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Abstract

Background/Methodology

Triatomine bugs are the vectors of Trypanosoma cruzi, the agent of Chagas disease. Vector

control has for decades relied upon insecticide spraying, but insecticide resistance has

recently emerged in several triatomine populations. One alternative strategy to reduce

T. cruzi transmission is paratransgenesis, whereby symbiotic bacteria are genetically engi-

neered to produce T. cruzi-killing proteins in the vector’s gut. This approach requires in-

depth knowledge of the vectors’ natural gut microbiota. Here, we use metagenomics (16S

rRNA 454 pyrosequencing) to describe the gut microbiota of field-caught Triatoma sordida–

likely the most common peridomestic triatomine in Brazil. For large nymphs (4th and 5th

stage) and adults, we also studied separately the three main digestive-tract segments–ante-

rior midgut, posterior midgut, and hindgut.

Principal findings

Bacteria of four phyla (12 genera) were present in both nymphs (all five stages) and adults,

thus defining T. sordida’s ‘bacterial core’: Actinobacteria (Brevibacterium, Corynebacterium,

Dietzia, Gordonia, Nitriliruptor, Nocardia, Nocardiopsis, Rhodococcus, and Williamsia), Pro-

teobacteria (Pseudomonas and Sphingobium), and Firmicutes (Staphylococcus). We found

some clear differences in bacterial composition and relative abundance among develop-

ment stages; overall, Firmicutes and Proteobacteria increased, but Actinobacteria

decreased, through development. Finally, the bacterial microbiotas of the bugs’ anterior

midgut, posterior midgut, and hindgut were sharply distinct.
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Conclusions/Significance

Our results identify the ‘bacterial core set’ of T. sordida and reveal important gut microbiota

differences among development stages–particularly between 1st–3rd stage nymphs and

adults. Further, we show that, within any given development stage, the vectors’ gut cannot

be regarded as a single homogeneous environment. Cultivable, non-pathogenic ‘core’ bac-

terial species may now be tested as candidates for paratransgenic control of T. cruzi trans-

mission by T. sordida.

Author summary

Triatomines are blood-sucking bugs that transmit Trypanosoma cruzi, the agent of Chagas

disease. Insecticide spraying has been very successful at controlling house-infesting bugs,

but some triatomines have developed insecticide resistance. One alternative disease-con-

trol strategy involves modifying the genomes of bacteria living inside the bugs’ gut so that

they produce T. cruzi-killing substances. An obvious requirement of this strategy is in-

depth knowledge of the natural bacterial community (the ‘microbiota’) of the vectors’ gut.

In this study, we evaluated bacterial diversity inside the guts of field-collected Triatoma
sordida–a common pest in parts of Brazil, Argentina, Paraguay, and Bolivia. We found

that a ‘core’ set of 12 bacterium genera occur in both immature (five stages) and adult

bugs (male and female), but also noticed changes in the gut’s microbiota through develop-

ment. We finally investigated whether and to what degree the microbiota differed across

the bugs’ three intestinal segments, and found clear variation. Our results will help pin-

point suitable candidates for genetic modification aimed at controlling T. cruzi inside T.

sordida–that is, non-pathogenic bacteria that belong to the ‘core’ set and are easy to rear

and maintain in the lab.

Introduction

Chagas disease is a potentially life-threatening illness caused by the protozoan Trypanosoma
cruzi. T. cruzi is a parasite of mammals primarily transmitted through the feces of infected vec-

tors–blood-sucking bugs of the subfamily Triatominae. Chagas disease is the fourth most

important infectious disease in the Americas, with about 8 million people infected and at least

120 million people living at risk of contagion [1].

Triatomines are hemimetabolous insects with five immature nymphal stages between egg

and adulthood. Adults are sexually mature and have wings, but both nymphs and adults dis-

play similar feeding behavior and occupy the same habitats. As all stages feed on vertebrate

blood, they are all prone to acquiring and transmitting T. cruzi [2]. Once the parasite arrives at

the triatomine’s midgut with a blood meal, it comes into contact with the local microbiota. To

survive and develop inside the insect’s gut, the parasite must evade the immune system and

avoid detrimental interactions with the microbiota [3]. In the anterior midgut the parasite dif-

ferentiates from the blood-borne trypomastigote to a spheromastigote, and then to the epimas-

tigote replicative form. Elongated epimastigotes attach to the waxy cuticle of the hindgut wall,

multiply by binary fission, and change into the infective metacyclic trypomastigote form,

which is excreted with the feces from the rectum, ready to begin a new infective cycle [4].

The natural gut microbiota of Triatoma sordida
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Of the 152 formally described triatomine bug species, 67 are known to occur in Brazil [5];

the four species most frequently caught in and around houses in the country are Panstrongylus
megistus, Triatoma brasiliensis, T. pseudomaculata, and T. sordida [6,7]. T. sordida is native to

the Cerrado savannahs, although ecological niche modeling suggests that it may also occur in

the semiarid Caatinga and the Pantanal floodplains [8,9]. To the south, it has also been

recorded in the Chaco of Argentina, Bolivia, and Paraguay, suggesting that the taxon might in

fact be a species complex [10–12].

Chagas disease control has for decades relied on the reduction of domestic and peri-

domestic vector populations through pyrethroid insecticide spraying [13]. In recent years,

however, insecticide resistance has been detected in several triatomine populations [14]. This

has brought renewed thrust to research aimed at the development of alternative control

approaches. For example, both in vitro [15] and in vivo experiments [16–18] have shown that

the gut microbiota of Rhodnius prolixus can modulate T. cruzi survival and development. A

more direct attempt at disease control has been paratransgenesis–the use of transgenic gut bac-

teria that secrete T. cruzi-killing proteins [19] or express dsRNAs that reduce survival or hinder

reproduction of the vectors [20]. The use of the insect microbiota to combat infection and

transmission thus represents an interesting alternative to traditional control methods.

