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Characteristic patterns of inter- 
and intra-hemispheric metabolic 
connectivity in patients with stable 
and progressive mild cognitive 
impairment and Alzheimer’s 
disease
Sheng-Yao Huang1, Jung-Lung Hsu2,3, Kun-Ju Lin   1,4, Ho-Ling Liu5, Shiaw-Pying Wey1, Ing-
Tsung Hsiao1,4 & For the Alzheimer’s Disease Neuroimaging Initiative*

The change in hypometabolism affects the regional links in the brain network. Here, to understand 
the underlying brain metabolic network deficits during the early stage and disease evolution of AD 
(Alzheimer disease), we applied correlation analysis to identify the metabolic connectivity patterns 
using 18F-FDG PET data for NC (normal control), sMCI (stable MCI), pMCI (progressive MCI) and AD, and 
explore the inter- and intra-hemispheric connectivity between anatomically-defined brain regions. 
Regions extracted from 90 anatomical structures were used to construct the matrix for measuring 
the inter- and intra-hemispheric connectivity. The brain connectivity patterns from the metabolic 
network show a decreasing trend of inter- and intra-hemispheric connections for NC, sMCI, pMCI and 
AD. Connection of temporal to the frontal or occipital regions is a characteristic pattern for conversion 
of NC to MCI, and the density of links in the parietal-occipital network is a differential pattern between 
sMCI and pMCI. The reduction pattern of inter and intra-hemispheric brain connectivity in the metabolic 
network depends on the disease stages, and is with a decreasing trend with respect to disease severity. 
Both frontal-occipital and parietal-occipital connectivity patterns in the metabolic network using 18F-
FDG PET are the key feature for differentiating disease groups in AD.

Alzheimer’s disease (AD) is a neurodegenerative disease with characterization of deficits in progressive memory 
loss, cognitive and behaviour functions. Mild cognitive impairment (MCI) is a predromal stage of AD, displaying 
cognitive deficit but neither marked functional impairment nor satisfying established clinical criteria for demen-
tia or probable AD1. However, not all MCI patients may eventually progress to AD (progressive MCI, pMCI)2, 
and some remain unchanged (stable MCI, sMCI), or are recovered from3. Therefore, differential diagnosis of MCI 
types and earlier diagnosis of AD and prediction of disease evolution are difficult4 but important for developing 
disease modifying treatment5.

Neurodegeneration due to an underlying physiopathology can be captured by imaging biomarkers from 
amyloid-specific tracers6, tau and the glucose metabolism from 18F-fluorodeoxyglucose (18F-FDG) in positron 
emission tomography (PET) for neuronal injury and dysfunction7. Amyloid PET imaging has provided useful 
information in detecting the accumulation of amyloid plaque and early neurodegeneration in the human brain8. 
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Some studies have shown MCI subjects possess characteristic AD pathology including Aβ plaques and neurofibil-
lary tangles9. In longitudinal amyloid imaging studies, amyloid imaging has been used to predict clinical progres-
sion to AD and the amyloid deposition rate in patients with MCI. In the past, some research groups have studied 
the characteristic imaging patterns of cerebral perfusion and metabolism using FDG PET in MCI and AD10. 
Progression of the disease has also been shown to be associated with a continuing decrease in glucose metabolism 
in affected brain regions including the parietotemporal11 and posterior cingulate cotices12.

Recent studies suggested the human brain connectome can be mapped using neuroimaging data13–16. Brain 
network analysis using neuroimaging methods based on graph theory has been applied in studying functional 
or structural connectivity in human brain network analysis for various neurodegenerative diseases including 
AD13,17. Among all, regional interconnectivity of glucose metabolism based on interregional correlation analysis 
has attracted increasing attention due to its capability in providing useful information for assessing functional 
neural systems18. Brain networks among anatomically distinct regions are functionally connected19 and correla-
tion matrices of regional metabolic rates have been widely applied to infer connectivity15. Other methods have 
also been proposed to calculate the connectivity, including sparse inverse covariance estimation20,21 and mul-
tivariate decomposition approaches22, hierarchical multivariate covariance analysis11,23,24, and maximum like-
lihood estimation25. Moreover to improve accuracy, voxel-based multivariate statistical methods with FDR or 
FWE-corrections, and inclusion of the clinical factors as covariates were used in the statistical model26–28.

Normal human brains tend to have strong connection within lobes than between- lobes29, and also higher 
connectivity within contralateral homologues30. A previous study using metabolic network analysis in AD showed 
weaker between lobe connectivity than within-lobe, and weaker between-hemisphere connectivity as compared 
to normal control (NC)20. To understand the underlying brain network deficits during the early stage and disease 
evolution of AD, it is important to have a characteristic pattern of inter and intra-hemisphere metabolic connec-
tivity for various stages of AD, including sMCI and pMCI. Specifically in this paper, we applied correlation analysis 
to identify the metabolic connectivity patterns using FDG-PET data for NC, sMCI, pMCI and AD, and explored 
the inter- and intra-hemispheric connectivity between anatomically-defined brain regions. In addition to the usual 
metabolic distribution patterns, a link of network connectivity to the disease evolution was also investigated.

