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Automated Diagnosis of
Data–Model Conflicts
Using Metadata

RICHARD O. CHEN, RUSS B. ALTMAN, MD, PHD

A b s t r a c t The authors describe a methodology for helping computational biologists
diagnose discrepancies they encounter between experimental data and the predictions of
scientific models. The authors call these discrepancies data–model conflicts. They have built a
prototype system to help scientists resolve these conflicts in a more systematic, evidence-based
manner.

In computational biology, data–model conflicts are the result of complex computations in which
data and models are transformed and evaluated. Increasingly, the data, models, and tools
employed in these computations come from diverse and distributed resources, contributing to a
widening gap between the scientist and the original context in which these resources were
produced. This contextual rift can contribute to the misuse of scientific data or tools and amplifies
the problem of diagnosing data–model conflicts. The authors’ hypothesis is that systematic
collection of metadata about a computational process can help bridge the contextual rift and
provide information for supporting automated diagnosis of these conflicts.

The methodology involves three major steps. First, the authors decompose the data–model
evaluation process into abstract functional components. Next, they use this process
decomposition to enumerate the possible causes of the data–model conflict and direct the
acquisition of diagnostically relevant metadata. Finally, they use evidence statically and
dynamically generated from the metadata collected to identify the most likely causes of the given
conflict. They describe how these methods are implemented in a knowledge-based system called
GRENDEL and show how GRENDEL can be used to help diagnose conflicts between experimental
data and computationally built structural models of the 30S ribosomal subunit.
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Computational tools are critical for helping scientists
build models from large volumes of biological data.
Models built using computational tools include three-
dimensional molecular models,1–6 statistically derived
models of molecular binding sites,7 models for clas-
sifying proteins based on structure,8,9 and models for
classifying proteins based on sequence.9–12 These mod-
els typically are constructed by stringing together the
results of several computations and are evaluated on
the basis of how well their predictions match new ex-
perimental observations.

In the course of testing these models, scientists en-
counter data–model conflicts—disagreements between
experimental data and the predictions of a model. Un-
derstanding the causes of these conflicts is important
for building better models and, ultimately, for scientific
discovery,13 yet no general-purpose methodology exists
for addressing the wide range of data–model conflicts
that can occur in computational biology. Some work
has been done to systematize records of experimental
procedures in large computational laboratories,14,15

while other approaches have focused on troubleshoot-
ing specialized computational processes.16,17

Our method aims to help scientists diagnose a
broader array of data–model conflicts encountered in
biological computation. Our system utilizes meta-
data—information about the data, model, instru-
ments, researchers, and algorithms involved at
each step of a computational process—to provide a
context for diagnosing conflicting computational re-
sults.

Unfortunately, recording such metadata can be diffi-
cult, given the distributed nature of biological
data and computational tools. Increasingly, computa-
tional biologists are separated from the original con-
text in which the data, models, and tools they use are
generated. We call this the contextual rift. Computa-
tional biologists now access large databases of data
collected from thousands of scientists, while many an-
alytic tools can either be downloaded or directly ac-
cessed on the Internet.18–27 The contextual rift can
result in researchers’ overlooking diagnostically im-
portant metadata and being unable to find the meta-
data they need for troubleshooting a computational
result.

In this paper we show that an automated diagnostic
system can be built that uses metadata about a given
data–model conflict to identify the steps in the com-
putational process most likely to be responsible for a
given conflict. Our methodology includes a systematic
way to define and collect metadata about a compu-
tational process as well as a mechanism for using that
metadata to support automated diagnosis of conflicts.

In this paper, we present a prototype system that im-
plements the main features of our methodology and
allows us to test the feasibility of approaching data–
model conflicts in a manner that is more systematic
than has been previously possible.

Evaluating Computed Models of the 30S
Ribosomal Subunit: An Example

The ribosome structure problem helps to illustrate
how metadata can be used diagnostically. A large bi-
ological complex composed of a large RNA molecule
and 21 proteins, the 30S ribosomal subunit is a cellular
component of wide biological and medical interest.6

Several research groups have used different (but over-
lapping) sets of experimental data to compute three-
dimensional structural models of the 30S ribosomal
subunit based on experimentally derived distance
data.2,4–6

In the course of refining and evaluating these models,
data–model conflicts arise. Figure 1 shows an exam-
ple in which an experimental datum suggests that the
distance between two of the atoms is smaller than the
distance predicted by the model. This conflict repre-
sents an important decision point for the model
builder. Revising the model on the basis of erroneous
data results in a model less accurate than the original.
On the other hand, ignoring valid data results in a
model that is limited or incomplete in its explanatory
power. Clearly, understanding why a data–model
conflict has occurred is crucial to making an informed
modeling decision, yet we often lack systematic meth-
ods for resolving these conflicts.

