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Abstract

Pupil diameter and microsaccades are captured by an eye tracker and compared for their

suitability as indicators of cognitive load (as beset by task difficulty). Specifically, two metrics

are tested in response to task difficulty: (1) the change in pupil diameter with respect to inter-

or intra-trial baseline, and (2) the rate and magnitude of microsaccades. Participants per-

formed easy and difficult mental arithmetic tasks while fixating a central target. Inter-trial

change in pupil diameter and microsaccade magnitude appear to adequately discriminate

task difficulty, and hence cognitive load, if the implied causality can be assumed. This

paper’s contribution corroborates previous work concerning microsaccade magnitude and

extends this work by directly comparing microsaccade metrics to pupillometric measures.

To our knowledge this is the first study to compare the reliability and sensitivity of task-

evoked pupillary and microsaccadic measures of cognitive load.

1 Introduction

Cognitive Load Theory (CLT) [1] plays an important role in Human-Computer Interaction

(HCI) research. There is a pressing need for a non-invasive measure of individuals’ cognitive

load, as it can guide designers of interactive systems to avoid overloading users. Measurement

of cognitive load could allow a system to respond appropriately, potentially either by toning

down or ramping up the level of task difficulty e.g., as in e-learning systems [2], or by adapting

mission-critical systems to the user’s cognitive state [3]. Examples of its use include a wide

range of applications, including surgery [4], flight safety [5], human-centered design, human

cognition modeling, usability, and multimedia learning [6, 7]. A reliable, and possibly real-

time, measurement of cognitive load is thus highly desirable. However, due to a lack of its reli-

able measurement, only a weak link exists between Human-Computer Interaction and Cogni-

tive Load Theory [8].

Yuksel et al. [8] list the predominant measurement methods in CLT studies as self-

reporting, the dual-task paradigm, and physiological measures (see also [9]). Eye tracking, a

type of physiological measurement, may offer the greatest potential for a reliable, non-invasive
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estimate of cognitive load [10]. One eye-tracked measure recorded as a matter of course is

pupil diameter, which has been exploited as a measure of cognitive load, termed the Task-

Evoked Pupillary Response (TEPR) [11].

The pupil diameter’s indication of cognitive load can be traced back to Hess and Polt [12],

who demonstrated the relation between pupil dilation and task difficulty (pupil diameter

increases with problem difficulty). Kahneman and Beatty [13] suggested that pupil diameter

provides a “very effective index of the momentary load on a subject as they perform a mental

task.” Generally, the idea that pupil size can be considered as a valid index of “cognitive load”

has been widely reported in many different contexts related to cognition; for more extensive

reviews, see Beatty [14] and van der Wel and van Steenbergen [15].

Duchowski et al. [16] note the pupil’s sensitivity to a number of factors unrelated to cogni-

tive load, including ambient light [17] and off-axis distortion [18]. As an alternative to the

TEPR, they offer the Index of Pupillary Activity (IPA) and show its sensitivity to task difficulty

in a replicated study originally designed by [19].

In this paper, we offer an alternative estimate of cognitive load based on measurement of

microsaccades during mental calculation tasks. Unlike either of the earlier two studies [16, 19],

we compare microsaccadic metrics to measures of pupil diameter, namely the averaged differ-

ence in pupil diameter with respect to inter- or intra-trial (averaged) baseline. We suggest that

measurement of microsaccadic activity is a viable alternative to pupil-based measures and to

the IPA. Because microsaccades can be detected within the streaming eye tracker raw point

data, pt = (x(t), y(t)), and are not susceptible to influence from ambient light, they offer good

potential for non-invasive, real-time measure of cognitive load.

2 Related work: Eye tracking

Because eye trackers report pupil diameter as a matter of course, there is renewed interest in

using them in lieu of a pupillometer for the purpose of estimating cognitive load. There are

two somewhat divergent assumptions regarding the relationship between pupil diameter and

cognitive load:

• pupil diameter should be measured with respect to the average pupil diameter measured

during a baseline trial (termed here inter-trial change in pupil diameter—BCPD);

• pupil diameter should be measured with respect to the average pupil diameter measured

during a baseline measurement made at the beginning of each trial (termed here intra-trial
change in pupil diameter—CPD).

Both baseline-related measures are difference scores, where the baseline pupil size is sub-

tracted from the post-baseline pupil size. Measurement of the change in pupil diameter in rela-

tion to its baseline is performed due to the assumed correspondence between its tonic and

phasic components. The TEPR is assumed to correspond to the pupil’s phasic response, while

tonic pupil diameter corresponds to its baseline diameter [5]. The pupil diameter baseline

measurement is thus taken with the hopes of recording the tonic pupil diameter, its sustained

component of the pupillary response. The pupil’s phasic response refers to a transient compo-

nent of the pupillary response, expressed as dilation relative to the baseline. A few examples of

how eye-tracked pupil diameter has been used for estimation of cognitive load are given

below.

An early experiment using an eye tracker (a 50 Hz Applied Science Labs model 1994) to

measure pupil diameter was conducted by Hyönä et al. [20]. In their experiment on language

tasks of different complexity, they used measurements of pupil diameter compared across

tasks. They referred to this as global processing (of pupil diameter). Klingner et al. [21] in their
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review of eye trackers used for cognitive load estimation refer to this type of pupil diameter

measurement as coarse, time-aggregated data processing, i.e., an aggregated measurement of

pupil diameter over a long period of time. In contrast to coarse measurement, Klingner et al.

[21] also suggest pupil measurement following a 2 sec delay after stimulus onset (e.g., intra-

trial change in pupil diameter). They advocate detailed timing and evaluation of short-term

pupillary response.

Kruger et al. [22] consider task difficulty when viewing video with or without subtitles.

They use percentage change in pupil diameter as an indicator of cognitive load. They advocate

the use of baseline pupil diameter, e.g., measured when reading instructions, or during some

other introductory tasks prior to the test trial(s), i.e., inter-trial measurement.

Chen & Epps [23] used a 12 second task window during which they computed the average

pupil diameter, and then subtracted the average pupil diameter recorded during a 0.5 second

baseline time window. They thus used a form of intra-trial baseline subtraction, taking care to

examine variations in stimulus background variations. Their results conformed with previous

studies of [14], [24], and [25].

Kiefer et al. [26] examined pupil diameter during visual exploration of common web maps

under six different task demands, including free exploration, visual search, polygon compari-

son, line following, focused search, and route planning. By considering changes in mean pupil

diameter across tasks, their pupillometric inter-trial measure is similar to that of Hyönä et al.

[20], who treated a separate trial as baseline for pupil diameter comparison.

We test both forms of intra- and inter-trial pupil diameter difference measurements and

refer to them as Change in Pupil Diameter (CPD) and Baseline Change in Pupil Diameter

(BCPD), respectively (see Implementation of Gaze-Based Measures below). For additional

examples of cognitive load measurement via pupil diameter, including examples relevant to

HCI see Duchowski et al. [16].

