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Currently, the diagnosis of major depressive disorder (MDD) mainly 
relies on clinical examination and subjective evaluation of depressive 
symptoms. There is no non-invasive, quantitative test available today 
for the diagnosis of MDD. In MDD, exploration of biomarkers will be 
helpful in diagnosing the disorder as well as in choosing a treatment, 
and predicting the treatment response. In this article, it is aimed to 
review the findings of suggested biomarkers such as growth factors, 
cytokines and other inflammatory markers, oxidative stress markers, 
endocrine markers, energy balance hormones, genetic and epigenetic 
features, and neuroimaging in MDD and to evaluate how these findings 
contribute to the pathophysiology of MDD, the prediction of treatment 
response, severity of the disorder, and identification of subtypes. Among 
these, the findings related to the brain-derived neurotrophic factor, 

the hypothalamo-pituitary-adrenal axis, cytokines, and neuroimaging 
may be strong candidates for being biomarkers MDD, and may provide 
critical information in understanding biological etiology of depression. 
Although the findings are not sufficient yet, we think that the results of 
epigenetic studies will also provide very important contributions to the 
biomarker research in MDD.

The availability of biomarkers in MDD will be an advancement that will 
facilitate the diagnosis of the disorder, treatment choices in the early 
stages, and prediction of the course of the disorder.

Keywords: Depression, biomarkers, brain-derived neurotrophic factor, 
cytokines, genetics, neuroimaging
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Currently, the diagnosis of major depressive disorder (MDD) mainly 
relies on clinical examination and subjective evaluation of depressive 
symptoms. At present there is no approved biomarker as part of 
the diagnostic criteria for any psychiatric disorder (1-3). However,  
biomarkers can be helpful in the treatment choice and in predicting the 
course of the disorder during the early stages. In this paper, articles were 
scanned by using PubMed, National Academic Network and Information 
Center (ULAKBIM) and Psychiatry Index databases. For this purpose, 
in addition to MDD keyword, biomarkers, proteomic markers, growth 
factors, brain-derived neurotrophic factor (BDNF), cytokines, oxidative 
stress markers, hypothalamo-pituitary-adrenal (HPA) axis, genetic,  brain 
imaging, hippocampus keywords and their English equivalents were 
scanned and the appropriate articles were used as a reference. The results 
of  monoaminergic system were not sufficient  and consistent therefore 
except BDNF other growth factors and plasma metabolics data were not 
included. 

In the medical literature, a biomarker is defined as “a property that can 
be objectively measured and considered as an indicator of a normal 
biological process, a pathological process, or a response of an individual 
to a therapeutic intervention” (4). Biomarkers are categorized into two 
groups, i.e., the diagnostic biomarker which is useful in distinguishing 
the presence or absence of a disorder and the treatment biomarker 
which is useful in predicting treatment response. It has been reported 

to be clinically useful that a biomarker should have high sensitivity and 
specificity (>80%) in the diagnosis and classification of a disorder (5). 
Moreover, for a biomarker to be used in everyday clinical practice, it 
needs to be reproducible, reliable, inexpensive and non-invasive.

Apart from the distinction between diagnostic and treatment biomarkers, 
biomarkers are also categorized into three groups as trait, state, and 
endophenotype markers. Trait biomarkers are persistent and show 
pathologies that exist before the onset of the disorder, during the disorder, 
and after remission. These can be used for determining which individuals 
are at risk for the disorder. On the other hand, state biomarkers are 
transient, related to the clinical condition, present at the onset of and 
during the disorder, but normalized with remission. Endophenotypic 
biomarkers are in fact a subgroup of trait biomarkers, based on the 
association between genes and specific depressive phenotypes; they are 
persistent, and found to be higher in family members than in the normal 
population (2).

Despite great effort having been expended for decades, a noninvasive 
and quantitative test that can be used for the diagnosis and treatment 
of MDD has not yet been found (Table 1) (3). The reason for this is the 
existence of many problems related to the investigation of the biological 
mechanisms underlying MDD. The main obstacles in this area may 
consist of the lack of a suitable animal model of depression, the inclusion 
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of a set of biologically and clinically heterogeneous disorders in MDD, 
the presence of different subtypes and the continual change of this 
subgrouping, the high incidence of comorbidities of MDD with many 
other physical or psychiatric disorders, and the lack of specificity and 
sensitivity rates of a single biomarker. 

The wide variety and nonspecificity of the manifestations of depression 
may lead to the inclusion of biologically heterogeneous subgroups into 
MDD as an umbrella term. In this sense, many different disorders are 
diagnosed as being the same disorder, so the search for a single biomarker 
in a cluster essentially consisting of different disorders becomes 
meaningless (6, 7). Based on this argument, it seems reasonable to suggest 
the formation of more homogeneous samples (subtyping) sharing the 
same symptom groups and to investigate the biological changes in these 
subtypes. In this article, while we go through individual biomarkers, we 
will discuss the biologic features that are found in depression subtypes 
and that are promising for the differentiation of these subtypes from each 
other if indicated. 