Elucidating the role played by the gut microbiota in vector survival and T. cruzi infection

and transmission may thus help devise novel disease-control strategies [21–23]. One key limi-

tation of our current knowledge about the microbiota of triatomine bugs, however, is that little

is known regarding field-collected specimens. Additionally, although enzymatic activities and

nutrient absorption differ across digestive-tract segments, the gut of triatomines has hitherto

been studied whole, as if it were a single homogeneous environment.

Until recently, the investigation of bacterial diversity in insect guts rested upon the isolation

and identification of cultivable bacteria–a method that inevitably misses many taxa. DNA

sequencing, and in particular high-throughput technologies and metagenomics, now allow

fast and accurate detection and determination of bacterial diversity (including non-cultivable

species) virtually anywhere–for example, inside animal hosts [24]. In this work, we combined

a metagenomics approach with bacterial-community analyses to investigate the gut microbiota

of field-collected T. sordida. We asked whether and how the microbiota changes through bug

development, and, for a subset of bugs, determined and compared the segment-specific micro-

biotas of the anterior midgut, the posterior midgut, and the hindgut.

Material and methods

Bug collection

Triatomine bugs were manually captured from chicken coops of six dwellings in a rural area of

Posse (14˚05’19”S; 46˚21’18”W), state of Goiás, Brazil. Property owners provided oral

informed consent to have their chicken coops surveyed for triatomines. The region is within

the Cerrado biome and has a dry tropical climate with a dry season from May to September, a

rainy season from December to March, and two shorter, transitional seasons. Fieldwork took

place in three (five-day) trips in December 2013 (rainy season; 201mm total rainfall, 27.8˚C

mean temperature), May 2014 (dry season; 107mm, 25.2˚C), and November 2014 (transitional

season; 170mm; 26.9˚C). The bugs were transported alive to the laboratory, where they were

morphologically identified based on Lent and Wygodzinsky’s keys [8].

Specimen selection and dissection

We randomly selected five apparently fully blood-engorged bugs of each development stage

(1st to 5th instar nymphs plus male and female adults) for dissection. Each stage-specific pool

The natural gut microbiota of Triatoma sordida
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(pyrosequencing sample) included bugs caught in the dry (two bugs), rainy (two bugs), and

transitional (one bug) seasons. Prior to dissection, we sterilized each bug’s external cuticle by

immersion in 70% ethanol (2 min) followed by five rinses in phosphate-buffered saline (PBS)

[25]. Bugs were individually dissected on sterile glass slides with sterilized forceps and dispos-

able needles. After dissection, the guts of larger nymphs (4th and 5th stage) and male and

female adults (five specimens each) were cut into three segments corresponding to the major

anatomic sections of the bugs’ digestive tract–the anterior midgut (AM), the posterior midgut

(PM) and the hindgut (H). Due to their small size, the guts of 1st, 2nd, and 3rd stage nymphs

were left whole. For comparisons of whole guts among development stages, the three segments

of 4th-5th stage nymphs and adults were analyzed jointly (i.e., grouping the sequences of the

three libraries together). Although this grouping might introduce taxonomic biases and thus

brings limitations to the analyses, it allows for a more comprehensive view of bacterial-com-

munity changes along the entire development process. Comparisons involving whole guts

from 1st, 2nd, and 3rd stages and each of the three intestinal segments from 4th-5th stage nymphs

and adults are presented as supporting information (S1 Table, S1 and S2 Appendices, all in S1

Text). Dissected material was isolated in 1.5 ml tubes, aseptically macerated in 300 μl of PBS

solution with 50% glycerol, and stored at −80˚C until DNA extraction.

Molecular detection of T. cruzi in T. sordida samples

To identify the presence of T. cruzi in field-collected bugs, DNA was extracted from individual

triatomines with the Qiamp blood mini kit (Qiagen) to PCR- amplify the kinetoplast DNA of

T. cruzi as described by Cummings et al. [26]. The reaction mix was prepared using a Taq PCR

Master Mix Kit (Qiagen; as recommended by the manufacturer), 10 pmol of each primer

(TCZ-F� 5’-GCTCTTGCCCACAMGGGTGC-3’ and TCZ-R 5’-CCAAGCAGCGGATAGT

TCAGG-3’ [26], and 10ng of DNA in a final volume of 20 μl. Three μl of the PCR products

were run in a 2% agarose-TBE gel stained with ethidium bromide (10 μg/ml); samples yielding

a 182-bp band were considered positive for T. cruziDNA. DNA extracted from two T. cruzi
strains (CL Brener and Y) was used as a positive control. The Y strain belongs to the major

lineage circulating in the study area, T. cruzi II, whereas CL Brener is a T. cruzi I/T. cruzi II

hybrid.

Metagenomic library construction and 454 pyrosequencing

The following assemblages were considered as individual samples for DNA library construc-

tion: the whole gut of 1st stage nymphs (1I); the whole gut of 2nd stage nymphs (2I); the whole

gut of 3rd stage nymphs (3I); the anterior midgut of 4th stage nymphs (4AM); the posterior

midgut of 4th stage nymphs (4PM); the hindgut of 4th stage nymphs (4H); the anterior midgut

of 5th stage nymphs (5AM); the posterior midgut of 5th stage nymphs (5PM); the hindgut of 5th

stage nymphs (5H); the anterior midgut of adult females (FAM); the posterior midgut of adult

females (FPM); the hindgut of adult females (FH); the anterior midgut of adult males (MAM);

the posterior midgut of adult males (MPM); and the hindgut of adult males (MH).