Better understanding of the computational process
and the metadata surrounding that process gives in-
sight into the data–model conflict at hand. Evaluation
of experimental data in the context of a computed ri-
bosomal model is a multistep process that involves
successive manipulations of the original data, culmi-
nating in comparison of the data with the predictions
of a model. Take, for example, a paper reporting the
results of a biochemical experiment showing that a
particular RNA component is strongly protected from
attack by chemical probes because of its proximity to
a large blocking, or ‘‘protecting,’’ ribosomal protein.28

To evaluate how well this structural datum matches a
computed model of the 30S ribosomal subunit, this
textual information must first be transcribed to an
electronic format. Next, the phrase ‘‘strongly pro-
tected’’ must be translated into a range of physical
distances (in angstroms) between the protein and the
RNA base. Finally, this translated (or interpreted) da-
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F i g u r e 1 Data–model conflict in the ribosomal mod-
eling problem. The expected distance between two atoms
as indicated by new experimental data (staggered line)
is much smaller than that predicted by the model (solid
line). The mismatch between the distance reported by the
data and that predicted by the model constitutes a data–
model conflict.

tum is compared with the distance computed between
the corresponding molecules in the model. In this pro-
cess, a data–model conflict could arise from a tran-
scription error, an inappropriate interpretation of dis-
tance data, an incorrect computation of distance, or a
poor evaluation metric. Metadata about the data–
model evaluation process can help us identify which
of these steps is most likely to be problematic. For
example, more experienced scientists are less likely
to incorrectly interpret the data, whereas scientists
with less experience might be expected to make
more interpretation errors. Correlations found be-
tween metadata features and data–model evaluation
outcomes can also be used as diagnostic evidence. For
example, we may find that a particular experimental
technique is consistently correlated with data–model
conflicts.

In the following sections, we formalize the diagnostic
process by describing methods for systematically de-

fining, acquiring, and using metadata about a data–
model conflict for diagnosis; and implementing and
integrating these methods in the GRENDEL system. The
output of the GRENDEL system is a list of the most
likely causes of a given data–model conflict. GRENDEL

achieves this diagnosis by:

n Explicitly modeling the computational process that
gives rise to the data–model conflict

n Using the process model to dynamically generate a
diagnostic Bayesian belief network

n Using the process model to direct the acquisition of
diagnostically relevant metadata

n Instantiating the diagnostic belief network using
evidence generated from the acquired metadata

n Performing inference on the diagnostic belief net-
work to generate a list of possible diagnoses

Decomposition of Computational Processes

The experimental process in computational biology
can be conceptualized as a series of data transforma-
tions and manipulations. Although no specific meth-
odology exists for representing processes in compu-
tational biology, there is an extensive literature on the
representation of similar ‘‘information flow’’ pro-
cesses.29–34 In particular, we draw on previous work
on data flow diagrams and the process interchange
format (PIF) to create a representation capable of rep-
resenting processes in computational biology (al-
though extensible to other computational pro-
cesses).30,32,33 In the process representation we have
developed, there are three different process compo-
nents—objects, operators, and states. Objects repre-
sent the data or models used for computation. Manip-
ulations of objects are carried out by operators, while
intermediate data storage are called states. Our
method further breaks down these categories to spec-
ify the kinds of data objects, operators, and states in-
volved in computational processes. We use a frame-
based knowledge representation system to provide a
flexible framework for defining and representing
knowledge about these different process compo-
nents.35–37 By building an ontology of process com-
ponents, we can provide an extensible ‘‘library’’ of
components that can be linked together to form a pro-
cess description. At the root of the process compo-
nents ontology is the concept of a process entity; its
immediate children are objects, operators, and states. We
next discuss each of these subclasses in more detail.
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F i g u r e 2 Top, Ontology of operators. Operators are methods of manipulating data and models. The BLAST search
operator and the basic BLAST search operator classes are shown to illustrate how subclasses can be added to the upper
level operator classes. These subclasses inherit properties from their ancestor classes, as shown in Table 1. Bottom,
Ontology of states. States are methods of storing data and models.

Ontology of Operators

At the highest level of abstraction, we have identified
four classes of operators—filters, transcriptions,
transformations, and combinations. Each of these
high-level classes can be broken down into more spe-
cific subclasses (Figure 2, top).

Filter operations involve the selection of data from a
larger body of data using specified criteria. Filter op-
erations have two major subclasses—selection and
search operators. Search operators involve automated
selection of the data through user-specified search cri-
teria. Selection operators involve selection of the data

through criteria that are not available to the system.
We can further define subclasses for even more spe-
cific tasks. For example, BLAST searches are a subclass
of the search operator specific to using the BLAST
search engine of the National Center for Biotechnol-
ogy Information (NCBI) to search a biologic sequence
database for similar sequences.25 BLAST searches can
be further divided into basic BLAST searches and ad-
vanced BLAST searches, based on the version of the
search tool used. There are hundreds of such tools and
algorithms commonly used by scientists, and we have
not enumerated all of them in our present system but
have provided the higher-level ontology for classify-
ing them.
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Combination operations take data from different
sources and create their union. Representation of this
type of operation is useful, because problems are often
encountered when multiple data sources are com-
bined. The JOIN operation in a database query lan-
guage is an example of a combination operator.