In addition, there is also an attempt to find treatment markers that may 
be useful in treatment selection and in estimating treatment response 
in MDD. Finding the optimal treatment for depressed patients is still 
done by the trial and error method, which is also quite time consuming. 
Therefore, as soon as possible, the discovery of biomarkers that are likely 
to predict the treatment response appears to be an urgent need for the 
regulation of individualized treatment (8). 

Baron and Kenny (1986) suggested that treatment markers should 
be treated as two types consisting of moderators and mediators (9). 
Treatment moderators are the factors which show for whom the treatment 
will be successful and under what conditions, that is, which patient will 
benefit more from the treatment (10). In general, treatment moderators 
are variables that are initially present and predict the treatment response. 
Therefore, a positive moderator indicates that a particular treatment 
should be selected, and a negative moderator indicates another one. A 
treatment mediator is often described as a changing factor in response 
to a specific intervention  (10). Ideally, an early change in the mediator 
with treatment should inform us of the rate of future recovery from 
the disorder, and the absence of this change should indicate that the 
treatment response will be inadequate (11). 

Growth factors, cytokines and inflammatory markers, oxidative stress 
markers, endocrine markers, energy balance hormones, genetic findings, 
epigenetic studies, structural and functional imaging findings will be 
discussed in order to be used as biomarkers in MDD.

PROTEOMIC MARKERS
Proteins are the main actors in the cell. The total protein content of a 
cell is called the proteome. In depression, growth factors, inflammatory 
proteins, and oxidative stress-related enzymes have been investigated as 
proteome.

Growth factors
In some clinical trials, it has been shown that in patients with MDD, some 
growth factors (BDNF, vascular growth factor, insulin-like growth factor-1) 
change both gene expression and peripheral levels, while antidepressants 
have a normalizing effect (2, 12–14).

The most investigated growth factor in MDD is BDNF. BDNF regulates 
neural plasticity, migration, and survival in the central and peripheral 
nervous system (15). Apart from neurons, it is also released from 
peripheral cells such as leukocytes, endothelial cells, and platelets and 
may pass through the blood-brain barrier (16).

There are sufficient data showing that BDNF is important in the stress 
response and that it exhibits protective effects against the changes due 
to stress in the brain. BDNF may reverse the structural and synaptic 
plasticity changes due to stress in the adult brain, and this effect increases 
cognitive flexibility, thus adapting to the environment (17, 18). It has 
also been shown in animal studies that physical or psychological stress 
causes a rapid decrease in hippocampal BDNF expression (19, 20). Based 
on animal studies, it has been suggested that chronic stress exposure 
reduces neurogenesis and resilience by causing a down-regulation in 
the BDNF transmission pathways (21). Taken together, it is thought that 
a reduction in the hippocampal BDNF activity might be directly related 
to the pathophysiology of MDD, a stress-related disease, and this activity 
has been extensively studied.

Many studies and meta-analyses have shown that serum and plasma 
BDNF levels are decreased in depressed patients (16, 22, 23). It is 
suggested that the reduction in BDNF levels in depression is probably 

Table 1. Biomarkers for Major Depressive Disorder

Biomarkers Major Depressive Disorder Change after treatment Conclusion

Serum and plasma BDNF Decrease16,22,23 Normalization 16,22,23,27,28 Candidate

Serum IL-1, IL-6, TNF and 
peripheral mRNA expressions

Increase,54,55 Normalization 56,57 Candidate

MDA Increase 65,66 Normalization 65,66 Candidate

SOD Increase in erythrocytes 65,66 Decreased in serum 67,68 Not consistent

HPA activity Increase 70,71 Normalization 78,79 Candidate

Cortisol response to DEX/CRH Increase 87 Normalization Candidate

Leptin Increase 103,104 Decrease 101,102 Unchanged 105,106 Not consistent

Ghrelin Increase 106 Decrease 107 Increase 108  -Decrease106,109 Not consistent

5-HT transporter mRNA in 
blood

Increase 111 Decrease 112 Not consistent

Hippocampus volume Decrease 154 Normalization 155,156 Candidate

BDNF: Brain-derived neurotrophic factor, IL: Interleukin, TNF: Tumor necrosis factor, mRNA: Messenger ribonucleic acid MDA: Malondialdehyde, 
SOD: Superoxide dismutase, HPA: Hypothalamo-pituitary-adrenal DEX/CRH: Dexamethasone/corticotropin releasing hormone HT: Hydroxy tryptamine
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due to increased corticosteroids, because activation of the glucocorticoid 
receptors (GRs) negatively affects the BDNF gene (24). In this regard, there 
is no difference between bipolar disorder and MDD (16), although serum 
BDNF levels are reported to be lower in bipolar depression compared to 
MDD (25). Also, a finding associated with the subtypes of depression is 
that BDNF levels in geriatric depression are even lower (26).