Sample codes are composed of a first character that identifies the bugs’ development stage

(4, 4th stage nymphs; 5, 5th stage nymphs; F, adult female; M, adult male), followed by letters

that identify intestinal segments (AM, anterior midgut; PM, posterior midgut; H, hindgut)

We extracted DNA with the DNeasy Blood & Tissue Kit (Qiagen) according to the manu-

facturer’s instructions. The hypervariable regions (V3 to V5) of the bacterial 16S rRNA gene

were amplified with primers 357F (5’-CCTACGGGAGGCAGCAG-3’) and 926R (5’-CCGTC

AATTCMTTTRAGT-3’) containing 454 sequencing adapters and Multiplex Identifier (MID)

tags [27]. PCR was performed with High Fidelity Platinum Taq DNA Polymerase (Invitrogen),

The natural gut microbiota of Triatoma sordida
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with initial denaturation at 95˚C for 2 min and 30 cycles of denaturation at 95˚C for 20 sec,

annealing at 50˚C for 30 sec, and extension at 72˚C for 5 min. Each 16S rRNA amplicon library

was constructed from five independent PCRs pooled in equimolar concentration. PCR prod-

ucts were purified with the Agencourt AMPure XP kit (Beckman Coulter). Pyrosequencing

was performed using a 454 Genome Sequencer Junior System (Roche).

Bacterial 16S rRNA assembly and taxonomic classification

We removed low-quality sequences shorter than 250 nucleotides or containing more than one

ambiguous base, as well as sequences of the 16S rRNA primers and MID tags, using the trim.seqs

script of Mothur v.1.30.2 [28]. The remaining sequences were aligned against the SILVA align-

ment database (http://www.mothur.org/w/images/9/98/Silva.bacteria.zip). We used Mothur pre.

cluster scripts denoise sequences, and the screen.seq, filter.seq, and chimera.slayer scripts to screen

for high-quality sequences. Then we used Mothur sub.sample scripts to (i) assemble three normal-

ized subsets of sequences from 4th-5th nymphal stages and adults and (ii) merging their respective

anterior midgut, posterior midgut and hindgut libraries. Operational taxonomic units (OTUs)

were determined using the cluster script with the nearest-neighbor algorithm and a 3% distance

level cutoff (see [28,29]). We classified bacteria based on each sequence’s best match in the SILVA

database. Sequences identified as DNA from mitochondria, Archaea, and Eukarya, as well as sin-

gletons, were removed from the bacterial community analysis.

Operational Taxonomic Unit (OTU)-based approach for bacterial

community analysis

We used Good’s coverage index (the number of OTUs sampled more than once divided by the

total number of OTUs), as implemented in Mothur, to estimate sequencing depths [25]. Rare-

faction curves were produced by plotting the number of unique sequence tags as a function of

the number of randomly sampled tags with the vegan package in the R computing environ-

ment [30,31].

We computed OTU richness as the number of observed OTUs; however, to ensure that our

richness estimate was reliable we used the bias-corrected Chao1 estimator. We also computed

Shannon’s diversity index, which takes into account both the abundance and the evenness of

species in a community [32]. These indices were calculated with the Mothur software [28].

In this paper, we define T. sordida’s ‘bacterial core’ as the set of bacterial OTUs that are

present in all of the bug’s development stages–that is, the intersection of all development stage-

specific OTU sets.

Statistical comparison of T. sordida bacterial communities

Nonmetric multidimensional scaling (NMDS) represents the pairwise dissimilarity between

samples in a low-dimensional space [33]. We used the ‘ordinate’ function of the R Phyloseq

package [34] to simultaneously perform weighted UniFrac and a Principal Coordinates Analy-

sis (PCoA) using differences in OTU relative abundances within each sample. We conducted

exploratory analyses of similarities (ANOSIM), with Bonferroni-adjusted p-values, to assess

and compare the differences between the groups identified through PCoA [33].

Results

T. sordida collection and T. cruzi infection

We collected 304 T. sordida specimens; our kDNA PCR did not detect T. cruziDNA in any of

the samples (see S2 Table in S1 Text, for details).

The natural gut microbiota of Triatoma sordida
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Bacterial diversity of the T. sordida intestinal microbiota

Pyrosequencing of 15 T. sordida samples (i.e., 15 pools of five whole guts or five gut segments)

generated a total of 98,872 good-quality sequences (overall abundance� 1%; mean±SE 6591.5

±1072.1 sequences per sample). These sequences were taxonomically identified to the genus

level based on a 97% sequence similarity cutoff. Sequences were clustered into 52 bacterial

OTUs representing 49 genera in 38 families and four phyla. Rarefaction curves, supported by

Good’s coverage index, showed that sampling depth was sufficient (>0.93 mean±SE 0.959

±0.003) to accurately characterize T. sordida’s bacterial communities (S3 Table and S3 Appen-

dix in S1 Text).

Bacterial diversity across T. sordida development stages

This subsection addresses the question, “does T. sordida’s gut bacterial community change

through bug development?” The Chao1 index of OTU richness increased from 25.0±2.30 SE

OTUs in 1st stage nymphs to 50.0±2.10 SE OTUs in both 5th stage nymphs and adult males.

Similarly, Shannon’s diversity index rose from 1.44±1.05 SE bits in 1st stage nymphs to 3.37

±1.20 SE bits in adult males (Table 1).

A representative sequence of each OTU present in each sample was used in a principal

coordinate analysis (PCoA) based on weighted UniFrac distances as well as in ANOSIM. Prin-

cipal Coordinate Analysis (PCoA) revealed a trend towards separation of 1st–3rd stage nymphs

from older nymph stages and adults along Axis 2 (Fig 1). ANOSIM results confirmed OTU

divergence between adults and the first three nymphal stages; they suggested, in addition, that

the microbiota of 4th stage nymphs differed from that of adult males but not from that of adult

females (Table 2).

Taxonomic classification of T. sordida’s gut microbiota revealed the steady presence of four

bacterial phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) in all of the

bugs’ development stages. Actinobacteria was the predominant phylum (Fig 2A), particularly

in the first three nymph stages. The second most abundant bacterial phylum was Firmicutes,

which was present in very low numbers in 1st stage nymphs (0.34%) but increased sharply in

abundance in 2nd stage nymphs and remained high until adulthood. There was an apparent

increase of Firmicutes and Proteobacteria, at the expense of Actinobacteria, with bug develop-

ment (Fig 2A).