Transcription operations involve the duplication of
data from one format (state) to another. Transferring
data from a database to an ASCII file or data structure
is an example of a transcription. Transcription oper-
ators are often overlooked during troubleshooting of
computational processes but are an important source
of human and computer error.38

Transformation operations alter the input data to pro-
duce some output. Transformations are a very large
class of operators, and many computational tools fall
into this category. Transformations range from simple
calculation of variance in a sample population to cal-
culating the distance between two molecules and
computing ribosomal models from experimental data.
We define two subclasses of transformations—func-
tional transformations and synthetic transformations.

A functional transformation operator takes a datum as
input and generates an output that is some function
of the original input. These transformations preserve
the one-to-one correspondence between the input and
the output data. In contrast, a synthetic transformation
operator generates outputs that have no one-to-one
correspondence with the input data. Classification op-
erators (a subclass of functional transformation oper-
ators) place an input datum into one of several
categories. Interpretation operators (a subclass of
functional transformation operators) represent subjec-
tively determined functional mappings. Together,
these high-level classes of operators cover many of the
operators common in computational processes, al-
though it is possible to elaborate more specific sub-
classes or change the taxonomy.

Ontology of States

Data states are the different formats and media in
which data can be stored (Figure 2, bottom). We focus
on the storage states that are germane to computa-
tional processes. There are three major classes of
states—textual, structured, and graphic states. Textual
states are media in which the data are stored as free
text. A subclass of textual states are publications, whose
subclasses include books, conference proceedings, and
journals. Other textual states include ASCII files, html-
formatted pages, and unpublished text. Structured states
are media in which the data are formatted in a more
systematic way. Subclasses of structured states include

databases, knowledge bases, spreadsheets, data structures,
and tables. Graphic states are formats in which the data
is nontextual. Subclasses include diagrams, graphs, pho-
tographs, and images.

Ontology of Objects

Objects represent the information being manipulated
in a computational process. There are two major sub-
classes of objects—data and models. Although there are
many subclasses of data, we focus on one subclass
within the scope of this work—experimental data. As
for models, we deal with one subclass—computational
models.

Each of these classes will have subclasses specific to
the problem domain. For instance, for the ribosomal
problem, under experimental data, we have defined a
class of ribosomal structural data, which in turn has a
subclass called cross-linking data. Similarly, under com-
putational models, we have defined a problem-specific
class called ribosomal models. We do not claim to have
exhaustively enumerated the types of data and mod-
els that exist. This ontology must be augmented with
concepts specific to the problem domain being ad-
dressed.

Building Process Representations from Process
Components

The process components ontology defines the ‘‘build-
ing blocks’’ for representing computational processes.
These components can be linked together to form ab-
stract decompositions of the computational processes
underlying data–model conflicts. There are five basic
elements in the process descriptions—objects, opera-
tors, states, source arcs, and flow arcs. Figure 3 sum-
marizes these basic components and the rules that
govern how they are constructed.

We have applied this method to representing the
data–model evaluation process in the RiboWEB sys-
tem. The RiboWEB system provides computational
tools for evaluating ribosomal experimental data
against published ribosomal model information.20,39

On the basis of user selection of an experimental da-
tum, a numeric interpretation of that datum, and a
three-dimensional structural model, RiboWEB calcu-
lates the difference between the interpreted datum
and the distance actually calculated between the cor-
responding pair of molecules in the model. The user
then determines whether the discrepancy is large
enough to classify the result as a data–model conflict.
Figure 3 shows how this computational process can
be represented using our proposed process represen-
tation.
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F i g u r e 3 Process representation method applied to modeling a ribosomal data–model evaluation. The figure repre-
sents the step-by-step process of evaluating experimentally derived distance data against the predictions of a three-
dimensional ribosomal model using tools provided by the RiboWEB system. The ribosomal atom-to-atom distance data
are first extracted from a journal article and transcribed to the RiboWEB knowledge base. Those data are selected from
the knowledge base and then interpreted by the user. These interpreted data are compared with the predicted atom-
to-atom distance of a user-selected model, yielding a numeric result measuring the discrepancy between the predicted
and expected atom-to-atom distances. This discrepancy is then classified by the user as being problematic (i.e., a data–
model conflict) or within the margin of error. Notice that each step in this process has parameters and assumptions
that ultimately make the troubleshooting of problematic results difficult. The diagram represents the successive ma-
nipulations and transformations of an object, starting with the original object, until some final result is achieved. The
rules for constructing these diagrams are as follows: 1) An object must be at the source of every process sequence. 2)
A source arc must connect the object to the first state of the process sequence that manipulates it. 3) There cannot be
a data flow arc connecting two states directly. 4) There must be at least one data flow arc connecting the ouput of an
operator with a state. 5) States can have data flow arcs connecting them to several operators. This indicates that the
same object is being passed as input into several different operators. 6) Operators can have data flow arcs connecting
them to several states. This indicates that the same object is being stored in several different states. Circles indicate
transcription; inverted triangles, filter; quadrilateral, transformation. JA indicates journal article; KB, knowledge base;
DS, data structure.
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F i g u r e 4 Errors that can occur at each step in the ribosomal data–model evaluation process. For each component of
the process modeled in Figure 3, an example problem associated with that component is shown. Similar problems also
exist for the right side of the process model.