In studies and meta-analyses, a consistently reported finding is that 
the reduction in BDNF levels existing in depression is reversed by 
antidepressant drugs or electroconvulsive therapy (ECT) (16, 22, 23, 27, 
28). ECT and long-term use of antidepressants increase hippocampal 
BDNF expression (29, 30). It is suggested that the final common pathway 
for various antidepressant treatments may be their effect on BDNF levels 
(31). In addition, initial BDNF levels in patients with MDD responding 
to treatment have been found to be higher (32). A meta-analysis 
concluded that BDNF levels could be used as a predictor of successful 
antidepressant therapy (treatment mediator) because serum BDNF levels 
remained unchanged in patients who did not respond to antidepressant 
medications but increased in treatment respondents and those who 
achieved remission (16).

Despite these findings indicating that BDNF levels in MDD may be regarded 
as a marker of diagnosis and treatment, there are still significant issues that 
remain unresolved in this regard. Although the main source of central BDNF 
is the hippocampus, it is suggested that peripheral BDNF measurements 
are less likely to reflect central activity because almost all peripheral tissues 
produce this growth factor. It is also not clear whether peripheral BDNF can 
cross the blood-brain barrier to produce behavioral effects (33). Moreover, 
the fact that BDNF changes are not specific to depression and found in 
many other psychiatric disorders suggests that this may be a neurobiological 
susceptibility factor for any psychiatric disorder (5). 

In addition to these problems, the question of whether peripheral BDNF 
findings are state or susceptibility markers still appears to be unresolved 
(2). Although some studies have reported that BDNF levels are lower 
during full remission from depression compared to healthy controls 
(34, 35), a recent meta-analysis has concluded that BDNF is not lower 
in remission (16). Moreover, the relationship between depression and 
BDNF becomes even more complicated by the yet unanswered question 
of whether the reduction in BDNF expression is the cause or the result of 
depression (2, 34). 

Thus, it can be said that findings support the idea that BDNF may 
be a biomarker for depression. In addition, there seems to be 
increasing functional importance of BDNF in the understanding of the 
pathophysiology of depression and in treatment.

Cytokines and inflammatory markers
Interacting with each other, the neuroendocrine and immune systems 
play an important role in stress response. For this reason, inflammatory 
markers have been extensively investigated in stress-related disorders 
and depression. Evidence supports the view that inflammation may play 
an important role in the pathophysiology of MDD (36). Inflammatory 
mediators have been found to affect many factors (monoamine 
and glutamate neurotransmission, GR resistance, and hippocampal 
neurogenesis) that are thought to be important in the etiopathogenesis 
of MDD. This suggests that inflammatory markers may be used as a 
marker for the diagnosis and treatment response of depression (37).

Cytokines are members of the interleukin (IL) family. They are produced 
by macrophages, natural killer cells, and T lymphocytes. Cytokines are 
classified as pro-inflammatory or anti-inflammatory. IL-1, IL-6, and tumor 
necrosis factor α (TNFα) are known as pro-inflammatory cytokines, and 
IL-4, IL-10, and IL-13 are known as anti-inflammatory cytokines (38).

As well as being important in brain development, cytokines play a role 
in the maintenance of normal brain function by supporting neuronal 
integrity, neurogenesis, and synaptic remodeling (39). They also create 
behavioral responses by influencing neurotransmitter systems (40). It has 
been reported that the cytokines released by peripheral immune cells 
and adipose tissue enter the central nervous system (CNS) through some 
regions of the blood-brain barrier or by the active reuptake mechanism 
and thereby affect behaviors. In the brain, they are mainly produced by 
microglia and some by astrocytes (41).

It is suggested that inflammatory variables may lead to depression by 
i) affecting neurotransmitters, ii) decreasing serotonin and inducing 
glutamate toxicity by stimulating indolamine 2,3 dioxygenase (IDO) in 
glial cells, iii) suppressing neurogenesis by decreasing BDNF activity, or 
iv) increasing HPA axis activity (38, 41, 42). Pro-inflammatory cytokines 
stimulate IDO in glial cells. IDO converts the tryptophan to kynurenine, 
which is then converted to neurotoxic quinolinic acid in the brain. 
Quinolinic acid binds to N-methyl D-aspartate (NMDA) receptors. Thus, 
because of the pro-inflammatory cytokines inducing IDO, depression 
may develop as a result of the decrease in serotonin levels due to reduced 
tryptophan on the one hand and glutamatergic neurotoxicity on the 
other (42). In a meta-analysis, confirmation of low plasma tryptophan 
levels in MDD supports the importance of IDO in linking cytokines to 
depression (43).