2.1 Limitations of pupillometric measures

Given the above review of pupillometric approaches to estimation of cognitive load, which

method is most effective and reliable, if any?

Persistent problems with eye-tracked measures of pupil diameter, reviewed by Duchowski

et al. [16], center on the pupil’s sensitivity to illumination levels and the pupil diameter’s off-

axis distortion. This distortion, modeled by Mathur et al. [18] as a function of the cosine of the

viewing angle θ (in degrees), i.e., y(θ) = R2 cos([θ + 5.3]/1.121), where R2 = 0.99, and y is the

viewing-angle-dependent ratio of the ellipse major and minor axes, is both decentered by a

few degrees and flatter by about 12% than the cosine of the viewing angle (see Fig 1).

When using an eye tracker to measure the pupil, effects of illumination and off-axis distor-

tion should be considered. Hayes & Petrov [27] offer a method for compensating for off-axis

distortion, while effects of luminance can be handled by considering stimulus nearby the mea-

sured point of regard, e.g., as shown by Raiturkar et al. [28]. Duchowski et al. [16] discuss

other compensatory approaches as well as techniques based on measuring pupil oscillation,

i.e., relative moment-to-moment pupil size.

Here, we consider eye-tracked metrics related to cognitive load based on positional eye

movement data, derived from measurement of microsaccades.

2.2 Microsaccades: Alternative to pupil diameter?

Along with tremor and drift, microsaccades are a component of miniature, involuntary eye

movements made during attempted visual fixation [29]. Siegenthaler et al. [19] investigated

the influence of task difficulty on microsaccades during the performance of a non-visual,

Eye tracking cognitive load

PLOS ONE | https://doi.org/10.1371/journal.pone.0203629 September 14, 2018 3 / 23

https://doi.org/10.1371/journal.pone.0203629


mental arithmetic task with two levels of complexity. They found that microsaccade rates

decreased and microsaccade magnitudes increased with increased task difficulty. Microsac-

cade generation could be affected by working memory performance. In their mental arithme-

tic study, attention is divided between maintaining fixation and counting tasks, increasing

load on working memory. The more difficult the task (i.e., higher working memory load), the

more difficult it is to execute the fixation, yielding fewer microsaccades with decreased control

over their (e.g., larger) magnitude.

According to Gao et al. [30], non-visual cognitive processing can suppress microsaccade

rate, according to the level of task difficulty. When asked to perform easy and difficult arithme-

tic, participants’ microsaccade rate was modulated at different task phases. In the post-

calculation phase, microsaccades remained at double the rate of the calculation phase. Micro-

saccade rate in the control condition was much greater than during post-calculation.

Dalmaso et al. [31] also reported that working memory load is reflected in microsaccade

rate and magnitude. From two experiments, results showed that microsaccadic rate drops in

the rebound phase of a high demand task (200-400 ms after onset), compared to an easier task.

Results showed a reduction in microsaccadic rate in the high-load condition compared to the

low-load condition, consistent with previous findings [19, 30, 32].

Because it is thought that microsaccades and saccades share a common neural generator

(the superior colliculus (SC)), Siegenthaler et al. [19] suggest that different levels of task diffi-

culty induce variations in cognitive load, modulating microsaccade parameters via changes in

the intensity and shape of the rostral SC activity map. Fluctuations of SC activity at the rostral

poles are thought to give rise to microsaccades during fixation.

Fig 1. Off-axis pupil diameter ratio. Plot based on model given by Mathur et al. [18]

https://doi.org/10.1371/journal.pone.0203629.g001
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We should note that Siegenthaler et al. [19] stopped short of positing causality between cog-

nitive workload and microsaccades, suggesting the relation should be probed further, espe-

cially in ecologically valid scenarios. However, because the connection was made between task

difficulty and microsaccades, the implication that microsaccades may serve as an indicator of

cognitive load is tantalizing. They also did not report the effects of task difficulty on eye move-

ment metrics related to pupil diameter, although undoubtedly the eye tracker they used (an

EyeLink 1000 sampling at 500 Hz) provided this data. We replicate their experiment compar-

ing and contrasting metrics derived from pupil diameter as captured by an eye tracker.

3 Methodology

To compare and contrast microsaccadic indicators with pupillometric measures, we report the

results of the eye tracking experiment which followed the experimental design and procedure

described by [16] (replicating Siegenthaler et al. [19]). For completeness, below we provide a

detailed description of the study methodology, including experimental design, dependent

measures and their implementation, procedure, participants, equipment, and statistical

analyses.

Present experimental research involved human participants thus it was approved by the

SWPS University of Social Sciences and Humanities in Warsaw, Poland Institutional Review

Board (IRB). All participants in the study signed informed consent forms in paper.

3.1 Experimental design

The experiment followed a 3 × 6 within-subjects design with the following within-subjects

fixed factors:

• Task Difficulty (Difficult vs. Easy vs. Control). In Difficult and Easy tasks, participants were

asked to perform difficult or easy mental calculations, and in the Control task they were not

asked to perform any mental calculations at all (see Experimental Procedure below).

• Time-On-Task constituted by six blocks of trials within the experimental procedure.

Additionally, each participant’s Working Memory Capacity (WMC) served as a controlled

independent variable, measured with the Digit SPAN task (DSPAN) procedure prior to the

main experimental task. Both Forward and Backward assessments of DSPAN [33] were used.

As an indicator of WMC, the length of a correctly recalled numerical sequence (before

making two consecutive errors) was used. Each individual’s mean of the two-error maximum

length DSPAN from Backward and Forward assessments was used as a covariant in the statisti-

cal analyses.

3.2 Dependent measures

We used the following dependent cognitive load measures during the Easy, Difficult and Con-

trol tasks.

• We analyzed three microsaccadic metrics. Following Siegenthaler et al. [19], we focused on

microsaccade magnitude and rate, and following Di Stasi et al. [34], we analyzed the slopes

of the relationship between microsaccadic magnitude and peak velocity.

• We compared two pupillometric metrics, the Intra-Trial (CPD) and the Inter-Trial Change

in Pupil Diameter (BCPD).

• Self-assessed cognitive load was also measured. After each block of trials, participants

answered a modified NASA Task Load Index (NASA-TLX) questionnaire [35]. The
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following NASA-TLX items were used: mental demand, physical demand, temporal demand,

performance, and effort. Each item in the questionnaire was evaluated on a Likert-type scale

with 1 (“Very Low”) and 21 (“Very High”).