In this example, we represent the process from a
user’s perspective; on the other hand, we could have
chosen to represent the process from a system view,
at a finer granularity than what users typically see. At
a system-level view, some of the process components
in Figure 3 would be further decomposed. Further-
more, we have started modeling the process at the
point where the data are published in a journal article
and the model is published in some publicly available
database. If we were interested in the computational
process used to derive the model itself, we could have
‘‘pushed back’’ the system boundary to include a de-
tailed representation of the computational process

that produced the model itself. The choice of a system
boundary is based on the scope of diagnosis desired
and the extent of the modeler’s knowledge about the
computational process itself.

Figure 4 shows examples of the types of errors that
can occur at each step in the ribosomal data–model
evaluation process and shows how the process de-
composition method provides a systematic way of
enumerating possible causes of a given data–model
conflict. The diagnostic problem then becomes a prob-
lem of identifying the process steps that are most
likely to be the causes of a given data–model conflict.



Journal of the American Medical Informatics Association Volume 6 Number 5 Sep / Oct 1999 381

Definition and Collection of Diagnostically
Relevant Metadata

Efforts in other domains suggest that the definition
and collection of metadata must be closely tied to the
intended application. Several groups have looked at
collecting metadata to support computing environ-
ments at large laboratories for data archiving and re-
trieval.14,15,40 The Dublin Core group has defined a core
set of metadata features to help describe networked
resources, thus enhancing their search and re-
trieval.41,42 Metadata tags have been added to Web-
based documents using XML.43 To facilitate compari-
son among different data sources, the U.S. National
Geological Survey’s Biological Resources Division has
spearheaded the National Biological Metadata Stan-
dard.44 Metadata have also been used to help identify
errors in the computational analysis of the data in so-
cial science databases.45

We use the diagnostic task to focus the definition and
acquisition of relevant metadata. For each process
component, we define a set of metadata features that
are relevant to determining whether that component
is likely to be the source of the data–model conflict.
The metadata features relevant to diagnosing a given
data–model conflict can be defined as the sum of all
metadata features relevant to diagnosing individual
process components.

By enumerating metadata features for process com-
ponents, rather than processes as a whole, we can
build lists of diagnostically relevant metadata that are
specific for a particular data–model conflict and we
can ease the task of instantiating important metadata
features. Nonetheless, enumerating diagnostically rel-
evant metadata for each process component is a labor-
intensive task. Some metadata features may be rele-
vant to more than one process component.

The process components ontology provides a natural
framework in which to represent metadata features
for the different process components. For any given
process component, metadata properties are inherited
from its ancestors in the ontology. Table 1 describes
the metadata features for a basic BLAST search as de-
fined in the process ontology.

Using the process description for a given computa-
tional process and the process ontology populated
with metadata features, we can construct a list of di-
agnostically relevant metadata features for a given
data–model conflict. We call this list a metavector. This
template is generic for data–model evaluations done
using the same computational process and thus must
be defined only once and then filled in for each spe-

cific instance of a data–model comparison. To con-
struct the metavector, we look up the metadata fea-
tures associated with each component in the process
decomposition and collect them in a list. Instantiated
metavectors consist of metadata feature-value pairs.
In principle, much of the metadata can be acquired
automatically from the computational components
used. Currently, however, users enter some of this in-
formation manually using a simple acquisition tool
(Figure 5). The next section describes how we use a
Bayesian framework to build a diagnostic system that
reasons using metadata.

Construction of a Bayesian Framework for
Diagnosis

We use Bayesian belief networks to support auto-
mated diagnosis using evidence generated from pro-
cess metadata. A Bayesian belief network is a graphic
representation of probabilistic dependencies between
evidence and conclusions.46

In the data–model conflict diagnosis problem, belief
networks have specific advantages over rule-based
and machine learning methods because they represent
uncertainties in relationships between metadata evi-
dence and possible diagnoses; have a mathematically
sound basis in probability theory; provide an expres-
sive, intuitive graphic representation; make indepen-
dence assumptions explicit; and use statistical infor-
mation directly as knowledge.47–49

Each diagnostic belief network produced by the
GRENDEL system consists of two node types—evi-
dence nodes representing metadata features and prob-
lem nodes representing causes of data–model con-
flicts. The dependencies between evidence nodes and
problem nodes are represented by arcs pointing in the
direction of causality. This is similar to the two-level
belief network topology used in some automated
medical diagnostic systems.46 On the basis of the pro-
cess description for a given data–model conflict, we
generate one problem node corresponding to each
component in the process. Figure 6 shows how these
nodes are created. Associated with each of these
nodes is a prior probability of a problem occurring in
that step of the process. These probabilities can come
from statistical analysis of previous experience or be
subjective probability estimates.