Both stress and subsequent inflammatory cytokine activation have been 
reported to adversely affect neurogenesis and neuroplasticity (44, 45). It 
has been reported that IL-1 suppresses hippocampal proliferation (46) 
and that cytokines such as TNFα and IL-6 exert a direct suppressive effect 
on hippocampal neurogenesis (47, 48).

Furthermore, it is also known that increased levels of cytokines stimulate 
the HPA axis (80). The effect of cytokines on the HPA axis may be directly 
through stimulation of the corticotropin releasing hormone (CRH) (50) or 
through altering the GR expression to induce GR resistance (51). 

Of the inflammatory markers, those which most confirm the changes 
in depression are proinflammatory cytokines (52) such as IL-1, IL-6 and 
TNFα, and C reactive protein (CRP) (53). It has been reported that serum 
levels of IL-1, IL-6, and TNFα and the messenger ribonucleic acid (mRNA) 
expressions of these in peripheral cells are increased in patients with 
MDD (52, 54, 55). In several studies, this increase has been reported to 
return to normal with antidepressants (56, 57). A meta-analysis showed 
that selective serotonin reuptake inhibitors (SSRIs), in particular, reduce 
IL-6 and TNFα levels (58). ECT has also been shown to reduce plasma 
TNFα levels (59). 

In some studies, elevated levels of IL-1, IL-6, and TNFα prior to treatment 
have been reported to be associated with non-response to antidepressant 
treatment (55, 60). These findings suggest that increased inflammatory 
parameters prior to treatment may be used as biomarkers of poor 
response to treatment (37, 57).

There has started to be research into whether or not cytokine levels differ 
for some subtypes of depression. It has been reported that there is a 
more evident increase in proinflammatory cytokines in those attempting 
suicide, in depression with suicidal ideas, and in geriatric depression (42, 
61), whereas atypical and melancholic depressions show increased levels 
of CRP and IL-6  compared to typical depressions (62).

When all the findings are considered, it can be concluded that depression 
is accompanied by an imbalance between pro- and anti-inflammatory 
cytokines and that antidepressant treatment improves this imbalance. 
At the same time, the results in this area also suggest that cytokines can 
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be used as a biomarker for the diagnosis and treatment response of 
depression. However, based on these results, it is not possible to currently 
suggest that depression is a primary inflammatory disease (37). 

Oxidative stress markers
Oxidative stress means that the balance between anti-oxidant and pro-
oxidant processes in the cell is permanently degraded in favor of pro-
oxidants. The result is overproduction of reactive oxygen species called 
free radicals. Free radicals cause damage to structures such as proteins, 
lipids, and DNA in the cell, and thus trigger apoptosis and cell death (63).

It has been suggested that increased oxidative stress and reduced anti-
oxidant defenses exist in MDD, and that specific components of oxidative 
stress play a role in the pathophysiology of depression (63, 64). Therefore, 
the biomarkers of oxidative stress are currently being investigated in 
patients with MDD.

Levels of lipid peroxidation products such as malondialdehyde (MDA) 
have been reported to be generally elevated in depressed patients (65, 
66). There are also studies reporting that MDA levels are higher in patients 
with recurrent depression than in those with a single episode (67). MDA 
levels have mostly been reported to decrease and return to normal with 
antidepressant therapy (65, 66). 

Another parameter investigated as an oxidative stress marker in patients 
with MDD is superoxide dismutase (SOD) activity. The results of SOD 
studies are not as consistent as those in MDA studies. In depressed 
patients, several studies have reported that serum SOD is decreased (67, 
68) or that erythrocyte SOD is increased (65, 66).

A meta-analysis of 17 trials evaluating the majority of lipid peroxidation 
markers in MDD found that these markers were elevated in patients with 
depression and found an association between the levels of these and the 
severity of depression (69).

In summary, although changes in the parameters relation to oxidative 
stress may be seen in MDD, it can be said that the findings are not strong 
or consistent enough to suggest that they can be used as a biomarker.

ENDOCRINE MARKERS 
The biological field that was the first to be studied in depression and has 
collected a large amount of data is the field of endocrine changes. The 
most studied in this respect is the HPA axis. 