3.3 Implementation of gaze-based measures

Prior to implementation of our gaze-based measures, following Engbert and Kliegl [29], eye

movement data is first extracted in a pre-processing step to remove data 200 ms before the

start of, and 200 ms following the end of a blink, as identified by the eye tracker. Following this

pre-processing step, we then compute the inter-trial change in pupil diameter in relation to a

base trial, e.g., the intra-trial Change in Pupil Diameter (CPD), Baseline Change in Pupil

Diameter (BCPD), and microsaccade magnitude, rate, and peak velocity.

For both the BCPD and CPD pupillary estimates (but for no other measures), we follow

Klingner et al. [21] by applying a Butterworth smoothing filter to the raw pupil diameter data

prior to computing the metrics based on change in pupil diameter. Butterworth filter parame-

ters were chosen so as to remove high-frequency noise observed in the signal. We take as input

signal x(t) and produce as output its filtered version x̂ðtÞ, where the �̂ operator denotes

smoothing. We use a 2nd degree Butterworth filter with critical frequency set to 1/4 half-cycles

per sample, i.e., 1/8th the sampling period (the point at which the gain drops to 1=
ffiffiffi
2
p

of the

passband). That is, representing the pupil diameter signal as x(t), the signal is smoothed (to

order s) by convolving 2p+1 inputs xi with filter hr;si and 2q+1 (previous) outputs x̂ i with filter

gr;si at midpoint i [36]:

x̂ s
nðtÞ ¼

1

ðDtsÞ

Xp

i¼� p

ht;si xn� i �
Xq

i¼� q

gt;si x̂n� i

 !

ð1Þ

where r and s denote the polynomial fit to the data and its derivative order.

3.3.1 CPD: Intra-trial change in pupil diameter. Using the smoothed pupil diameter sig-

nal x̂snðtÞ from (1), let mTb
represent the average smoothed pupil diameter computed over base-

line time period Tb as the running mean [37] for t 2 [0, Tb] with k = 0 incrementing by 1 at

each time sample, mTb
¼ k=ðkþ 1ÞmTb

þ 1=ðkþ 1Þx̂ s
nðtÞ. The intra-trial change in pupil

diameter (CPD) is then computed as the mean difference between the pupil diameter and the

average over period Tb,

CPD ¼
k

kþ 1
CPDþ

1

kþ 1
x̂snðtÞ � mTb

� �
; ð2Þ

computed once again as a running mean, for t 2 [0, Te], where Te is the temporal extent of the

CPD estimate. The baseline and extent time periods Tb, Te can be set arbitrarily, e.g., Tb set to

the first 2 seconds as is done in the analysis. or depending on how the experiment was set up to

include a baseline period (e.g., rest, no induced cognitive load), and Te set to the entire trial

duration or shorter, e.g., 180 seconds, as is done in the analysis below.

3.3.2 BCPD: Inter-trial change in pupil diameter. The inter-trial change in pupil diame-

ter (BCPD) is computed similarly to the CPD as given in (2), with the exception of the baseline

average smoothed pupil diameter mTb
obtained from an entirely different trial, ideally one that

is designated as a trial meant not to induce cognitive load. Note that the baseline time period

in this case (Tb) can extend over the entire trial.

3.3.3 Microsaccade magnitude, rate, peak velocity. Microsaccades can be detected in the

raw (unfiltered by the eye tracking software) eye movement signal, pt = (x(t), y(t)), when gaze

is fixed on a stationary object, i.e., during a fixation, following fixation detection. Assuming a

Eye tracking cognitive load
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sequence of raw gaze points identified within a fixation, we adapt a version of Engbert and

Kliegl’s [29] algorithm for the detection of microsaccades.

The algorithm proceeds in three steps. First, we transform the time series of gaze positions

to velocities via

_xn ¼
xnþ2 þ xnþ1 � xn� 1 � xn� 2

6Dt
; ð3Þ

but do so separably for x(t) and y(t). Eq (3) represents a moving average of velocities over 5

data samples. As Engbert and Kliegl [29] note, due to the random orientations of the velocity

vectors during fixation, the resulting mean value is effectively zero. Microsaccades, being bal-

listic movements creating small linear sequences embedded in the rather erratic fixation trajec-

tory induced by small drifts, can therefore be identified by their velocities, which are clearly

separated from the kernel of the distribution as “outliers” in velocity space.

Second, computation of velocity thresholds for the detection algorithm is based on the

median of the velocity time series to protect the analysis from noise. A multiple of the standard

deviation of the velocity distribution is used as the detection threshold [38],

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h _x2i � h _xi2
q

; sy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h _y2i � h _yi2
q

where h�i denotes the median estimator. Detection thresholds are computed independently for

horizontal ηx and vertical ηy components and separately for each trial, relative to the noise

level, i.e., ηx = λσx, ηy = λσy. Like Engbert and Kliegl [29], we used λ = 6 in all computations

and we assume a minimal microsaccade duration of 6 ms (three data samples at 500 Hz).

Mergenthaler [39] discusses how the choice of λ substantially affects the number of detected

microsaccades. As λ increases, the number of detected microsaccades decreases. Following

Engbert [38], as a necessary condition for a microsaccade, we require _x and _y fulfill the crite-

rion ð _xn=ZxÞ
2
þ ð _yn=ZyÞ

2
> 1.

Third, Engbert and Kliegl [29] focus on binocular microsaccades, defined as microsaccades

occurring in left and right eyes with a temporal overlap. They exploit binocular information by

applying a temporal overlap criterion: if a microsaccade in the right eye starting at time r1 is

found that ends at time r2, and a microsaccade in the left eye begins at time l1 and ends at time

l2, then the criterion for temporal overlap is implemented by the conditions r2 > l1 and r1 < l2.

We omit this step to facilitate working with a single (unfiltered) value for gaze point velocity

estimation within a fixation. We follow Duchowski et al. [40] procedure and average both left

and right gaze points into a single point as would be looked at by a cyclopean eye, i.e., (x(t),
y(t)) = ([xl(t) + xr(t)]/2, [yl(t) + yr(t)]/2). However, unlike Duchowski et al. [40] we do not

implement heuristic data mirroring, which may make our approach susceptible to eye tracker

noise, especially in cases when only one of the left or right data points is available. Heuristic

data mirroring may counteract this problem.

Note that Engbert and Kliegl [29] assume a stationary eye movement signal, i.e., when fixat-

ing an object, e.g., performing a task where gaze is meant to be held steady e.g., see Siegenthaler

et al. [19]. This assumption allows processing of the eye movement signal stream in its entirety,

with the distinction between saccades and microsaccades made by thresholding on saccade

amplitude. However, doing so precludes the grouping of raw (unprocessed) eye movement

data within fixations. Moreover, because the entirety of the eye movement recording (scan-

path) is needed, the approach also precludes real-time applications. With future real-time HCI

applications in mind, we adapted their algorithm to the general case of a non-stationary eye

movement signal, by first detecting fixations following Nyström and Holmqvist [41], and by

using the Savitzky and Golay [42] filter for velocity-based (I-VT [43]) event detection. The
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Savitzky-Golay filter fits a polynomial curve of order n via least squares minimization prior to

calculation of the curve’s sth derivative e.g., 1st derivative (s = 1) for velocity estimation [44].