Similarly, for each metadata feature in the metavector,
we create one evidence node (Figure 6). Arcs connect
each problem node with evidence nodes relevant to
its diagnosis. For each evidence node, a conditional
probability table is specified on the basis of the prob-
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Table 1 n

List of Metadata Features for a Basic BLAST Search*
Metadata Feature Ancestor Class Possible Values Description Significance

UseroExperience Operator Extensive, moderate, veryolittle The experience level of the person
doing the search

If it is extensive, the probability of error
should be lower.

UseroOccupation Operator Undergraduate, graduate, research-
assistant, post-doc, professor,
professional

The occupation of person doing
the analysis

Possible correlation with outcome.

UseroName Operator ^any string& The name of the person carrying
out the search

Possible correlation with outcome.

NumberoofoInputo
DataoSources

Filter Operator One, moreothanoone The number of data sources being
searched

Possible correlation with outcome.

NumberoofoUseroSeto
Parameters

Search Operator One, 1otoo3, 3otoo10, greaterothano

10
The number of search criteria that

are set by the user
Possible correlation with outcome.

SearchoDefaultso

Changed
Search Operator Yes, no This feature records whether the

search criteria have been
changed from their default val-
ues

If the user experience is high but the
search defaults have not been
changed, then there is greater possi-
bility of error. If the user is relatively
inexperienced but has changed the
default settings, then there is a
greater probability of error.

BLASToversion BLAST Search
Operator

Versiono1.0, versiono2.0 The version of BLAST used Possible correlation with outcome

Program Basic BLAST
Search Operator

Blastn, Blastp, Blastx, Tblastn,
Tblastx

Parameter that must be set for a
basic BLAST search

Possible correlation with outcome

Database Basic BLAST
Search Operator

Nr, Month, Swissprot, Dbest,
Dbsts, Mouseoests, Humanoests,
Otheroests, Pdb

Parameter that must be set for a
basic BLAST search

Possible correlation with outcome

UngappedoAlignment Basic BLAST
Search Operator

Yes, no Parameter that must be set for a
basic BLAST search

Possible correlation with outcome

DataoFormat Basic BLAST
Search Operator

Fasta, AccensionoOroGi Parameter that must be set for a
basic BLAST search

Possible correlation with outcome

*A basic BLAST search is a common operation performed by computational biologists when searching for a specific DNA sequence. The first column shows the complete
list of metadata features for a basic BLAST search. This list is the union of all the metadata features of its ancestors. The second column identifies the ancestors of the
basic BLAST search operator (in the process components ontology) from which the metadata features were inherited. Some of the metadata properties listed in the table
are considered correlative features. The correlations found between those features and the occurrence of data–model conflicts can be used as diagnostic evidence.
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F i g u r e 5 Interface for acquiring metadata and instantiating a metavector. Each process step has a set of metadata
that must be collected. In many cases, these values can be acquired automatically from the computer programs per-
forming the actual calculations.

ability of the observed metadata feature given the
causes of data–model conflicts it is conditioned on.
These conditional probabilities are either statically
generated by a domain expert or dynamically gener-
ated on the basis of correlations found between the
metadata features and the outcomes of the corre-
sponding data–model evaluations, as described in the
following section.

Static and Dynamic Conditionals

Static conditionals are based on heuristic rules ac-
quired from experts. These rules are created and enu-
merated by experts with experience diagnosing data–
model conflicts. In general, these rules have a very
simple form:

If [Feature Name is Feature Value]* then ^Increase or
Decrease& the likelihood of A Cause of Data–model
Conflict

The asterisk indicates that the rule can be conditioned
on more than one feature-value pair. Examples of
rules are:

If UseroExperienceoWithoComputationaloMethod is
Extensive then Decrease the likelihood of ErroroIno
ComputationaloStep

If ReviewoStatusoOfoJournaloArticle is NotoPeeroRe-
viewed then Increase the likelihood of ErroroIno
PrimaryoData

If TheoBasisoOfoTheoInterpretation is ExpertoOpinion
then Decrease the likelihood of ErroroInoInter-
pretationoStep

If TheoDatabase is NotoCurated then Increase the
likelihood of ErroroInoTheoDatabase

If TheoInputoAndoOutputoStatesoForoAoTranscrip-
tion are VeryoDifferent then Increase the likelihood
of ErroroInoTranscriptionoStep
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F i g u r e 6 Dynamic generation of a diagnostic belief network specific for a data–model conflict. Problem nodes are generated from a process decom-
position, while evidence nodes are generated using a metavector. The metavector itself is generated from appending together the metadata features for
all process components in the process decomposition. The conditional probabilities are added on the basis of statically and dynamically derived evidence,
as discussed in the text.
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F i g u r e 7 Dynamic generation of evidence by finding correlations between metadata values and evaluation outcome
over many data–model evaluations. It is important to collect metadata for all data–model evaluations done, regardless
of outcome. This example shows a possible correlation between the type of experiment used to derive the primary
data and the occurrence of data–model conflicts, suggesting that experimental mutation methods may be problematic.
Both positive and inverse correlations can be used as evidence for updating beliefs about which process components
may be contributing to the data–model conflict.