In depression, the regulation of the HPA axis seems to be changed. It 
has been reported that depressed patients have a steady increase in 
cortisol and CRH release in a certain proportion of patients, and such 
findings have been suggested to signal increased HPA activity in MDD 
(70, 71). In accordance with this, CRH mRNA expression has been found 
to be elevated in different brain structures in patients with MDD who 
committed suicide or in animal models of depression (72, 73). In contrast, 
there are also recent postmortem studies reporting reduced hippocampal 
CRH mRNA expression in patients with MDD (74). 

In depressed patients, HPA axis findings including abnormal cortisol levels 
during awakening, abnormalities in the diurnal rhythm of cortisol release, 
and abnormal cortisol response to pharmacological suppression tests 
such as the dexamethasone suppression test (DST) or experimental stress 
have been reported (75–77). HPA axis changes in depression are accepted 
as mostly state-dependent, that is, they improve with treatment (78, 79). 
It is suggested that the increased activity of the HPA axis in MDD is largely 
due to the reduced negative feedback of endogenous glucocorticoids 
(80). This is also partly related to the reduced GR expression in patients 

with depression (71). It has been suggested that elevated cortisol in 
some patients with depression develops to compensate for reduced GR 
expression and function (81). Indeed, postmortem human studies have 
shown a reduction in GR mRNA expression in the frontal and temporal 
regions of patients with MDD (82). Preclinical studies have shown that 
the use of antidepressants upregulates GR expression and function in the 
brain, thereby increasing the negative feedback of the HPA axis (71). 

To demonstrate HPA axis alterations in MDD, the CRH stimulation test, 
which has been shown to be more sensitive in this regard, is frequently 
used in studies (83, 84). In this test, depressive patients respond to 
intravenous (IV) CRH administration with blunted adrenocorticotropic 
hormone (ACTH) and normal cortisol release. This finding is considered 
to be indicative of decreased sensitivity of the hypophyseal CRH receptor 
secondary to CRH hypersecretion (85). 

After these initial studies investigating the HPA axis in MDD, the combined 
dexamethasone-CRH stimulation test (DEX/CRH) was proposed to 
further increase the sensitivity of HPA axis findings (86). For this test, 
samples are taken 15 hours after oral administration of dexamethasone 
(at 23.00), and then repeated samples are taken after IV CRH is applied. 
In the DEX/CRH test, depressive patients show increased cortisol 
response (87). Treatment with antidepressants or ECT has been reported 
to normalize this abnormal response (88, 89). It is reported that relapse 
risk and treatment resistance rates are high in patients with continued 
abnormalities in this test (90, 91). 

Another important finding in this regard is that an increase in cortisol is 
more prominent in melancholic, psychotic, severe, and elderly depressed 
patients (7, 79). In patients with melancholic depression, plasma cortisol 
and nonsuppression rates in the DST are significantly higher than in other 
depressive conditions (7, 92). The finding that severity of depression 
and cortisol responses in the DEX/CRH test are positively correlated 
confirms that this neurobiological change is more related to severe and 
melancholic depression (7, 93).

In some depression subgroups, the inverse of the aforementioned 
findings related to the HPA axis is interesting, i.e., excessive suppression 
with dexamethasone and hypocortisolemia. Over-suppression of cortisol 
has been reported particularly in atypical depressions (94, 95) and in 
depressed patients with stories of early-life trauma exposure (96).

Energy balance hormones
Increasingly in recent years, studies have been carried out on the levels 
of hormones such as leptin and ghrelin that regulate the balance of body 
energy in MDD. Circulating hormones such as leptin and ghrelin transmit 
information related to the homeostatic levels of peripheral energy to 
the brain (97). Chronic stress has been reported to reduce serum leptin 
levels (98). In addition, it has also been shown that the administration 
of acute leptin in animals can produce an antidepressant effect, which 
is accompanied by increased hippocampal BDNF expression (99, 100). 
The leptin level results in patients with MDD are not consistent. Serum 
or plasma leptin levels were found to be decreased (101, 102), increased 
(103, 104), or unchanged (105, 106).

The data related to ghrelin in depression are also inconsistent. There are 
studies that found decreased (107) or increased ghrelin levels (106) and 
others which reported that it increases (108) or decreases (106, 109) with 
antidepressant treatment. 

As a result, we can conclude that the findings related to leptin and 
ghrelin levels are still inadequate to allow them to serve as biomarkers 
in depressed patients.
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Genetic findings
It is known that depression is a disorder that develops as a result 
of the complex interaction between a large number of genetic and 
environmental factors. Numerous studies are underway to address both 
gene expression levels and polymorphisms in genes related to substances 
in protein structure, such as neurotransmitters, hormones, growth 
factors, and secondary messengers, which are suggested to play a role in 
the pathophysiology of MDD, as biomarkers. 