We used a 3rd degree Savitzky-Golay filter of width 3 with velocity threshold of 100˚/s, tuned

to the sampling rate of our eye tracker, see Fig 2.

Because the Savitzky-Golay filter is fairly short, it can be used in real-time applications.

Moreover, because our adaptation functions within data points identified within fixations, we

can (eventually) test off-axis compensation algorithms as we need not rely on the assumption

of stationarity.

3.4 Experimental procedure

Participants first signed a consent form, provided basic demographic information, and then

completed the DSPAN assessment. The DSPAN was completed on a dedicated laptop com-

puter. The procedure consisted of 14 trials. In each trial participants were presented with a

random number (starting with a 3 digit number) viewed for 1 second. Their task was to recall

this number in the same (Forward assessment) or reverse order (Backward assessment). Given

a correct response, the digit sequence was extended by 1 digit in the next trial. Given an incor-

rect response, the length of the next sequence was kept the same. The order of Forward and

Backward assessment blocks was randomized.

As the final step of the procedure, participants completed the main task during which their

eyes were tracked following a 5-point calibration (see Fig 3). The main task consisted of three

types of mental computation trials: Difficult, Easy, and Control. Trials were grouped into 6

blocks, giving 18 trials in total. Each block started with the Control trial, followed by the Easy

and Difficult trials in counterbalanced order. The order of block of trials was randomized.

Between each block, participants were offered to take a break lasting from 2 to 5 minutes.

During each trial (Difficult, Easy and Control) participants were asked to keep their gaze at

a central fixation point. Deviation of the gaze > 3˚ from the fixations point was penalized by

Fig 2. Illustration of microsaccade detection in a single participant’s gaze recording during calibration. The small dots in (a)

show gaze points prior to processing, i.e., detection of fixations or of microsaccades. Following processing, microsaccades in (b) are

highlighted by larger, darker dots and thicker connecting segments. Notice that all small, raw gaze points that were not part of a

fixation have now been removed. Thus any remaining small dots are members of fixation clusters that may or may not contain

microsaccades. The point of this illustration is to show that microsaccades are detectable at locations far beyond the central fixation

point. In the replication of Siegenthaler et al.’s [19] study, however, the participant’s gaze was held fixed at a central fixation point,

hence the microsaccades depicted here during calibration were not used in the analysis of the experiment.

https://doi.org/10.1371/journal.pone.0203629.g002
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an unpleasant warning sound. Each trial started with the presentation of a randomly chosen

number from the sets of {1375, 8489, 5901, 5321, 4819, 1817} for Difficult trials and {363, 385,

143, 657, 935, 141} for Easy trials. In Difficult trials, participants were asked to mentally count

backwards in steps of 17 as fast and accurately as possible while in Easy trials they were asked

to count forward in steps of 2 starting from the initial number. In both types of trials partici-

pants were asked 4 times per trial to enter their current calculation and continue counting.

Prompts appeared at random times during the trial with a minimum gap between prompts set

to 15 seconds and a maximum gap time set to 80 seconds. A limit of 9 seconds was given for

entering their current calculation. In the Control trials participants were not asked to perform

any mental calculations. However, they were asked to enter any 3-digit number that came to

mind when prompted. In each condition the trial duration was set to a maximum of 3 minutes.

After finishing each trial participants completed the NASA-TLX questionnaire by estimating

their level of cognitive demand in each task.

3.5 Experimental sample

Seventeen psychology students volunteered for the study. Data of four participants were dis-

carded due to technical problems (mainly with the eye tracker calibration) or misunderstand-

ing of the task. The final sample consisted of N = 13 participants, 7 males and 6 females aged

between 20 and 40 years old (M = 29.77; SD = 7.15).

3.6 Experimental equipment

Eye movements were recorded binocularly by an SR Research EyeLink 1000 eye tracker (500

Hz sampling rate). During the recording each participant’s head was stabilized with a chin

Fig 3. Time course of each experimental trial. Note that because we wanted to present the experimental procedure as accurately as

possible the fixation point and text entry text are hardly visible on this figure due to its size. In the actual experimental settings both

were clearly visible for participants on the computer screen. The actual fixation point was defined as a circle with radius of 5 pixels

and color defined as [0.2,0.2,0.2] in the RGB color scale. That color can be described as an increment of 0.2 above the gray

background. Note that each value in the RGB space in PsychoPy is defined by the range between -1 and 1. The same color was

applied to the text on the “Answer entry” screen.

https://doi.org/10.1371/journal.pone.0203629.g003
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rest. The accuracy of the eye tracker reported by SR Research is 0.25˚–0.5˚ visual angle on

average, with microsaccade resolution of 0.05˚. However, Van Der Geest [45] reported lower

horizontal × vertical precision (0.98˚ × 1.05˚ visual angle).

The stimuli were presented on a computer screen with 1920 × 1080 resolution. The main

experiment procedure was created in PsychoPy [46]. Participants responded using a numerical

keyboard. The DSPAN test was performed using Millisecond Inc.’s Inquisit 4 Lab software.

The experimental room had no windows and ambient light was controlled for each of the

participants (520 lux). Luminance of the computer screen during the experimental task was

measured at 120-130 lux.

4 Results

A useful measure of cognitive load should be sensitive to both between-task and within-task

variability as well as between-subjects differences [47]. First we report internal validity (reli-

ability) of questionnaire responses and pupillary and microsaccadic measures of cognitive

load. Second we report external validity (sensitivity) of the measures reflected by their ability

to distinguish between Task Difficulty within sequential blocks of trials (i.e., Time-On-Task).

We also report on each measure’s ability to distinguish between high and low cognitive load as

a between-subjects factor. Finally, we give a direct comparison of the measures by testing a

multinomial logistic regression (MLR) model for discriminating between task difficulty.

4.1 Statistical analyses

The internal validity of all measures was assessed with Cronbach’s α. In order to evaluate the

influence of Task Difficulty and Time-On-Task on dependent measures, two-way (3 × 6)

within-subjects Analyses of Covariance (ANCOVAs) were used, where Task Difficulty (Con-

trol vs. Easy vs. Difficult) and Time-On-Task (block of trials from 1 to 6) served as indepen-

dent factors. The analyses of covariance were followed by pairwise comparisons with HSD

Tukey’s correction when needed.