Results
Three-Dimensional Views of Mean FDG Uptake.  The average FDG SUVR images for all groups are 
shown in Fig. 1. As compared to NC, an overall reduction of metabolism in the whole brain was seen in AD, 
especially in frontal, parietal, temporal and occipital regions. A similar distribution pattern to that in AD was 
observed in pMCI, while the regional metabolic pattern in sMCI was overall similar to but relatively lower than 
that in NC, and in particular, within the parietal and temporal cortices.

Group Comparison of Significant differences.  The regional SUVR comparison between two groups was 
calculated by a two-sample t-test (p  <  0.01) for all VOIs. Figure 2 displays the VOIs with significant differences 

Figure 1.  Three-dimensional visualization of mean SUVR uptake of FDG-PET in NC, sMCI, pMCI and AD 
from a lateral view.
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between two groups for NC vs. AD, pMCI vs. AD, NC vs. sMCI and sMCI vs. pMCI. As expected, more signifi-
cant hypometabolic regions were observed in AD as compared to NC in the whole brain, and in particular, in the 
regions of the frontal, temporal and parietal lobes from both hemispheres. There are only few VOIs with significant 
SUVR difference between pMCI and AD including bilateral thalamus, right rolandic operculum, right postcentral 
gyrus, and right paracentral lobule. As compared to NC, sMCI was hypometabolic only in the cingulum, parahip-
pocampal, fusiform, and temporal lobe regions. The regions with significantly different metabolism between sMCI 
and pMCI were located in the frontal, cingulum, temporal, thalamus, parietal, angular, and precuneus.

Inter-hemispheric correlation coefficients matrices.  Figure 3 displays the correlation coefficients 
matrices between the left (ordinate) and right (abscissa) hemispheres. Among the four groups, the main dif-
ference in the connection between hemispheres were in the temporal lobe, the parietal lobe, putamen, caudate, 
thalamus, and the occipital lobe. Overall, more connections in NC were observed as compared to AD, and in 
particular, AD had obviously decreased connections between the frontal lobe and other regions. The correlation 
between the right occipital and the left temporal regions was slightly higher in sMCI than in NC. Interestingly, the 
correlation within the frontal lobes was relatively increased in AD as compared to pMCI.

Brain connectivity graph.  Figure 4 illustrates the connectivity graph for each group within the same hem-
isphere from the binary matrices obtained by a predetermined threshold. To reduce the display complexity in the 

Figure 2.  Nodes with significant SUVR difference in group comparison of NC, pMCI, AD and sMCI. 
Abbreviations for the regions are described in Supplementary Table 2. Regional color representations are as 
follows: deep blue for frontal; light blue for temporal; green, for parietal; red for occipital; pink for thalamus, 
pallidum, caudate, putamen, amygdala; yellow for hippocampus; deep red for other regions.
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intra-hemispheric network, the lowest threshold value 0.78 for the connectivity map in NC containing 90 nodes 
was selected for all groups31. The resulting number of nodes in the connectivity network for each group is 90, 88, 
85 and 86, while the resulting number of edges is 138, 114, 73, and 78, for NC, sMCI, pMCI and AD, respectively. 
A significant reduction of intra-hemispheric connections was observed in pMCI and AD. As compared to NC, 
the number of edges in AD decreased mainly in regions including the frontal lobe, temporal lobe, parietal lobe, 
occipital lobe, and central region of precentral gyrus, supplementary motor area, and thalamus.

Inter-hemispheric connectivity network.  Figure 5 illustrates the axial view of the inter-hemispheric con-
nectivity network built from a binary matrix as measured from the same correlation coefficient threshold (0.78) for 
all four groups. The number of inter-hemispheric edges in NC and sMCI is similar (180 and 169, respectively), but it 
dropped significantly to 105 and 36 for pMCI and AD. The patterns of inter-hemispheric connectivity were similar 
in NC and sMCI but later showed reduced inter-lobe connections and more links in the temporal lobe, including 
fusiform, mid-temporal, and inferior temporal. The network connectivity for sMCI was significantly higher than that 
for pMCI in the parietal and parietal-occipital lobes while it showed similar patterns to NC in the parietal region.

Discussion
Using VOI-based connectivity analysis from 18FDG PET images, we investigated the characteristic patterns of 
the inter- and intra-hemispheric metabolic network among the groups of NC, stable and progressive MCI, and 
AD. The results of the correlation matrix indicated the regional SUVR correlations decreased between four main 
regions for different disease stages: the frontal lobe, occipital lobe, parietal lobe, and the temporal lobe. As in 
previous studies, our result found the major hypometabolic difference among the groups is located in the parietal 

Figure 3.  Matrices of correlation coefficients between the right and left hemisphere (ordinate) brain regions. 
The inter-hemispheric connectivity is illustrated from the matrices of correlation coefficients between the right 
hemisphere (abscissa) and left hemisphere (ordinate) brain regions for NC, sMCI, pMCI and AD.
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and temporal regions32, and these regions were reported to predict clinical progression of normal elderly into 
MCI33. Our results also showed connectivity patterns from the metabolic network display the decreasing inter- 
and intra-hemispheric trends for the disease stages of NC, sMCI, pMCI and AD.