Postmortem studies have reported a decrease in 5-hydroxy tryptamine 
(5-HT)1A mRNA levels in the hippocampus and prefrontal cortex of 
patients with MDD (110). There are also studies reporting that the levels 
of 5-HT transporter mRNA in peripheral blood circulation increased (111) 
or decreased (112) in MDD. A meta-analysis combining postmortem and 
in vivo imaging studies revealed a decrease in 5-HT transporter expression 
in many brain regions (113). There are other studies reporting increased 
platelet 5-HT1A receptor expression in patients with MDD (114). 

Polymorphisms in genes associated with serotonin transporter, 
serotonin 2A receptor, monoamine oxidase (MAO)A, BDNF, tryptophan 
hydroxylase, and GRs have been investigated as potential biomarkers in 
depression (115–117). When the results of these investigations are taken 
together, we can conclude that gene studies did not find a single common 
gene variant that significantly increases the MDD risk.

Furthermore, studies investigating the relationship between gene 
polymorphisms and response to depression treatment are increasing. 
Pharmacogenetic research assumes that treatment response or tolerability 
will be affected by inherited factors. Indeed, some observational studies 
confirm the hereditary basis of antidepressant treatment outcomes. 
For this purpose, several gene studies have been carried out including 
the genes of the serotonin transporter, serotonin receptor-2A, catechol 
o-methyltransferase (COMT), MAO-A, BDNF, cytochrome P450 enzyme, 
and ABCB1 (2, 117, 118). However, the results of these studies are not 
consistent.  

For example; In the study of Mrazek et al. (2009), there was no correlation 
between genetic variations of serotonin transporter and response to 
citalopram (119). A more recent meta-analysis has concluded that the 
long allele of the serotonin transporter gene promoter may be a predictor 
of better antidepressant response in some races (120). In another study, it 
was found that single gene polymorphisms of the 5-HT2A receptor may 
be associated with citalopram response (121).

In addition, associations between the Met allele of BDNF gene Val/
Met polymorphism and response to SSRI and between COMT gene 
polymorphism and response to some antidepressants have been 
reported (122, 123).

In conclusion, we can state that the data revealing the connection 
between pharmacodynamic candidate genes and treatment response are 
not sufficient to be beneficial in clinical use (33, 124).

Epigenetic studies
Today, it is believed that the predisposition to depression is caused by 
the collective influence of genes and the environment, and that the 
contribution of heredity is about 30-40%, the latter being complemented 
by the adverse effects of negative life events (8). Thus, as a result of the 
combination of genetic predisposition and certain environmental and 
life events, epigenetic irregularities in the CNS transcriptional program 
lead to the phenotypic manifestation of MDD (125).

The expression of genes can also be altered by epigenetic factors other 
than genetic variations. Recognizing epigenetic effects has led to the 

understanding that the long-term effects of environmental factors on 
behavioral responses occur by altering gene expression. Because these 
epigenetic modifications alter gene expression without altering the 
genetic code and regulate long-term neurobiological adaptations with 
this mechanism, the discovery of such a mechanism has opened up 
another dimension in depression studies (126). For example, epigenetic 
modifications due to stressors in early life may increase or decrease the 
risk of future depression by affecting the expression of certain receptors 
(e.g., GR in the hippocampus) (117).

Epigenetic factors include changes such as DNA methylation, histone 
modification, and microRNA (miRNA) dysregulation (127). Stress has been 
shown to induce epigenetic mechanisms such as histone modification 
and DNA methylation, which lead to maladaptive behavior (128). The 
most consistent findings in this area came from studies investigating 
the relationship among stress, depression, and epigenetic effects on the 
BDNF gene (129). It has been reported in animals that stressors such as 
chronic social stress or maternal separation in the postnatal period lead to 
decreased BDNF levels in different structures of the brain through histone 
demethylation and DNA methylation in the BDNF gene promoter region 
(128, 130). Sustained use of antidepressants also reverses stress-induced 
suppression of BDNF expression through epigenetic mechanisms such as 
histone-3 acetylation and histone-3 lysine-4 methylation (128). In human 
studies, changes in DNA methylation in the BDNF gene promoter region 
were also detected in MDD patients (131).

Epigenetic modifications may also alter the susceptibility to depression 
via the serotonergic system. For example, it has been reported that 
there is a positive correlation between childhood adverse life events 
and hypermethylation of the promoter region of the SLC6A4 gene, the 
serotonin transporter gene (132). Indeed, in a monozygotic twin study, an 
association between hypermethylation of the SLC6A4 promoter region 
in leukocytes and increased score of depression has been reported (133). 
There are also studies that could not find this relationship (134).