Working memory capacity can be considered as a moderator between eye-related measures

and cognitive load, e.g., Granholm et al. [48] showed that pupillary response increases with

increasing task demand until cognitive resources are exceeded, at which point pupillary

response then begins to decline. Past work has also reported significant relationships between

working memory capacity and performance of various complex cognitive tasks e.g., reading

comprehension, and reasoning [49, 50]. One may expect that people with high working mem-

ory capacity should experience lower cognitive load in difficult tasks than individuals with low

working memory capacity. However, to our best knowledge no direct relationship between

working memory capacity and fixational eye movements has been described in the literature.

Thus, we decided to include working memory capacity as a covariant in the statistical analyses

of all dependent measure sensitivities.

We used parametric ANCOVA statistical tests despite the fact that all microsaccadic and

pupillary measures showed skewed distributions deviating from normality. ANCOVA allowed

us to run full design analyses and is considered relatively robust to violation of the normality

assumption, e.g., see Schmider et al. [51] or Lix et al. [52]. All ANCOVA results are reported

with generalized main effect size (η2). For direct comparison of eye movement measures multi-

nomial logistic regression analyses were used.

Note that prior to statistical analyses, microsaccades were additionally filtered using thresh-

olds of maximum duration (40 ms) and maximum magnitude (2 visual degrees); for review of

microsaccades filtering see Otero-Millan et al. [53] and Martinez-Conde et al. [54].

All statistical analyses were conducted in R [55].
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4.2 Reliability of measures

Reliability (internal consistency) of microsaccadic and pupillary responses are estimated by

Cronbach’s α and compared to self-reported (NASA-TLX questionnaire) measures (see

Table 1). Both eye movement and self-reported measures show very good reliability, in most

cases (α� 0.80) acceptable [56]. Excellent reliability (α> 0.90) was obtained for microsaccade

magnitude, microsaccade rate, and Inter-Trial Change in Pupil Diameter, overall, and for each

task. The lowest Cronbach’s α was found for peak velocity and microsaccade magnitude slopes

in the Difficult tasks.

4.3 Experimental manipulation check

To gauge the effect of task difficulty on participants’ performance, we analyzed task response

accuracy (proportion of correct responses) and self-reported cognitive load (raw TLX index),

see Fig 4.

The accuracy of the counting task in Difficult trials was checked by examining divisibility

by 17 of the difference between the participant’s current response and the previously entered

or starting number. In the Easy trials accurate answers were defined as any positive even differ-

ence between starting number or previously entered number and the current response. In

Control trials accurate answers were any 3-digit numbers entered by the participants. The per-

formance criterion for Difficult trials was a minimum of 4 out of 24 correct answers. Based on

this criterion, the data of one subject, who only scored 3 correct answers in all of the Difficult

tasks was removed from further analyses. Note that no data were discarded from the Easy and

Control trials.

As expected, ANCOVA of performance accuracy (response accuracy proportion) revealed

a main effect of task difficulty, F(2, 20) = 54.43, p< 0.001, η2 = 0.58, see Fig 4(a). Participants

in the Difficult tasks produced significantly fewer correct answers than in the Easy and Control

tasks (p< 0.001), see Table 2. The analyses revealed also a significant interaction effect (but rel-

atively weak in terms of its effect size) between WMC and Time-On-Task F(2, 20) = 4.15,

p< 0.05, η2 = 0.09.

Results of the self-reported questionnaire responses are in line with those of performance

accuracy. A two-way ANCOVA of the Raw NASA TLX scale showed a significant main effect

of task difficulty, F(1.31, 14.46) = 46.09, p< 0.001, η2 = 0.38, see Fig 4(b). Participants reported

significantly higher cognitive load during the Difficult tasks than during the Easy and Control

tasks (p< 0.001). Pairwise comparisons showed that the difference between the Easy and Con-

trol task was statistically significant (p< 0.01), see Table 2.

Table 1. Internal consistency of cognitive load measures in response to task difficulty. The table presents Cronbach’s α overall and within each task. The reliability coef-

ficient could not be calculated for the BCPD measure in the Control tasks as it was treated as the baseline. Note the meaning of abbreviations in the table: MM (Microsac-

cades Magnitude), MR (Microsaccade Rate), PV-M (Microsaccade Peak Velocity—Magnitude), CPD (Intra-Trial Change in Pupil Dilation), BCPD (Inter-Trial Change in

Pupil Dilation).

Variable Overall Task

Control Easy Difficult

MM (deg) 0.96 0.97 0.95 0.97

MR (Hz) 0.96 0.96 0.96 0.96

MPV-M intercept 0.82 0.85 0.79 0.83

MPV-M slope 0.80 0.88 0.78 0.57

CPD 0.86 0.84 0.94 0.73

BCPD 0.95 — 0.92 0.95

NASA-TLX 0.88 0.83 0.87 0.77

https://doi.org/10.1371/journal.pone.0203629.t001
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ANCOVA of the Raw NASA TLX score also revealed a statistically significant interaction

effect of Task Difficulty and Time-On-Task, F(4.64, 51.06) = 2.91, p< 0.05, η2 = 0.02, see Fig 4

(b). Pairwise comparisons of means showed that in all blocks of trials the difference between

Easy and Control tasks in the TLX score was significant (p< 0.001) in favor of the Easy tasks

in all but the first block of trials where the difference was not significant (p> 0.1). We

observed significantly greater self-reported cognitive load following Difficult tasks in compari-

son to the Easy and Control tasks (p< 0.001).

4.4 Microsaccade main sequence

We expected a linear relation between microsaccade peak velocity and magnitude, i.e., the

(micro-)saccadic main sequence [19, 57, 58]. Indeed, a linear regression on microsaccade

Fig 4. Manipulation check and questionnaire data. Results on response accuracy and subjective evaluation of effort. Means are

plotted on trial type and Time-On-Task. The error bars represent ± 1 SE for the means.

https://doi.org/10.1371/journal.pone.0203629.g004

Table 2. Dependent variables’ descriptive statistics overall and for each task: Means and standard errors (SE). Note the meaning of abbreviations in the table: CA (Cor-

rect Answers), MM (Microsaccades Magnitude), MR (Microsaccade Rate), MPV-M (Microsaccade Peak Velocity—Magnitude), CPD (Intra-Trial Change in Pupil Dila-

tion), BCPD (Inter-Trial Change in Pupil Dilation).

Variable Overall Task

Control Easy Difficult

CA (prop.) 0.81 (0.02) 0.99 (0.01) 0.97 (0.01) 0.49 (0.04)

NASA-TLX 8.61 (0.32) 5.19 (0.38) 8.39 (0.50) 12.26 (0.46)

MM (deg) 0.43 (0.01) 0.39 (0.01) 0.43 (0.01) 0.46 (0.01)

MR (Hz) 1.36 (0.03) 1.26 (0.05) 1.43 (0.06) 1.41 (0.06)

PV-M intercept -12.82 (0.41) -12.88 (0.70) -13.69 (0.69) -11.90 (0.70)

PV-M slope 216.59 (1.04) 216.17 (2.26) 216.26 (1.62) 217.35 (1.43)

CPD -51.02 (4.50) -59.25 (7.35) -66.79 (7.35) -27.03 (8.02)

BCPD 45.04 (5.62) — (—) 17.37 (7.00) 72.71 (7.64)

https://doi.org/10.1371/journal.pone.0203629.t002
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magnitude and peak velocity was significant, F(1, 71281) = 424800, p< 0.001 with R2 = 0.856,

see Fig 5.