Enumerating these rules is a labor-intensive task. We
have built an initial set of 23 heuristics based on our
own experiences diagnosing data–model conflicts.
These rules, conditioned on metadata feature-value
pairs, provide one line of evidence for identifying the
cause of a conflict.

Whereas static conditionals represent compiled
knowledge about the association between metadata
and the possible causes of data–model conflicts, our
system can also learn such associations by examining
the results of many training runs and inferring new
associations. Such conditional dependencies are ‘‘dy-
namic’’ in the sense that they may be recognized by
the system in the context of a particular data set.
These rules may subsequently be added to the rule
set if they have sufficient generality. We use simple
tests of correlation (chi squared) to infer dynamic
rules, as illustrated in Figure 7.

Estimating Prior Probabilities and Solving
Diagnostic Problems

We instantiate the belief network evidence nodes with
the metadata values we have acquired and then run
an inference algorithm to generate posterior probabil-
ities of error for each of the problem nodes. The nodes
with the highest probabilities of error represent the
most likely causes of the data–model conflict being
diagnosed (as shown in Figure 9).

Our belief network formalism is based on several as-
sumptions. First, we assume that evidence is condi-
tionally independent. In addition, given that we have
broken down the data–model evaluation task into in-
dependently functioning components, we assume that
problems are independent. Finally, we assume that
the evidence can be generated independently by mul-
tiple problems. We model this causal independence as-
sumption using a noisy-OR gate.46,50

Because no prior systematic attempt has been made
to collect quantitative data about the probabilities of
different errors in the processes we model, we use
subjective estimates based on our experience trou-
bleshooting data–model conflicts. Our formal evalu-
ation of this system will involve testing the sensitivity
of our system to these estimates. We expect that as
our system is used to systematically record metadata
about many data–model conflicts, we will be able to
empirically derive these probabilities.

Implementation and Experimental Results

We have implemented our methodology in the GREN-

DEL system. Figure 8 describes each component of the
system. We describe here the results of applying
GRENDEL to diagnosing data–model conflicts arising
from modeling of the 30S ribosomal subunit.
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F i g u r e 8 GRENDEL system architecture. Unless otherwise noted, these components are implemented in Allegro LISP
3.0 for PC/Windows. Starting with a process decomposition and a data–model conflict, the system gathers data to
diagnose the likely cause of the conflict. The process knowledge base (process KB) stores metadata features, prior prob-
ability of error, and component-specific, metadata-dependent diagnostic rules for each process component class defined
in the knowledge base. The process decomposition tool allows construction of process descriptions from the components
defined in the knowledge base. The metavector generator takes the process decomposition and the metadata features
defined in the process KB as input and outputs the corresponding metavector. The metadata acquisition tool takes a
metavector as input and queries the user for values for each of the features in the metavector. The result is an instan-
tiated metavector that contains the metadata needed to diagnose a data–model conflict. The diagnostic belief network
generator takes the process description for a data–model conflict as input and outputs a file that specifies the belief
network topology. The evidence generator generates a file with the instantiations of the evidence nodes needed for
diagnostic inference. The belief network inference engine we used is MSBN, a belief network builder and inference tool
publicly available for the PC from Microsoft.54 The diagnostic belief network generator and the evidence generator both
provide input files for the MSBN tool. The MSBN tool makes it possible to visualize the belief network (that was
generated by the belief network generator), instantiate it with evidence (that was generated by the evidence generator),
and do diagnostic inference on the belief network given the evidence. The output is a bar graph showing the probability
of error for each problem node in the diagnostic belief network.
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Decomposition of the Ribosomal Data-Model
Evaluation Process Using GRENDEL

Using the process decomposition tool, we represented
the process of doing a data–model evaluation in the
RiboWEB system, as described earlier, using the do-
main-independent process components that were al-
ready part of the process components knowledge base
(process KB). For each step in the computational pro-
cess, we chose the most specific component in the pro-
cess KB that described the RiboWEB component we
wanted to represent. For example, one step in the
data–model comparison process requires the users to
choose the datum they want from a knowledge base
of ribosomal structural data. To represent this step in
the process, we chose the selection operator from the
process KB. This was the most specific component in
the KB applicable to the process step at hand. We also
could have chosen to represent this step as a filter op-
eration, which is more general than the selection op-
eration.

The problem with choosing a more general abstrac-
tion of a particular process step is that we lose the
more specific metadata features. Alternatively, we
could have chosen to populate the ontology with com-
ponents that are more domain specific, thus giving us
the ability to specify other unique metadata properties
relevant to diagnosing a particular process step. For
example, we could have added a child to the selection
operator called selectofromoKB, which has metadata
features specific to the task of choosing information
from a knowledge base. The decomposition of the ri-
bosomal data–model evaluation process was shown
graphically in Figure 3.