We found no signs of genus-level bacterial dominance or abrupt change in relative abun-

dance with bug development (Fig 2B). Twelve bacterial genera were common to all develop-

ment stages (Brevibacterium, Corynebacterium, Dietzia, Gordonia, Nitriliruptor, Nocardia,

Table 1. Bacterial richness and diversity in Triatoma sordida’s gut microbiota through bug development. Bacterial Operational Taxonomic Units (OTUs) were

defined based on a 97% 16S rRNA sequence identity cutoff.

Sample� No. observed OTUs Chao1 richness estimator (mean±SE OTUs) Shannon’s diversity index (mean±SE bits)

1I 23 25.0 ± 2.30 1.44 ± 1.05

2I 41 42.2 ± 1.20 2.77 ± 1.12

3I 36 37.0 ± 1.25 2.94 ± 1.10

4I 51 49.0 ± 1.50 3.18 ± 2.10

5I 50 50.0 ± 2.10 3.35 ± 1.25

FI 51 48.0 ± 3.00 3.26 ± 1.20

MI 51 50.0 ± 2.10 3.37 ± 1.20

�Samples: 1I–3I, whole intestine of 1st to 3rd stage nymphs; 4I to MI, pooled results from separately processes samples from the anterior midgut, posterior midgut, and

hindgut of 4th and 5th stage nymphs (4I and 5I, respectively) and adult female and male bugs (FI and MI, respectively)

https://doi.org/10.1371/journal.pntd.0006709.t001

The natural gut microbiota of Triatoma sordida
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Nocardiopsis, Rhodococcus, Pseudomonas, Sphingobium, Staphylococcus, and Williamsia), with

no obvious differences in abundance. No single development stage had unique bacterium gen-

era (Fig 2B). The most abundant genera in the 1st and 2nd stages were Williamsia (22.37% and

17.69%, respectively) and Rhodococcus (16.85% and 14.91%, respectively) (Fig 2B). Dietzia and

Enterococcus were the most abundant genera in 3rd stage nymphs (12.98% and 12.16%, respec-

tively). Clostridioides, Enterococcus, Kocuria, and Serratia were present from the 3rd stage

onwards (Fig 2B). Species of Bacillus, Streptococcus, and Lactobacillus appeared in 4th stage

nymphs and remained until adulthood (Fig 2B).

Bacterial diversity in T. sordida intestinal segments I: Variation across

segments

This subsection addresses the question, “does T. sordida’s gut microbiota composition differ

across the three intestinal segments for each development stage?” Estimates of bacterial OTU

richness and diversity in each intestinal segment and are shown in Table 3. Overall, we found

no clear differences in bacterial OTU diversity across intestinal segments in the development

stages we studied (Table 3).

Bacterial communities present in the intestinal segments were also compared using PCoA

based on pairwise weighted UniFrac distances and ANOSIM. PCoA-based comparisons

revealed differences in the intestinal segment-specific gut microbiota of each development

Fig 1. Principal Coordinate Analysis (PCoA) of weighted UniFrac distances comparing Triatoma sordida’s gut bacterial

communities through development. Weighted UniFrac distance matrices were calculated for each sample using one

representative sequence for each OTU (3%) with Bonferroni correction. Axes represent the greatest proportion of variance in

the communities for each comparison. Samples: 1I–3I, whole intestine of 1st to 3rd stage nymphs; 4I to MI, pooled results from

separately processes samples from the anterior midgut, posterior midgut, and hindgut of 4th and 5th stage nymphs (4I and 5I,

respectively) and adult female and male bugs (FI and MI, respectively).

https://doi.org/10.1371/journal.pntd.0006709.g001
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Table 2. Analysis of similarity (ANOSIM) of Triatoma sordida gut bacterial communities through development: p values. Statistically significant differences

(p< 0.008 after Bonferroni correction) are shown in bold.

Samples� 1I 2I 3I 4I 5I FI MI

1I - 0.0682 0.0173 0.0233 0.0471 0.0001 0.0001

2I - 0.0122 0.0111 0.0411 0.0001 0.0007

3I - 0.8622 0.0233 0.0006 0.0003

4I - 0.0623 0.1314 0.0007

5I - 0.0097 0.5204

FI - 0.6422

MI -

�Samples: 1I–3I, whole intestine of 1st to 3rd stage nymphs; 4I to MI, pooled results from separately processed samples from the anterior midgut, posterior midgut, and

hindgut of 4th and 5th stage nymphs (4I and 5I, respectively) and adult female and male bugs (FI and MI, respectively)

https://doi.org/10.1371/journal.pntd.0006709.t002

Fig 2. Relative abundance of gut bacterial phyla (A) and genera (B) through Triatoma sordida development. Samples: 1I–3I, whole intestine of 1st to 3rd

stage nymphs; 4I to MI, pooled results from separately processes samples from the anterior midgut, posterior midgut, and hindgut of 4th and 5th stage nymphs

(4I and 5I, respectively) and adult female and male bugs (FI and MI, respectively).

https://doi.org/10.1371/journal.pntd.0006709.g002

The natural gut microbiota of Triatoma sordida
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stage (4th and 5th stages nymphs and adults) (Fig 3; S4 and S5 Appendices and S5 Table, all in

S1 Text). ANOSIM results suggested that (i) all three intestinal segments of 4th stage nymphs

have distinct microbiotas; (ii) in 5th stage nymphs, the hindgut microbiota is different from

that in the other two segments; and (iii) in adults, the posterior midgut microbiota may be

slightly different from that in the other two segments (Table 4).

Table 3. Bacterial taxon richness and diversity in Triatoma sordida gut. Operational Taxonomic Units (OTUs) were defined based on a 97% 16S rRNA sequence iden-

tity cutoff.