Tests of normality showed that the frequency distributions of all microsaccadic measures

deviated from normality. Specifically, one-sample Kolmogorov-Smirnov tests of normality

were statistically significant (showing deviation from normality), for each of the following dis-

tributions: microsaccade magnitude (D = 0.59, p< 0.001), microsaccade rate (D = 0.70,

p< 0.001), microsaccade peak velocity (D = 1, p< 0.001), slopes (D = 1, p< 0.001) and inter-

cepts (D = 0.93, p< 0.001), see Fig 5.

Our normality distribution tests fail to corroborate results of Siegenthaler et al. [19]

although their claims of normality may seem odd given similar skews in their distribution

plots.

4.5 Microsaccade response to task difficulty

Microsaccadic reaction to task difficulty was evaluated using the following dependent mea-

sures in a series of two-way ANCOVAs: microsaccade magnitude, microsaccade rate, and

slope and intercept of the relation between microsaccade peak velocity and magnitude (for the

last two, see Siegenthaler et al. [19] and Di Stasi et al. [34]).

4.5.1 Microsaccade magnitude. We expected to see greater microsaccade magnitude

when performing the Difficult tasks in comparison to the Control and Easy tasks. In line with

this hypothesis, ANCOVA of microsaccade magnitude revealed a main effect of Task Diffi-

culty, F(1.79, 19.74) = 32.39, p< 0.001, η2 = 0.17. Pairwise comparisons with Tukey correction

showed a statistically significant difference in microsaccade magnitude between all tasks

(p< 0.01). Microsaccade magnitude was highest during the Difficult tasks, lower during the

Easy tasks, and lowest during the Control tasks (see Fig 6(a) and Table 2 for descriptive

statistics).

Fig 5. Microsaccadic peak velocity vs. magnitude (main sequence). Main panel: the scatter plot represents detected microsaccades

with amplitude indicated on the abscissa and peak velocity on the ordinate. The line drawn through is a linear fit through the scatter

plot. Bottom and side panels: microsaccade amplitude and peak velocity distributions (N = 13 subjects).

https://doi.org/10.1371/journal.pone.0203629.g005
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ANCOVA also revealed a statistically significant interaction effect of Task Difficulty and

Time-On-Task, showing that microsaccade magnitude depends on Task Difficulty as well as

on Time-On-Task. Differences between the Easy and Difficult tasks increase during the course

of the trials, F(4.53, 49.88) = 3.38, p< 0.01, η2 = 0.02, see Fig 6(a). Post-hoc analyses showed

that the difference between Task Difficulty was not significant in the 1st block of trials

(p> 0.05). In the 2nd block of trials, microsaccade magnitude decreased significantly

(p< 0.001) in the Control tasks compared to the Easy and Difficult tasks, although microsac-

cade magnitude between the latter two did not differ significantly (p> 0.1). From the 3rd block

of trials onwards, microsaccade magnitude was significantly greater in the Difficult tasks com-

pared to the Control and Easy tasks (p< 0.02). The difference between the Control and Easy

tasks became significant from the 5th block of trials onwards (p< 0.001).

4.5.2 Microsaccade rate. Contrary to expectations, only a marginally significant main

effect of task was found on microsaccade rate, F(1.84, 20.27) = 3.14, p = 0.06, see Fig 6(b). Pair-

wise comparisons revealed a marginally significant difference (p = 0.07) between the Easy and

Control tasks, with microsaccade rate greater during the Easy tasks than during the Control

tasks. For full descriptive statistics see Table 2.

4.5.3 Microsaccade peak velocity and magnitude. Also contrary to expectations,

ANCOVA of the relation (slope) between microsaccade peak velocity and magnitude showed

no statistically significant effect of task, F(1.59, 17.49) < 1. No other effects, main or interac-

tion, reached significance.

Finally, no statistically significant effects were found for intercepts of the relation between

microsaccade peak velocity and magnitude, F(1.63, 17.91) = 1.20, p> 0.1. For descriptive sta-

tistics see Table 2.

4.6 Pupillary response to task difficulty

Pupillary response to task difficulty was tested by two independent indicators, inter-

trial change in pupil diameter (BCPD), and intra-trial change of pupil diameter (CPD).

Fig 6. Microsaccade magnitude, rate in response to task difficulty and Time-On-Task. Means are plotted for trial type versus

Time-On-Task. Error bars represents ± 1 SE for the means.

https://doi.org/10.1371/journal.pone.0203629.g006
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According to the literature, both measures should indicate differences in cognitive load, distin-

guishing between Difficult, Easy, and Control tasks. To test this hypothesis both CPD and

BCPD were used as dependent measures in two independent within-subjects ANCOVAs with

Task Difficulty and Time-On-Task as fixed factors. Working memory capacity was used as a

covariate.

As with microsaccadic measures, pupillary measures also failed the test for distribution nor-

mality. We checked distribution normality of both CPD and BCPD with a one-sample Kolmo-

gorov-Smirnov test, and both deviated significantly: for CPD, D = 0.79, p< 0.001, and for

BCPD, D = 0.74, p< 0.001.

4.6.1 Intra-trial change in pupil diameter. CPD shows pupillary constriction during the

course of the trial. However, as expected, pupil diameter tends to remain relatively more

dilated during the Difficult task than during both Easy and Control tasks. ANCOVA of CPD

revealed a main effect of task, F(1.26, 13.89) = 6.44, p< 0.05, η2 = 0.07, see Fig 7(a). Post-hoc

analyses showed that CPD differed significantly in response to the Difficult tasks compared to

the Easy tasks (p< 0.02). The difference between the Difficult and the Control tasks failed to

reach significance (p = 0.071); the difference between the Easy and the Control tasks was not

statistically significant (p> 0.1). In line with hypotheses, pupil diameter tends to dilate during

the Difficult task compared to both the Control and the Easy tasks, see Table 2. The analysis

showed no other statistically significant effects.

4.6.2 Inter-trial change in pupil diameter. As expected, BCPD shows increased pupillary

dilation during the Difficult tasks compared to the Easy tasks. ANCOVA of BCPD excluded

the Control tasks as these tasks constituted the baseline (producing a constant nil inter-trial

difference). Analysis revealed a statistically significant main effect of task, F(1, 11) = 25.15,

p< 0.001, η2 = 0.16, see Fig 7(b). For both Easy and Difficult tasks, pupil diameter dilated

from the baseline (the Control task) but for the Difficult tasks the difference was significantly

greater compared to the Easy tasks, see Table 2.

