-clock hour using 16 CPU cores.

94.2% of aligned splice junctions consistent with gene annotations.

In comparison, GMAP under option ‘-k 14 -n 0 -min-intronlength

30 –cross-species’ is 160 times slower; 68.7% of GMAP junctions

are found in known gene annotations. The percentage increases to

84.1% if an aligned junction within 10 bp from an annotated junc-

tion is considered to be correct. On a public Iso-Seq dataset (human

Alzheimer brain from http://bit.ly/isoseqpub), minimap2 is also

faster at higher junction accuracy in comparison to other aligners in

Table 1.

We noted that GMAP and SpAln have not been optimized for

noisy reads. We are showing the best setting we have experimented,

but their developers should be able to improve their accuracy

further.

3.3 Aligning short genomic reads
We evaluated minimap2 along with Bowtie2 [v2.3.3; (Langmead

and Salzberg, 2012)], BWA-MEM and SNAP [v1.0beta23; (Zaharia
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Fig. 1. Evaluation on aligning simulated reads. Simulated reads were mapped

to the primary assembly of human genome GRCh38. A read is considered

correctly mapped if its longest alignment overlaps with the true interval, and

the overlap length is �10% of the true interval length. Read alignments are

sorted by mapping quality in the descending order. For each mapping quality

threshold, the fraction of alignments (out of the number of input reads) with

mapping quality above the threshold and their error rate are plotted along the

curve. (a) Long-read alignment evaluation. 33 088�1000 bp reads were simu-

lated using pbsim (Ono et al., 2013) with error profile sampled from file

‘m131017_060208_42213_*.1.*’ downloaded at http://bit.ly/chm1p5c3. The

N50 read length is 11 628. Aligners were run under the default setting for

SMRT reads. Kart outputted all alignments at mapping quality 60, so is not

shown in the figure. It mapped nearly all reads with 4.1% of alignments being

wrong, less accurate than others. (b) Short-read alignment evaluation. 10 mil-

lion pairs of 150 bp reads were simulated using mason2 (Holtgrewe, 2010)

with option ‘–illumina-prob-mismatch-scale 2.5’. Short-read aligners were

run under the default setting except for changing the maximum fragment

length to 800 bp

Table 1. Evaluation of junction accuracy on 2D ONT reads

GMAP minimap2 SpAln STAR

Run time (CPU min) 631 15.9 2076 33.9

Peak RAM (GByte) 8.9 14.5 3.2 29.2

# aligned reads 103 669 104 199 103 711 26 479

# chimeric alignments 1904 1488 0 0

# non-spliced alignments 15 854 14 798 17 033 10 545

# aligned introns 692 275 693 553 692 945 78 603

# novel introns 11 239 3113 8550 1214

% exact introns 83.8 94.0 87.9 55.2

% approx. introns 91.8 96.9 92.5 82.4

Notes: Mouse cDNA reads (AC: SRR5286960; R9.4 chemistry) were

mapped to the primary assembly of mouse genome GRCm38 with the follow-

ing tools and command options: minimap2 (‘-ax splice’); GMAP (‘-n 0 –min-

intronlength 30 –cross-species’); SpAln (‘-Q7 -LS -S3’); STARlong (according

to http://bit.ly/star-pb). The alignments were compared to the EnsEMBL gene

annotation, release 89. A predicted intron is novel if it has no overlaps with

any annotated introns. An intron is exact if it is identical to an annotated

intron. An intron is approximate if both its 50- and 30-end are within 10 bp

around the ends of an annotated intron. Chimeric alignments are defined in

the SAM spec (Li et al., 2009).
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et al., 2011)]. Minimap2 is 3–4 times as fast as Bowtie2 and BWA-

MEM, but is 1.3 times slower than SNAP. Minimap2 is more

accurate on this simulated dataset than Bowtie2 and SNAP but less

accurate than BWA-MEM (Fig. 1b). Closer investigation reveals

that BWA-MEM achieves a higher accuracy partly because it tries to

locally align a read in a small region close to its mate. If we disable

this feature, BWA-MEM becomes slightly less accurate than mini-

map2. We might implement a similar heuristic in minimap2 in

future.