Sample� No. observed OTUs Chao1 richness estimator (mean±SE OTUs) Shannon’s diversity index (mean±SE bits)

4AM 36 32.5 ± 0.70 2.89 ± 0.75

4PM 44 44.2 ± 0.35 3.20 ± 0.25

4H 33 28.5 ± 1.06 2.81 ± 0.80

5AM 44 41.7 ± 1.06 3.11 ± 1.10

5PM 38 38.5 ± 0.70 2.93 ± 0.90

5H 42 41.5 ± 0.70 2.92 ± 0.90

FAM 43 41.0 ± 1.41 2.85 ± 0.38

FPM 41 41.5 ± 0.70 2.82 ± 0.72

FH 44 43.5 ± 0.70 2.91 ± 0.90

MAM 48 46.0 ± 1.41 3.17 ± 1.20

MPM 42 39.0 ± 1.41 2.90 ± 0.90

MH 43 41.5 ± 0.70 2.95 ± 1.25

� Sample codes are composed of a first character that identifies the bugs’ development stage (4, 4th stage nymphs; 5, 5th stage nymphs; F, adult female; M, adult male),

followed by letters that identify intestinal segments (AM, anterior midgut; PM, posterior midgut; H, hindgut)

https://doi.org/10.1371/journal.pntd.0006709.t003

Fig 3. Principal Coordinate Analysis (PCoA) of weighted UniFrac distances comparing Triatoma sordida’s gut

bacterial communities across intestinal segments. Sample codes are composed of a first character that identifies the

bugs’ development stage (4, 4th stage nymphs; 5, 5th stage nymphs; F, adult female; M, adult male), followed by letters

that identify intestinal segments (AM, anterior midgut; PM, posterior midgut; H, hindgut).

https://doi.org/10.1371/journal.pntd.0006709.g003
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We found a consistent increase in abundance of Firmicutes, at the expense of Actinobac-

teria, from anterior midgut to hindgut in all development stages (Fig 4A). This was also the

case when samples were clustered together by intestinal segment (S6A Appendix in S1 Text).

The relative abundance of some bacterial genera tended to change across intestinal seg-

ments (Fig 4B). For example, Enterococcus was rare in the anterior midgut (4AM 0.71%; 5AM

1.69%; FAM 0.41%; and MAM 1.49%) but became more common in the posterior midgut

(4PM 6.85%; 5PM 4.31%; FPM 7.70%; and MPM 5.48%) and, except for 4th stage nymphs, in

the hindgut (4H 4.58%; 5H 12.87%; FH 10.36%; and MH 10.37%) (Fig 4B). Kocuria is another

example–it was nearly absent from the anterior and posterior midguts of 4th (0.04% and

0.25%, respectively) and 5th stage nymphs (0.07% and 0.39%, respectively), but rose to 4.38%

Table 4. Analysis of similarity (ANOSIM) of Triatoma sordida gut bacterial communities across intestinal segments: p values. Statistically significant differences

(p< 0.01 after Bonferroni correction) are shown in bold; those involving biologically meaningful comparisons are italicized (i.e. between same stage segments and between

same segments through development.

Sample� 4AM 4PM 4H 5AM 5PM 5H FAM FPM FH MAM MPM MH

4AM - 0.0001 0.0052 0.0826 0.0008 0.0051 0.0155 0.0015 0.0023 0.0457 0.0013 0.0001

4PM - 0.0008 0.3495 0.2010 0.0012 0.0001 0.0729 0.2733 0.0826 0.0802 0.0022

4H - 0.0094 0.0280 0.0495 0.0070 0.2395 0.0010 0.0085 0.0999 0.0981

5AM - 0.0290 0.0039 0.0222 0.0052 0.0090 0.0012 0.0119 0.0099

5PM - 0.0013 0.0224 0.0829 0.0042 0.0822 0.0830 0.5115

5H - 0.0053 0.0334 0.0110 0.1000 0.2113 0.0612

FAM - 0.0015 0.0110 0.0015 0.0010 0.1002

FPM - 0.0083 0.0322 0.0210 0.0011

FH - 0.0112 0.3924 0.1001

MAM - 0.0100 0.1021

MPM - 0.0010
MH -

� Sample codes are composed of a first character that identifies the bugs’ development stage (4, 4th stage nymphs; 5, 5th stage nymphs; F, adult female; M, adult male),

followed by letters that identify intestinal segments (AM, anterior midgut; PM, posterior midgut; H, hindgut)

https://doi.org/10.1371/journal.pntd.0006709.t004

Fig 4. Relative abundance of gut bacterial phyla (A) and genera (B) across Triatoma sordida intestinal segments.

Sample codes are composed of a first character that identifies the bugs’ development stage (4, 4th stage nymphs; 5, 5th

stage nymphs; F, adult female; M, adult male), followed by letters that identify intestinal segments (AM, anterior

midgut; PM, posterior midgut; H, hindgut).

https://doi.org/10.1371/journal.pntd.0006709.g004
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and 2.13% in the hindguts (Fig 4B). Kocuria was likewise nearly absent from the adult bugs’

anterior midgut (females 0.01%, males 0.02%), but its abundance was much higher, particu-

larly in females, in the posterior midgut (4.47% and 2.48%) and the hindgut (4.40% and

2.08%) (Fig 4B).

To further investigate these differences in the microbiota of the three intestinal segments,

we pooled the sequences from each stage-specific sample by intestinal segment (S4 and S5

Tables and S4 Appendix, all in S1 Text). PCoA analysis of these intestinal segment-specific

sequence pools confirmed the distinctness of the three intestinal segments, and ANOSIM sug-

gested that the hindgut was significantly different from the two other segments (S5 Table and

S4 Appendix in S1 Text).

Bacterial diversity in T. sordida intestinal segments II: Variation through

development

This subsection addresses the question, “does T. sordida’s gut microbiota composition in each

intestinal segment change with development (i.e. from one stage to the next)?” Estimates of

bacterial OTU richness and diversity in each intestinal segment through development are

shown in Table 3. PCoA and ANOSIM revealed some indication of within-segment homoge-

neity (Fig 3). The only differences suggested by ANOSIM were (i) between the anterior midgut

microbiota of males and that of 5th stage nymphs and females; and (ii) between the hindguts of

4th stage nymphs and females (Table 4).