Fig 7. Pupil response to task difficulty and Time-On-Task. Plots show mean change in pupil diameter versus Time-On-Task;

error bars represent ± 1 SE.

https://doi.org/10.1371/journal.pone.0203629.g007
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4.7 Pupillary and microsaccadic effect sizes

Analyses of covariance (ANCOVA) showed that microsaccade magnitude, intra-trial change

in pupil diameter (CPD), and inter-trial change in pupil diameter (BCPD) produced mean

indicators that differed significantly among the Difficult, Easy, and Control tasks. Comparison

of task effect sizes showed that task difficulty explained the highest portion of variance for

microsaccade magnitude (η2 = 0.17) and BCPD (η2 = 0.16) while for CPD the effect was

noticeably smaller (η2 = 0.07).

4.8 Multinomial logistic regression

Direct comparison of the sensitivity of pupillary and microsaccadic responses to task difficulty

was performed by multinomial logistic regression (MLR) modeling. Multinomial logistic

regression is a form of linear regression analysis conducted for nominal dependent variables

that exceed two levels. It is often considered as an alternative to discriminant analysis. In the

tested model, Task Difficulty was used as the dependent variable and the Control task was

used as the reference. Microsaccadic and pupillary measures (microsaccade magnitude, micro-

saccade rate, peak velocity/magnitude slope, CPD, and BCPD) were used as input to the model

as predictors. Prior to model input, all predictive measures were standardized, meaning that

their scales were mapped to z-scores, according to statistical standardization, zi ¼ ðxi � �xÞ=sx

where �x and σx are mean and standard deviation, respectively.

The fit MLR model gauges which of the pupillary and microsaccadic measures best distin-

guish the Easy and Difficult tasks from the Control tasks (the Control tasks were treated as a

reference in the model). Both BCPD and microsaccade magnitude significantly predict log

odds of performing either of the Easy and Difficult tasks in reference to the Control task.

Moreover, CPD and microsaccade rate significantly predict log odds of performing only the

Easy task in reference to the Control, see Table 3.

Closer investigation of MLR model coefficients in Table 3 shows that one standard devia-

tion increase in BCPD significantly increases the log odds of performing the Difficult task vs.

the Control task (β = 2.47, SE = 0.42, z = 5.90, p< 0.001). Similarly, an increase of microsac-

cade magnitude by one standard deviation significantly increases the log odds of performing

the Difficult task (β = 1.20, SE = 0.25, z = 4.81, p< 0.001). The model also shows that BCPD

(β = 1.43, SE = 0.39, z = 3.68, p< 0.001) and microsaccade magnitude (β = 0.82, SE = 0.21,

z = 3.82, p< 0.001) significantly increases the log odds of performing the Easy tasks vs. the

Control task.

An increase of 1 SD of microsaccade rate significantly increases the log odds of performing

Easy task (β = 0.38, SE = 0.18, z = 2.07, p< 0.05). Surprisingly, an increase of microsaccade

Table 3. Regression coefficients (β) and standard errors (in parentheses) of two multinomial logistic regression

analyses. In the first (Difficult vs. Control) and the second (Easy vs. Control) analysis, Control task served as reference.

The intercept coefficient for the Difficult task was not statistically significant, β0 = 0.39, SE = 0.26, z = 1.49, p> 0.05,

but the intercept was significantly different from zero for the Easy task, β0 = 0.65, SE = 0.25, z = 2.63, p< 0.01. Statisti-

cal significance of all β coefficients was checked with a Wald z-test; p-values are marked with asterisks (��p< 0.001,
�p< 0.05).

Variable Difficult vs. Control Easy vs. Control

MS magnitude 1.20�� (0.25) 0.82�� (0.21)

MS rate 0.25 (0.21) 0.38� (0.18)

MS slopes 0.42 (0.22) 0.26 (0.19)

Intra-Trial CPD −0.09 (0.25) −0.58� (0.21)

Inter-Trial BCPD 2.47�� (0.42) 1.43�� (0.39)

https://doi.org/10.1371/journal.pone.0203629.t003
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rate did not significantly predict log odds of performing the Difficult task (β = 0.25, SE = 0.21,

z = 1.15, p> 0.1).

Notice that both CPD and microsaccade rate predict the log odds of performing only the

Easy tasks in comparison to the Control and the Difficult tasks. An increase of one standard

deviation in CPD decreases the log odds of performing the Easy task (β = −0.51, SE = 0.21,

z = 2.40, p< 0.02).

5 Summary and discussion

Task-evoked microsaccadic and pupillary measures were compared in response to elicited

mental tasks at three levels of difficulty. Participants were asked to perform difficult and easy

mental calculations and to perform no specific task at all. We believe differing levels of task dif-

ficulty lead to differing levels of cognitive load. We therefore expected both types of eye-related

(microsaccadic and pupillary) measures to reflect changes in response to differing cognitive

demands.

Task difficulty was evaluated with response accuracy. Participants gave fewer correct

responses to Difficult tasks compared to the Easy and Control tasks. Participants also consis-

tently self-reported greater cognitive load during performance of the Difficult task than the

Easy (addition) and Control tasks.

Analyses of internal consistency (reliability) of eye-related measures revealed that microsac-

cade magnitude, microsaccade rate and inter-trial change in pupil diameter showed high reli-

ability. Remaining measures, including responses to the NASA-TLX questionnaire showed

good (acceptable) reliability.

Analyses of external consistency (sensitivity) of eye-related measures showed variability of

microsaccadic and pupillary responses, i.e., in their ability to capture differences in cognitive

responses to task difficulty. Below we summarize the sensitivity of both pupil-based and

microsaccadic measures.

Microsaccade magnitude was found to be sensitive to task difficulty, observed at signifi-

cantly higher levels during performance of difficult tasks than during performance of the easy

or control tasks. This is consistent with previous findings, in particular those of Siegenthaler

et al. [19] and Di Stasi [34]. Furthermore, the difference between tasks appeared to become

increasingly salient during the time course of the experiment, i.e., microsaccade magnitude

increased during performance of the difficult task while it decreased during performance of

the easy and control tasks. Task difficulty explained 16% of microsaccade magnitude variance.

Contrary to expectations, neither microsaccade rate nor the relationship between microsac-

cade peak velocity and magnitude was sensitive to task difficulty or to Time-On-Task.

Although Siegenthaler et al. [19] reported a decrease in microsaccadic rate during difficult

tasks, we cannot corroborate their findings. We obtained an only marginally significant differ-

ence in microsaccade rate between the Easy and Control tasks (the rate was higher in Easy

tasks than in Control ones). As Siegenthaler et al. [19] noted, microsaccade rates have pro-

duced varied (inconsistent) results in response to varied task difficulty, e.g., decreased rates

during high-difficulty visual tasks, or increased rates with task difficulty (albeit given different

task demands).