It is also known that epigenetic modifications due to prenatal or early 
life events may predispose to depression, especially by altering the stress 
response of the HPA axis for a lifetime. By disrupting the programming of 
the HPA system through epigenetic pathways, such stressful life events lead 
to a persistent stress sensitivity in neuroendocrine, autonomic, oxidative, 
and immune responses (135). The evidence shows that different stress 
types cause multiple epigenetic changes in both the limbic regions and 
the HPA axis (136). For example, it has been found that the children of 
mothers who did not show enough maternal behavior exhibited reduced 
GR17 expression in adulthood through increased methylation of the GR 
variant GR17 promoter (137). 

miRNAs are small RNA molecules that consist of about 22 nucleotides, 
which regulate the translation of mRNA but do not carry genetic 
information themselves, i.e., do not encode proteins (138). miRNAs can 
alter the expression of 30-50% of genes encoding neuron specific proteins 
(139). Until now, over 1,500 different miRNA chains have been reported 
in humans. The level of miRNA expression in the mammalian brain 
changes constantly according to environmental stimuli. These molecules 
affect neuronal development and differentiation, synapse formation, and 
synaptic plasticity by affecting many cellular processes in the brain (140). 

There are findings suggesting that stress exerts its effects on the brain 
through altering miRNA expressions (141, 142). For instance, acute 
restriction stress in animals causes down-regulation of miR-124 and miR-
135a in the amygdala (143). Similarly, it has been reported that conditions 
such as maternal separation or chronic social stress in animals have led 
to an increase in the expression of some miRNAs in the medial prefrontal 
cortex (144) or a decrease in miR-451 levels in the hippocampus (145), 
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and that these changes were reversed with fluoxetine treatment given 
during adolescence ( 145). 

It has been reported that miRNA levels in serum or peripheral blood 
cells are altered in depressed patients (146, 147), and that global 
miRNA expression in the prefrontal cortex is reduced in patients who 
committed suicide (148). It has been proposed that the relationship 
between depression and miRNA alterations may be mediated by GRs, 
and that the GR expression in the brain is strongly affected by miRNA, 
and consequently the changes in GR expression due to early life events 
may be mediated by miRNA dysfunction, which may also predispose to 
depression (138, 149). It has been further proposed that the miRNA effect 
may also be brought about by disrupting synaptic plasticity via BDNF or 
altering the expression of serotonin transporter (138, 150).

In summary, it can be suggested that long-term epigenetic modifications 
play an important role in stress-triggered behavioral responses, 
susceptibility to depression, and antidepressant response. However, for 
epigenetic findings to be used as biomarkers in MDD, further research in 
this field is required.

Structural and functional imaging findings
Structural and functional imaging studies in MDD are increasingly being 
conducted and are helping to clarify the neurobiological mechanisms 
underlying the disorder. Structural and functional changes in MDD 
have been reported especially in the brain structures related to emotion 
processing and mood regulation (151).

Unlike bipolar disorder, in patients with MDD there is no global 
brain volume reduction (208, 151). In MDD patients, morphological 
abnormalities have been reported including volume reduction in 
several brain structures such as the hippocampus, basal ganglia, anterior 
cingulate cortex (ACC), orbitofrontal cortex (OFC), and dorsolateral 
prefrontal cortex (DLPC), decreased cortical thickness, decrease in gray 
matter volume, and deterioration in white matter integrity (152, 153). 
These regional volumetric changes are thought to be part of the wider 
neural network and pathways present in depression.

Meta-analyses show that the volumes of both the left and right 
hippocampus decrease (on average, 4% on the left and 4.5% on the 
right) even in the first episode of depression (154). There are also reports 
that treatment with antidepressants or ECT reverses the decreased 
hippocampal volume in patients with depression (155, 156). It is, 
therefore, suggested that volume changes in the hippocampus may be a 
potential diagnostic marker in depression.  

Based on the finding that patients with MDD generally exhibit lower 
hippocampal volumes during depressive episodes compared to those 
during remission, there are some who suggest that structural changes in 
the brain are situational features (5, 155), but this is still a controversial 
issue (152). There are also writers who claim that low hippocampus 
volume is a genetic predisposition. In relation to this, it has been 
suggested that Met-BDNF allele carriers have smaller hippocampal 
volume and may consequently be susceptible to depression (157). Gonul 
et al. (2011) showed a decrease in the left hippocampal volumes of drug-
free depressed patients and that this was associated with Val66Met BDNF 
gene polymorphism (158). 