Acquisition of Diagnostically Relevant Metadata
Using GRENDEL

Using this process decomposition and the metadata
features defined in the process KB as input, the me-
tavector generator automatically produced a metavec-
tor with 153 diagnostically relevant metadata features
specific to data–model evaluations done using the
RiboWEB system. This metavector was used as input
to the metadata acquisition tool (Figure 5), which was
used to acquire metadata about the ribosomal data–
model evaluation process as each computational step
was being carried out.

Generation of a ‘‘Custom-fit’’ Belief Network

On the basis of process decomposition and the instan-
tiated metavector, the diagnostic belief network gen-
erator automatically created a description of the nodes
in the belief network, the dependencies between these

nodes, and the evidence used to instantiate these
nodes. This description was used as input to the
MSBN belief network tool, which did inference on the
belief network to generate updated probabilities for
each of the problem nodes.

Diagnostic Results Using Only Static
Conditionals in the Belief Network

We first tested GRENDEL’s diagnostic capability using
statically generated conditionals (based on expert gen-
erated heuristics) alone. On the basis of the process
model shown in Figure 3, GRENDEL automatically gen-
erated a diagnostic belief network and a tool for ac-
quiring metadata evidence about the process. We sim-
ulated two problem scenarios by entering metadata
appropriate to these scenarios during the metadata ac-
quisition phase. First, we simulated the experience of
users relatively inexperienced in the data translation
step, where users either choose a default set of inter-
pretations provided by the RiboWEB system or mod-
ify the default interpretations on the basis of their ex-
perience. Recall that these ‘‘interpretations’’ map
qualitative data describing RNA and protein prox-
imity to a set of numeric distance constraints. Using
the statically defined rules, the diagnostic belief net-
work is able to identify potentially problematic steps
in the data–model evaluation process in different
problem scenarios. In particular, on the basis of me-
tadata about the extent of users’ previous experience
doing data interpretations, the alteration of the de-
fault set of data interpretations, and the scientific basis
for the new data interpretations, GRENDEL was able to
single out the data interpretation step as the step most
likely to be problematic using the set of statically de-
fined conditional probabilities represented in the di-
agnostic belief network (and stored in the GRENDEL

knowledge base). Figure 9 shows the change in the
probabilities for each of the problem nodes, given the
metadata evidence for this scenario. In the second sce-
nario, also summarized in Figure 9, GRENDEL diag-
noses conflicts that may arise when using data from
a non-peer-reviewed data source.

Testing the Ability to Find Correlations between
Metadata Values and Outcome

To demonstrate the feasibility of dynamically gener-
ating conditionals (rules based on empirical evidence),
we looked for correlations between metadata values
and evaluation outcomes over a large set of instan-
tiated metavectors. To perform this test, we first col-
lected 153 metadata values for each of 1,973 separate
ribosomal data–model evaluations done using the
RiboWEB system. In these evaluations, different sets
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F i g u r e 9 Testing GRENDEL’s response to static rules. a, Diagnostic belief network generated for diagnosing ribosomal
data–model conflicts. b, Probabilities of error for each step in the process prior to the introduction of static evidence.
c, Updated probabilities of error after simulated interpretation error (metadata values: defaultoparameterso
changed=yes, useroexperience=veryolittle, interpretationobasis=personaloexperience). The interpretation step is cor-
rectly singled out as the step most likely to be problematic. Notice that most of the prior probabilities remain unchanged
because they are unaffected by the metadata we introduced. d, Updated probabilities of error after simulated journal
article error (metadata values: peeroreviewed=no, journaloquality=poor). Based on the new metadata evidence, the
same belief network now identifies the journal article reporting the data as a potential source of error.

←

F i g u r e 10 Correlations found using a chi-squared algorithm. See text for detailed explanation of each result. The
parameters for each correlation can be interpreted as follows. Process step: the identification of the step in the evaluation
process. Class: the class of the process step (as defined in the process components ontology). Metadata feature: the name
of the metadata feature. Metadata value: the value of the metadata feature in the reference vector. This is the value that
is correlated with evaluation outcome. Chi-squared statistic: The statistic calculated over all 1,973 metavectors. Cutoff for
0.01 significance: the cutoff value for a significance level of P = 0.01 and df = 1. Cramer V: the statistic that measures the
strength of the association. The closer this statistic is to 1, the stronger the association.

of data were compared against different models using
different sets of parameters. The resulting group of
1,973 instantiated metavectors contained both positive
data–model evaluation results (i.e., data–model eval-
uations that resulted in no conflict being found) and
negative results (i.e., data–model evaluations where a
conflict was found). For each metadata value in this
reference metavector, we used the chi-squared test to
determine whether the value for that feature was sig-
nificantly associated with positive or negative evalu-
ation results (i.e., conflict or no conflict) over all 1,973
instantiated metavectors.