To evaluate the accuracy of minimap2 on real data, we aligned

human reads (AC: ERR1341796) with BWA-MEM and minimap2,

and called SNPs and small INDELs with GATK HaplotypeCaller

v3.5 (Depristo et al., 2011). This run was sequenced from experi-

mentally mixed CHM1 and CHM13 cell lines. Both of them are

homozygous across the whole genome and have been de novo

assembled with SMRT reads to high quality. This allowed us to con-

struct an independent truth variant dataset (Li et al., 2017) for

ERR1341796. In this evaluation, minimap2 has higher SNP false

negative rate (FNR; 2.6% of minimap2 vs 2.3% of BWA-MEM),

but fewer false positive SNPs per million bases (FPPM; 7.0 versus

8.8), similar INDEL FNR (11.2% versus 11.3%) and similar

INDEL FPPM (6.4 versus 6.5). Minimap2 is broadly comparable to

BWA-MEM in the context of small variant calling.

3.4 Aligning long-read assemblies
Minimap2 can align a SMRT assembly (AC: GCA_001297185.1)

against GRCh38 in 7 min using eight CPU cores, over 20 times faster

than nucmer from MUMmer4 (Marçais et al., 2018). With the paf-

tools.js script from the minimap2 package, we called 2.67 million

single-base substitutions out of 2.78Gbp genomic regions. The

transition-to-transversion ratio (ts/tv) is 2.01. In comparison, using

MUMmer4’s dnadiff pipeline, we called 2.86 million substitutions

in 2.83Gbp at ts/tv¼1.87. Given that ts/tv averaged across the

human genome is about 2 but ts/tv averaged over random errors is

0.5, the minimap2 callset arguably has higher precision at lower

sensitivity.

The sample being assembled is a female. Minimap2 still called

201 substitutions on the Y chromosome. These substitutions all

come from one contig aligned at 96.8% sequence identity. The con-

tig could be a segmental duplication absent from GRCh38. In con-

strast, dnadiff called 9070 substitutions on the Y chromosome

across 73 SMRT contigs. This again implies our minimap2-based

pipeline has higher precision.

4 Discussions

Minimap2 is a versatile mapper and pairwise aligner for nucleotide

sequences. It works with short reads, assembly contigs and long

noisy genomic and RNA-seq reads, and can be used as a read map-

per, long-read overlapper or a full-genome aligner. Minimap2 is

also accurate and efficient, often outperforming other domain-

specific alignment tools in terms of both speed and accuracy.

The capability of minimap2 comes from a fast base-level align-

ment algorithm and an accurate chaining algorithm. When aligning

long query sequences, base-level alignment is often the performance

bottleneck. The Suzuki–Kasahara algorithm greatly alleviates the

bottleneck and enables DP-based splice alignment invol-

ving>100 kb introns, which was impractically slow 10 years ago.

The minimap2 chaining algorithm is fast and highly accurate by

itself. In fact, chaining alone is more accurate than all the other

long-read mappers in Figure 1a (data not shown). This accuracy

helps to reduce downstream base-level alignment of candidate

chains, which is still several times slower than chaining even with

the Suzuki–Kasahara improvement. In addition, taking a general

form, minimap2 chaining can be adapted to non-typical data types

such as spliced reads and multiple reads per fragment. This gives us

the opportunity to extend the same base algorithm to a variety of

use cases.

Modern mainstream aligners often use a full-text index, such as

suffix array or FM-index, to index reference sequences. An advant-

age of this approach is that we can use exact seeds of arbitrary

lengths, which helps to increase seed uniqueness and reduce unsuc-

cessful extensions. Minimap2 indexes reference k-mers with a hash

table instead. Such fixed-length seeds are inferior to variable-length

seeds in theory, but can be computed much more efficiently in prac-

tice. When a query sequence has multiple seed hits, we can afford to

skip highly repetitive seeds without affecting the final accuracy. This

further alleviates the concern with the seeding uniqueness. At the

same time, at low sequence identity, it is rare to see long seeds any-

way. Hash table is the ideal data structure for mapping long noisy

sequences.
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