We found no differences in bacterial phylum composition in the anterior midgut across

development stages. The posterior midgut microbiota was similar in phylum composition

both in 4th stage nymphs and females and in 5th stage nymphs and males. A decrease in the

abundance of Actinobacteria was observed in the hindgut of 4th to 5th stage nymphs and adults

(Fig 4B).

We identified only small differences in bacterial dominance or abundance when we com-

pared intestinal segment-specific microbiotas through development. Thus, in the posterior

midgut, Gordonia decreased in abundance from the 4th nymphal stage (18.68%) to females

(4.15%); Nitriliruptor, on the other hand, increased in abundance from the 5th nymphal stage

(1.74%) to adults (4.07% for females and 8.27% for males). In the hindgut, Dietzia decreased in

abundance from the 4th nymphal stage (12.4%) to males (1.14%), and Williamsia also decreases

in abundance from the 4th nymphal stage (11.18%) to the 5th stage (1.79%) and adults (2.7%)

(Fig 4B).

The bugs’ anterior midguts had a higher abundance of Williamsia, Rhodococcus, Lactobacil-
lus, and Nocardia (16.41%, 11.81%, 10.78%, and 4.52%, respectively). Bacillus (17.10%) was the

most abundant genus in posterior midgut samples, followed by Williamsia and Gordonia
(15.13% and 10.86%). Bacillus was also dominant in hindgut samples (13.65%), followed by

Gordonia and Enterococcus (12.75% and 9.34%, respectively) (Fig 4B, S6B Appendix in S1

Text). Some bacterial genera, although present in all intestinal segments, seemed to favor one

specific segment (e.g. Enterococcus, Clostridioides and Dermacoccus are more abundant in the

hindgut), whereas other genera were absent from certain segments (e.g. Bacillus from the ante-

rior midgut; Corynebacterium and Serratia from the posterior midgut, and Rhodococcus from

hindgut samples) (Fig 4B, S6B Appendix in S1 Text).

Discussion

The three most salient findings of this study are the observations that: (1) the bacterial commu-

nity of T. sordida’s intestinal tract undergoes important compositional changes during bug

development, with particularly prominent differences between young nymphs (1st–3rd stages)

The natural gut microbiota of Triatoma sordida
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and adults; (2) within three development stages tested (4th and 5th stage nymphs plus male and

female adults), the three major gut segments contain distinct microbiotas and, hence, cannot

be regarded as a single homogeneous environment; and (3) the microbiota of each gut segment

does not undergo substantial changes from 4th stage nymphs to adults.

Bacteria found inside insects’ guts may develop many kinds of relations with their hosts,

ranging from lethal pathogenesis to obligate mutualism. Some are even unable to stably colo-

nize the gut and are just transient residents quickly eliminated through defecation. In general,

gut-colonizing bacteria need to multiply in the gut at a rate that equals or exceeds their rate of

elimination [35]. Those that live in stable, close association with the digestive tract of their

insect hosts are usually involved in key processes such as resistance against pathogens [36],

nutrient supplementation [37,38], digestion [39], or detoxification [40]. In the absence of their

gut microbiotas, the mosquito vectors Aedes aegypti and Anopheles gambiae cannot develop

normally [41]. The absence of the symbiotic bacterium Rhodococcus rhodnii in R. prolixus’ gut

may result in delayed larval development, defective blood digestion and excretion, underdevel-

opment of the tracheal system, and, more generally, higher bug mortality [37]. Experimental

removal of gut bacteria impairs Anopheles gambiae’s immune system and hence affects the

interactions between the mosquito and mosquito-borne pathogens of the genus Plasmodium
[42]. Similarly, symbiotic bacteria of the genus Wigglesworthia are key to the normal function-

ing of the immune system in the tsetse fly, Glossina morsitans [43]. Given the important role it

plays in insect physiology and, crucially, given its potential for modulating the interactions

between disease vectors and the pathogens they transmit, the insect gut microbiota holds

much promise for the development of novel vector-borne disease control strategies [22,44].

The gut microbiota of triatomine bugs has been studied using isolation of cultivable bacteria,

denaturing gradient gel electrophoresis, and 16S rRNA gene fragments–both by conventional

PCR and by next-generation sequencing [45–48]. Although informative, most of these studies

relied on laboratory-reared bugs; the extent to which their results may apply to natural popula-

tions therefore remains unclear. Our study, in which only field-caught bugs were used, was

designed to overcome this common drawback. In addition, we sampled bugs in the dry, rainy,

and transitional seasons, thus covering the likely seasonal variation of bacterial communities [49].

All our 304 field-caught T. sordida tested negative for T. cruzi kDNA. This agrees with pre-

vious reports suggesting that T. cruzi infections can be rare in peridomestic T. sordida popula-

tions (which, as in our case, are often associated with avian hosts that are refractory to T. cruzi
infection) [50]. Most importantly, infection with T. cruzi can affect the bugs’ gut microbiota

[47]; its absence discounts one major complicating factor and thus allows for a more straight-

forward interpretation of our results.

Bacterial diversity of the T. sordida gut microbiota

We identified 52 bacterial OTUs in the 15 T. sordida samples we analyzed. This observed OTU

richness is higher than reported for field-caught T. pseudomaculata (23 OTUs) or T. brasilien-
sis (35 OTUs) [46]. The numbers of OTUs found in the guts of these Triatoma species are,

however, much smaller than those reported for other insects–e.g., 300 OTUs in the Asian long-

horn beetle Anoplophora glabripennis [51] or 417 OTUs in the tiger mosquito Aedes albopictus
[52]. This suggests that the digestive tract microbiota of triatomines may encompass much

fewer phylotypes than the gut microbiotas of other insects. T. sordida gut-associated OTUs

belonged in four main phyla: Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes.