The results of the analysis showed that, of the 153
metadata values of the reference metavector, five were

significantly correlated with computational outcome
(i.e., conflict or no conflict). Figure 10 shows these five
results. Each of these five correlations points to a pos-
sible diagnosis of the reference metavector. (In these
examples, we have replaced the actual names of re-
searchers and algorithms with pseudonyms.).

n Data published by ‘‘author A’’ may be problematic (Fig-
ure 10a). The chi-squared statistic indicates that of
the 1,973 data–model evaluations, the number of
instances in which the author of the ribosomal data
was author A and the outcome of the evaluation
was a conflict was greater than would be expected
by chance (P = 0.01). The Cramer V statistic indi-
cates that the strength of this relationship, however,
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is relatively weak. Nevertheless, this may be a pos-
sible cause of the data–model conflict.

n The default data interpretation may be problematic (Fig-
ure 10b). In the RiboWEB system, many different
sets of data interpretations are available to the user,
but this result indicates that the default set of in-
terpretations is associated with data–model con-
flicts. This result is not surprising, since the data
interpretations can be sensitive to precise interpre-
tations and the default parameter settings are se-
lected as a reasonable average.

n ‘‘Algorithm A’’ for building ribosomal models may be
problematic (Figure 10c). Based on the Cramer V sta-
tistic, the association between the use of algorithm
A for building ribosomal models and the occur-
rence of data–model conflicts is stronger than most
of the other metadata associations found.

n Models built by ‘‘author B’’ may be problematic (Figure
10d). In this case, we see that the calculated chi-
squared statistic is identical to that calculated for
algorithm A. This suggests a dependency between
the author of the model and the algorithm used to
build the model. Indeed, author B always uses al-
gorithm A to build ribosomal models, and no other
researchers have used algorithm A to build models,
so we have no way of telling whether the problem
is with algorithm A or with author B’s modeling tech-
niques, without further information. To distinguish
between these two possibilities, we need to evaluate
models built by author B using an algorithm differ-
ent from algorithm A and also evaluate models built
by others using algorithm A.

This example points out that the system can suggest
new lines of experimentation or data gathering that
can help the quality (and specificity) of the diag-
nosis. Since the system assumes that evidence is in-
dependent, we should not use the information from
this correlation at the same time that we use the
information correlating the author with conflicts,
since these two observations are highly dependent.
We can use measures of correlation, in general, to
ensure that redundant information is not intro-
duced dynamically into the system.

n Data involving cross-linking with proteins may be prob-
lematic (Figure 10e). This result indicates that data
that involving RNA bases cross-linked with pro-
teins are correlated with data–model conflicts. This
finding could indicate that distance constraints in-
volving proteins are, in general, less precise than
base-to-base cross-linking constraints. The Cramer

V statistic, however, indicates that this is a weak
association and probably of diminished diagnostic
importance.

Notice that the system makes two kinds of inference.
The first type of inference concerns the people and
algorithms performing the analyses, and the second
type of inference finds correlations between certain
scientific concepts (e.g., cross-links) and incompatibil-
ities. Both inferences can be useful in debugging un-
expected results.

Conclusion

Our methodology has been made possible by two
lines of work. First, techniques for structured, seman-
tically rich representations of scientific information
now provide the opportunity to use metadata to sup-
port automated reasoning about scientific data and
models.19,20,51,52 Second, tools for probabilistic diagno-
sis have matured and are now available as a compo-
nent of larger software systems. Together, these tech-
nologies produce capabilities for supporting scientific
reasoning that has not been possible until now.

Development and testing of GRENDEL continues, as it
is the first prototype implementation of our ideas on
how to diagnose data–model conflicts. We are en-
couraged that we have already identified examples of
how our system can help computational biologists
troubleshoot data–model conflicts that they encoun-
ter. In contrast to manual, ad hoc approaches to di-
agnosing data–model conflicts, we provide a system-
atic framework for understanding data–model
conflicts that result from computational processes. In
the short term, our system may allow us to make
sense of more than 10,000 pieces of data and multiple
proposed models stored in the RiboWEB knowledge
base (http://www.smi.stanford.edu/projects/helix/
riboweb.html) and build better models of the 30S ri-
bosomal subunit.

Our system must be evaluated further (in the context
of RiboWEB and other domain applications) along
several dimensions—accuracy, generalizability, and
utility. We can add basic explanation capability to in-
crease the acceptance of diagnostic support by its
users.53 We are also exploring the use of other statis-
tical and machine learning techniques that can find
more complex correlations between metadata values
and computational outcomes. There are also oppor-
tunities for implementing more complex heuristics
and rules that can reason using process topology in-
formation and local context information.
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In summary, we have presented a new methodology
(and a prototype implementation) for approaching the
problem of diagnosing data–model conflicts. Our
methodology is designed particularly for data–model
conflicts that arise out of multistep processes involv-
ing the interaction of people, machines, and instru-
ments. These are certainly characteristics of many
computational processes, but they are also character-
istics of other problem domains as well—diagnosis of
disease, understanding poor clinical laboratory re-
sults, and troubleshooting failed biological experi-
ments.
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