In addition, it is suggested that the decreased volume of the hippocampus 
found in depressed patients may be regarded as a marker for the 
treatment. Two separate studies have shown that larger pre-treatment 
hippocampal volumes can predict better response to 8-week treatment 
(159, 160).  In some meta-analyses, it has been shown that decreased 
volume of the right hippocampus may be a predictor of insufficient 

response to treatment in depression (161). There are also studies reporting 
the same for the left hippocampus (162). These findings provide strong 
evidence that measurements of hippocampal volume before treatment 
can be used as moderators of treatment. However, a 2-year follow-up 
study reported that the presence of a larger hippocampus in males is 
associated with lower relapse rates (163), implying that hippocampal 
volume may also be considered as a prognostic marker. A more recent 
meta-analysis confirmed a positive relationship between increased 
hippocampal volume and the likelihood of treatment response and 
increased remission (164).

Functional imaging studies in patients with MDD also reveal important 
findings. Patients with depression exhibit activity changes in areas 
such as the OFC, DLPC, ventromedial prefrontal cortex (VMPC), insula, 
amygdala, and ACC, which are particularly associated with cognitive 
functions such as the regulation of emotions, cognitive control, and 
reward processing (165, 166).  In a meta-analysis, frontal region activity 
changes in depression were found to be more situational, while striatal 
changes were trait characteristics of susceptibility (167).

Patients with MDD generally show hypoactive responses to emotional 
stimuli in the frontal regions and hyperactive responses in the limbic 
regions (153). For example, when looking at frightened or sad face 
images, depressed patients show an increased activity in the amygdala, 
ventral striatum, and medial prefrontal cortex and decreased activity 
in the dorsal prefrontal cortex (168–170). They respond to a favorable 
emotional stimulus or a reward expectation with decreased ventral striatal 
activity (171, 172). These functional imaging findings seem to indicate 
the selective attention of depressed patients to negative stimuli rather 
than positive emotional and reward related stimuli. Increased activity in 
the amygdala and striatum is normalized by successful treatment with 
antidepressants or by cognitive-behavioral therapy (168, 170, 173); that 
is, it seems to be a situational feature. 

In an earlier meta-analysis, frontal hypometabolism before treatment 
and the reversal of this with treatment were reported to be the best 
predictor of treatment response to both antidepressants and cognitive-
behavioral therapy (174). In addition, the increase in subgenual ACC 
activity before treatment and the reduction of this activity with different 
antidepressant treatments, including cognitive therapy, suggest that this 
finding can also be used as a marker of treatment response (175). It has 
been demonstrated in recent studies that increased ACC activity before 
treatment may predict good response to treatment, and it has been 
suggested that this increased activity may also include the OFC (161). 

CONCLUSION
Biomarkers can help predict the course of the disorder and the choice of 
treatment. Although studies investigating biomarkers for MDD have been 
carried out to facilitate the diagnosis and identification of subgroups, no 
test is as yet available for this purpose (Table 1).  MDD is a clinically and 
biologically heterogenous disease, with different clinical appearance 
and courses of sub-groups, and problems such as the low sensitivity 
and specificity of the recommended markers reduces the benefit of 
biomarkers in this disease.

As a solution to the problem of low sensitivity and specificity of a 
single biomarker, some authors have recommended the examination 
of a biomarker panel of several biological factors rather than a single 
biomarker in the diagnosis of depression and the evaluation of the 
response to treatment (11). Thus, it has been suggested that a wider and 
multivariable approach could be more useful, including a combination 
of neuro-imaging, genetic, epigenetic, proteomic and metabolomic 
approaches to include the majority of multiple biological abnormalities, 
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which contribute to the differences in the clinical appearance and 
response to treatment of MDD. Therefore, research of multiple 
factors would enable the diagnosis and treatment of depression to be 
personalized and would contribute to the better understanding of the 
neurobiology of depression sub-types. 

Within the parameters examined as potential biomarkers of MDD, some 
have been studied in more detail and it is noticeable that more consistent 
results have been obtained. Data related to BDNF seems to be extremely 
consistent, and it has been shown with great consistency that BDNF is 
reduced in some areas of the brain in patients with depression and this 
has been corrected with anti-depressant treatment. Despite the problem 
of specificity, several authors have accepted from these findings that 
BDNF is related to the pathophysiology of depression. Similarly, there 
is great consistency in HPA axis findings in depression and a strong 
relationship has been established with the pathophysiology of the 
disease. The DEX/CRH test has been found to be related particularly to 
the severity of depression and subtypes and promising results have been 
presented in this area. It can also be said that cytokines, of the potential 
biochemical markers, and imaging findings are strong candidates both 
in terms of being markers of depression and in providing important 
information about the biological etiology of MDD. In addition, although 
studies have only started in recent years and there are not yet sufficient 
findings, the results of epigenetic studies can be considered to make an 
important contribution to the subject of MDD markers. 

Although research into biomarkers of MDD has been shown to be useful 
at a level that could reflect clinical use, better understanding of the 
biological etiology of MDD and re-organization of the  sub-groups of the 
disease on a biological basis would be of great use.
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