Species of 12 genera were present in all development stages and both sexes, and can therefore

be collectively regarded as T. sordida’s gut ‘bacterial core set’: Brevibacterium, Corynebacte-
rium, Dietzia, Gordonia, Nitriliruptor, Nocardia, Nocardiopsis, Rhodococcus, Williamsia

The natural gut microbiota of Triatoma sordida
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(Actinobacteria), Pseudomonas, Sphingobium (Proteobacteria), and Staphylococcus (Firmi-

cutes). Given their persistence across all development stages, one should expect that at least

some species of these 12 genera play important roles in T. sordida physiology, so that bugs car-

rying them in their guts have improved chances of survival and reproduction.

Actinobacteria species of the genus Rhodococcus play important roles in the life cycle of tria-

tomine bugs, providing their hosts with essential B-complex vitamins [37]. Dietzia, Gordonia,

and Williamsia species, among others, produce secondary metabolites with antibacterial and

antifungal properties and that contribute to gut microbiota homeostasis [53,54].

Proteobacteria can modulate the interaction between insect vectors and the pathogens they

transmit. Thus, Pseudomonas putida decreases Plasmodium falciparum levels in Anopheles
gambiae mosquitoes [23], and Pseudomonas fluorescens causes T. cruzi lysis in vitro [55]. It is

possible that some of the Pseudomonas species present in all T. sordida development stages and

intestinal segments confer some degree of refractoriness to infection by T. cruzi.

Bacterial diversity across T. sordida development stages

The number of phylotypes in the gut bacterial community of T. sordida increased through bug

development, with clear differences in richness between the first nymph stages and later stages

(Table 1). We however found no differences in Shannon’s diversity index values among the

bugs’ development stages (Table 1).

PCoA analyses revealed a tendency for separation of the first three nymph-stage sequences

from those of the later stages (Fig 1), and ANOSIM suggested significant differences in gut bacte-

rial composition between the first three stages and adults, and between 4th stage nymphs and

males. These observations strongly suggest that the composition of T. sordida gut bacterial com-

munity changes through bug development. Gut bacterial communities also change through devel-

opment in other insect groups, such as mosquitoes (e.g., [41]). Mosquitoes, however, undergo

complete metamorphosis, with larvae developing in aquatic environments and only adult females

feeding on vertebrate blood. In T. sordida, as in all Hemiptera, metamorphosis is incomplete and

morphology, behavior, habitats, and habits including blood-feeding are all similar through devel-

opment–yet the bugs’ gut microbiota still changes from early to late development stages. We note,

in addition, that such changes were observed in bugs caught in chicken coops and, hence, most

likely fed on chickens. These observations might indicate that environmental factors including

bloodmeal sources have relatively little effect on the bugs’ gut bacterial communities, which may

instead be to some degree directly linked to development–through, e.g., maturation of the

immune system or selection of particular bacterial species that increase host fitness.

Bacteria of four phyla were present in all development stages: Actinobacteria (the most

abundant), Bacteroidetes, Firmicutes, and Proteobacteria (Fig 2A). The abundance of Actino-

bacteria decreased, whereas Firmicutes and Proteobacteria species became more abundant,

through the bugs’ development. These results are consistent with findings of Actinobacteria as

the main phylum in field-caught T. brasiliensis, T. pseudomaculata, and R. pallescens; Proteo-

bacteria species, however, predominated in peridomestic T. maculata [46,48]. Recent studies

spanning a more comprehensive taxonomic sample of insects reported a clear dominance of

Proteobacteria (60%) and Firmicutes (20%) among 218 and 62 insect species, respectively

[56,57]. Proteobacteria species also seem to predominate in mosquitoes [52]. Proteobacteria

are commonly found in the gut communities of a wide range of animals, including humans

and insects, and are involved in vitamin biosynthesis [54], protection against pathogens [17],

and degradation of plant compounds [58]. Proteobacteria species also increased in abundance

with the reduction of Actinobacteria species, except for 4th stage nymphs. No single develop-

mental stage presented unique genera.
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Although nearly absent from the guts of 1st stage nymphs, Firmicutes rose sharply from the 2nd

stage onwards; overall, this was the second most abundant bacterial phylum in our samples. It is

worth noting that some genera, such as Streptococcus and Bacillus, were absent from the first three

stages of development, but appeared and became abundant from the 4th stage on; Lactobacillus
species also appeared only on 4th stage nymphs and remained until adulthood (Fig 2B).

No overall differences were detected between males and females, but we found some evi-

dence of intestinal segment-specific sex differences (see below).

Bacterial diversity in T. sordida intestinal segments I: Variation across

segments

Our results suggest that the digestive tract of T. sordida should not be regarded as a single

homogeneous environment. Pairwise comparisons of the three intestinal segments of 4th and

5th stage nymphs and adults show at least two significant differences in bacterial community

OTU richness per stage (Table 4). One such difference is between the anterior midgut of males

and females (note that no differentiation was detected when pooling the segment-specific

data). This indicates that unless intestinal segments are analyzed individually, some differences

might go undetected.

We observed no differences in OTU diversity among intestinal segments. OTU relative

abundance, however, varied significantly among intestinal segments. We found an increase of

Firmicutes abundance at the expense of Actinobacteria along the T. sordida intestinal tract.