Among the pupillary response measures, both intra- and inter-trial change in pupil diame-

ter showed significant sensitivity to task difficulty. However, they differed in their interpretive

clarity and in their capacity for explanation of variance in the data. Inter-trial BCPD offered a

much clearer interpretation, with mean differences reflecting response to task difficulty. It is

also worth noting that the two pupillary response measures differed in terms of their power.

Task difficulty explained 16% of the variance of inter-trial change in pupil diameter (BCPD)
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vs. only 7% of the variance of the intra-trial measure (CPD). Inter-trial change in pupil diame-

ter appears to be more sensitive to task difficulty than intra-trial change in pupil diameter.

The better ability of the BCPD to distinguish task difficulty is likely due to its use of the

mean of an entire (control) task as the baseline. Recall that the control task was performed

before both easy and difficult tasks. This construction of the BCPD measure affords a more

straightforward interpretation since no mental task was required from participants during the

control task. Meanwhile, the use of a short, fixed time segment during the beginning of a trial

as the baseline for the construction of the CPD, such as the use of a 2-second window as in this

study, may lead to misleading statistical outcomes, e.g., all CPD outcomes were< 0. Such out-

comes may then be mistakenly interpreted as an increase in pupil diameter constriction over

the entire duration of the task. Instead, the pupil constricts during the 3 minutes of the task rel-

ative to the the first 2 seconds of the task. Constriction is slower during the more difficult task,

but the interpretation of the CPD metric is still somewhat difficult due to the shortness of the

time window used as baseline.

During the first 2 seconds of each trial, pupil diameter increased. Either the task itself

caused a delayed constriction relative to the first 2 seconds, or the first 2 seconds may have

induced arousal related to task novelty. Simon [59] noted that sudden intense stimuli can pro-

duce large effects on the autonomic nervous system, e.g., arousal. More recent neuropsycho-

logical studies show evidence of enhanced activation of frontal brain regions, e.g., the anterior

cingulate cortex [60, 61] in reaction to novel stimuli. We thus caution against using intra-trial

baseline differencing and advocate inter-trial pupillary measures, although we reiterate that

off-axis pupil distortion should be taken into account.

Interestingly, none of the present analyses of microsaccadic or pupillary responses to task

difficulty revealed any significant effect of working memory capacity (WMC). Past work has

reported significant relationships between working memory capacity and performance of vari-

ous complex cognitive tasks e.g., reading comprehension, and reasoning [49, 50]. Such find-

ings suggest that participants with high WMC should experience lower cognitive load in

difficult tasks than individuals with low working memory capacity. Indeed, our results support

this type of relation between WMC and response accuracy of mental arithmetic tasks. Partici-

pants with high working memory capacity appear to have sufficient resources to meet cogni-

tive demands of more difficult tasks, which is consistent with Sweller’s [1] original

production-system model of cognitive load. Difficult task demands may have exceeded the

resources of low working memory individuals causing a decrease in task accuracy.

Despite the moderating role of working memory capacity on the relation between cognitive

load and pupillary responses [48], the relation between microsaccade activity and working

memory capacity is scarcely found in the literature. Moreover, Kang & Woodman [62] con-

cluded that microsaccadic and saccadic gaze shifts do not provide a sensitive measure of mem-

ory storage. In line with the literature, we demonstrated that neither of the main effects of

WMC nor of interaction were significant in the analysis of covariance of microsaccadic or

pupillary measures. We may conclude that the lack of effects of WMC potentially bolsters the

remaining analyses suggesting that microsaccade magnitude and change in pupil diameter are

sensitive to task difficulty independent of working memory capacity.

The direct comparison of microsaccadic and pupillary task-evoked measures revealed their

ability to discriminate both difficult and easy mental tasks from the control task. The results of

multinomial logistic regression analysis showed that both inter-trial change of pupil diameter

and microsaccade magnitude were able to differentiate between tasks at a statistically signifi-

cant level.

To summarize, our study corroborated earlier work showing that microsaccade magnitude

may serve as a reliable and sensitive discriminant of task difficulty, vis-à-vis cognitive load. We
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also corroborate earlier classic work regarding pupil diameter, showing in particular that

inter-trial change in pupil diameter (BCPD) may also serve as a comparable indicator.

6 Limitations

We caution that although the BCPD measure appeared to be reliable and sensitive, it suffers

from a serious limitation in that it requires the eye to be held still and on-axis with respect to

the eye tracking camera. This defeats the purpose of using an eye tracker in the first place.

Allowing the eye to move off-axis will lead to potentially incorrect manifestation of pupil

diameter due to its appearance as an ellipse. As far as we know, allowing the eyes to move

freely should have no effect on microsaccadic magnitude, making it potentially more useful

and robust in terms of ecological validity. Unlike pupil diameter, microsaccade magnitude

should also be free from the influence of ambient light. We thus advocate microsaccade magni-

tude as the potentially more reliable, non-invasive, measure of cognitive load, also possibly

capable of real-time implementation. Such real-time time applications could, for example, be

used as a means of reducing interruption costs if notifications can be delivered at moments of

lower mental workload during interactive task execution, e.g., as shown by Bailey & Iqbal [63].

We advocate microsaccadic response with a modicum of caution, however, as its chief limi-

tation is sampling rate, which necessarily needs to be high (�300 Hz) in order to be able to

capture the shortest of microsaccades. We should be also aware that future experiments are

needed to investigate the response of microsaccade magnitude to eye movements, light condi-

tions, as well as sampling rates.

7 Conclusions

We briefly reviewed cognitive load and its connection to task-evoked eye movement measures:

pupillary and microsaccadic responses. We summarized methods of estimating cognitive load

as thought to be influenced by task difficulty: A) by obtaining the averaged difference in pupil

diameter with respect to inter- or intra-trial (averaged) baseline, and B) by obtaining measures

related to microsaccades, namely their mean magnitude and rate of occurrence. With respect

to microsaccade magnitude, but not microsaccade rate, our findings corroborate those of Sie-

genthaler et al. [19] and extend their work by directly comparing microsaccade metrics with

pupillometric measures. We have discussed the limitations of pupillometric measures and

advocated measurement of microsaccadic activity as a more viable alternative for estimation of

task difficulty vis-à-vis cognitive load. Being able to distinguish a user’s level of cognitive load,

especially in real-time, has significant implications for design and/or evaluation of interactive

systems. To the best of our knowledge our study is the first to directly compare reliability and

sensitivity of task-evoked pupillary and microsaccadic measures of cognitive load.
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main sequence analysis. The data were used to prepare the Fig 5.

(CSV)

S2 File. This dataset contains results of NASA-TLX and digit SPAN tests along with the
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