This was also the case when samples were clustered together by intestinal segment. Certain

genera appeared to be better represented in specific segments; for example, Enterococcus, Clos-
tridioides and Dermacoccuswere more abundant in the hindgut. On the other hand, some gen-

era were absent from certain segments; for example, Bacillus was absent from the anterior

midgut, Corynebacterium and Serratia were absent from the posterior midgut, and Rhodococ-
cus was absent from hindgut samples (Fig 4B, S6B Appendix in S1 Text). Enterococcus bacteria

produce cytolysin, a lytic molecule with activity against diverse prokaryotic and eukaryotic

cells such as Gram-positive bacteria, erythrocytes, leucocytes, and epithelial cells [59]. Serratia
marcescens also secretes cytolysin [60] and is capable of inhibiting T. cruzi development inside

the triatomine gut by attaching itself to the parasite surface [21]. The presence of Serratia sp. in

the anterior midgut of T. sordida can contribute to the observed reduction of T. cruzi numbers

in this compartment in the first days of infection [59,60]. Conversely, the absence of Serratia
sp. in the posterior midgut may facilitate the replication and establishment of T. cruzi in the

bugs’ gut, although the presence of Enterococcus may inhibit parasite differentiation in the

hindgut.

Bacterial diversity in T. sordida intestinal segments II: Variation through

development

When each intestinal segment is compared across development stages, there is an indication of

within-segment homogeneity in OTU richness. Only minor differences were observed between

the anterior midgut of males and 5th stage nymphs and females, and hindguts of 4th stage

nymphs and females. No single segment had a notably higher richness among the stages we ana-

lyzed. We found no differences in bacterial phylum composition in the anterior midgut across

development stages (Fig 4A). In the posterior midgut, phylum composition was very similar in

4th stage nymphs and females, as well as in 5th stage nymphs and males (Fig 4A). The abundance

of hindgut Actinobacteria decreased from 4th to 5th stage nymphs to adults (Fig 4A).

These differences in bacterial composition along the three major anatomical segments of T.

sordida’s gut may be explained by the specific function of each segment during blood meal

The natural gut microbiota of Triatoma sordida
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digestion. The anterior midgut of triatomines has a neutral-basic pH near 7.2 and functions as

a reservoir of the ingested blood, which remains essentially undigested [61]. Only water elimi-

nation, erythrocyte lysis [59], and inhibition of blood clotting by anticoagulants [62] take

place. The anterior midgut harbors several symbiotic bacteria [37], which (especially actino-

mycetes) may reach densities of up to 109 colony-forming units per insect after a blood meal

[63]. Actinobacteria species are also predominant in T. sordida’s anterior midgut (Fig 4A).

This dense bacterial population may result from high nutrient contents; in addition, triato-

mines decrease reactive oxygen species (ROS) levels immediately after blood meal ingestion by

reducing the production of mitochondrial superoxide [64]. In contrast, the proliferation of

bacteria in the anterior midgut activates the bug’s immune response, as evidenced by the high

antibacterial activity seen in this segment when compared to the posterior midgut in R. pro-
lixus [65]. This immune activation, coupled with the presence of Serratia sp. (mentioned

above), can be important for the reduction of trypomastigote populations observed in this seg-

ment [62,63]. On the other hand, the presence of T. cruzi also decreases bacterial abundance in

the anterior midgut of R. prolixus in the first days of infection [18]. The parasite can induce a

Kazal-type protease inhibitor during the first hours of infection, which allows microbiota

modulation and thus its successful maintenance in the host [66].

The posterior midgut is where complete blood digestion and nutrient absorption takes

place, with participation of cathepsin L, carboxypeptidases, and aminopeptidases [67]. Symbi-

ont population density is strongly reduced in this intestinal segment after a blood meal [63].

This suggests that proteases involved in blood digestion may also participate in microbiota

control. In R. prolixus, digestion seems to have unequal lytic effects on different T. cruzi strains

[68].

The hindgut receives and stocks blood remains until defecation. We observed a tendency of

increasing abundance of Firmicutes species in the hindgut and in the posterior midgut com-

pared with the anterior midgut in all development stages (with the exception of adult males).

Firmicutes bacteria also produce antimicrobial molecules such as polyketides and lipopeptides

[69].

The balance between ROS production, immune activation, microbiota proliferation and

bacterial profile changes along the digestive tract must be critical for proper establishment

(replication and differentiation) of the T. cruzi parasite in the bug, with obvious consequences

in terms of triatomine vectorial competence.

Early studies on triatomine endosymbionts described R. rhodnii (Actinobacteria) as respon-

sible for providing nutrients (e.g. vitamins) that enable the successful growth of R. prolixus
[37,70]. Several genes for the biosynthesis of natural products have been identified in the

genome of R. rhodnii such as polyketide and fatty acid synthases, nonribosomal peptide

synthases, phytoene, carotenoid and vitamin B synthases [71]. The genome of the Actinobac-

teria Wigglesworthia, a tsetse fly obligate symbiont, has genes related to the biosynthesis of

chorismic and folic acids and phenylalanine [72], which may affect host physiology and vector

competence to trypanosomes [73]. The Actinobacteria also produce a wide variety of second-

ary metabolites and antimicrobial compounds (antibacterial and antifungal) that may protect

hosts against pathogens [53]. This might explain why Actinobacteria are dominant in the T.

sordida’s anterior midgut.

Conclusions

We have described the gut microbiota of field-collected T. sordida through all the bugs’ devel-

opment stages and across the three major intestinal segments. Species in 12 genera were con-

sistently found in all development stages and can be regarded as T. sordida’s ‘bacterial core set’.
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Some of these bacteria species, if proven cultivable, and non-pathogenic for humans or domes-

tic animals, could be tested further for genetic tractability, stability after insertion, and fitness

compared with wild type populations. They would hence become good candidates to be used

in novel control strategies that make use of the vectors’ own microbiota to reduce pathogen

transmission. For example, some bacteria can naturally control parasite loads through superac-

tivation of the insect immune system, secretion of anti-pathogenic molecules, or by physically

inhibiting their development inside the vector [23]. A second strategy is paratransgenesis,

whereby specific bacteria are genetically transformed so that they secrete pathogen-killing

molecules inside the vector [74,75] or synthesize double-stranded RNA molecules that inter-

fere with the vectors’ development, survival, or reproduction [20]. The development of insecti-

cide resistance has brought to our attention the immediate need we have to diversify our tools

to control vectors and vector-borne diseases.
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