Previous studies reported AD as a disconnection syndrome of inter and intra-hemispheric coherences 
with functional disruption in the brain17,34. Our results (see Supplementary Table S3) also indicated network 
changes with decreased connections and linking patterns that depends on the disease stage. In addition, as 
shown in Supplementary Table S4, as compared to HC, the number of edges in sMCI increased 1.5 times in the 
temporal-occipital network, but reduced 0.5 times in the parietal-occipital network. This phenomenon could be 
due to the compensatory mechanisms as mentioned before35.

In our study, there are differences in network connection between NC and MCI mainly located in the fusi-
form, middle temporal, and inferior temporal regions. Previous studies reported similar finding in network 
changes in these regions29. People with MCI have a high risk of developing AD. However, it is not clear how 
the metabolic connectivity pattern differs between sMCI and pMCI among MCI patients. A previous study just 
indicated the reduction in glucose metabolism in the parietal lobe for MCI29. From our result (Fig. 4), a specific 
network pattern with connection from parietal to occipital regions was found only for pMCI but not for sMCI. 
Moreover, there are 1.5 times more links in the parietal-occipital network for pMCI as compared to sMCI. These 
patterns could be possible due to compensatory effect.

For comparison, we also conducted a voxel-wise network analysis with multiple regression (FWE correction 
p  <  0.05, and inclusion of the MMSE and gender as covariates) as in Nobili et al.26 and Carbonell et al.28 for both 
sMCI and pMCI. The preliminary result has been included as supplementary data (Figs S1 and S2). From the 
voxel-wise analysis, as compared to the ROI-based network analysis, and shown in Figs S1 and S2 of the supple-
mentary data, both methods display different connectivity patterns from occipital to temporal and to parietal 
between sMCI and pMCI.

After comparing the network links between the 90 nodes within the brain, the lost intra-hemispheric connec-
tions observed in patients as compared to NCs can be divided into two key patterns. First, functional connectivity 
between the parietal lobes11 (superolateral and precuneus) and the occipital lobes was only found in NC and 
pMCI, but not in sMCI (Fig. 4). Second, more connectivity between the temporal lobes and occipital lobes was 
observed in sMCI as compared to NC (Fig. 4). The pattern of connectivity changes in the temporal lobe (from 
temporal-frontal to temporal-occipital) for AD is well-documented36 and similar pattern was also observed in a 
previous study on a seed-based metabolic correlation analysis29, and hierarchical multivariate covariance analysis 
for patients with low and high beta-amyloid burdens11,24, where they found metabolic connectivity change in the 
temporal-parietal regions usually exist in patients with high amyloid deposition. Similar pattern of decreased 
connectivity in the regions of left occipital and parietal for AD with CDR of 0.5 by using interregional correlation 
analysis and permutation test16. These two key patterns can be potentially used as biomarkers in identifying indi-
viduals of MCI at highest risk of progression to AD.

We have applied SUVR for the construction of metabolic brain network. Unlike SUV, SUVR is a relative value 
by normalizing the mean SUV in a target region to that in a reference region which is stable and unaffected by the 
process under investigation. In addition, SUVR is usually applied in longitudinal and intersubject studies37, and 
thus is suitable for metabolic network application.

Figure 4.  Brain connectivity graphs in NC, sMCI, pMCI and AD from a lateral view. Brain connectivity graphs 
were visualized in 3D view for four groups and obtained using a correlation coefficient threshold for each group. 
The intra-hemispheric connections were indicated by black lines and nodes in each region by the color dots.
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Despite the large number of PET images in NC and AD, the design of the present study is not without lim-
itations. First, an optimal and effective selection of the threshold for correlation value used in the correlation 
matrix is still a challenging issue. This study, we assumed the connectivity network should have all connections 
(90 nodes) in NC and we select the highest correlation threshold of 0.78 to show the results and to avoid inclusion 
of many false connections38. Other studies used a range of sparsity degrees from 0.5 to 0.9 as thresholds39,40, but 
this led to variable results41. Small-world indices were also applied to show a connectivity network33,41 but still no 
optimal solution for selecting a standard threshold. Some other limitations are associated with the connectivity 
analysis based on evaluation of interregional correlations11. To alleviate these limitations, hierarchical multivar-
iate covariance analysis11 or voxel-based multivariate statistical methods with FDR or FWE-corrections, and 
inclusion of the clinical factors as covariates could be used in the statistical mode26–28,42. Therefore, future work 
should include thorough comparison of connectivity analysis using different approaches11,23,26,27, developing an 
individual and effective metabolic network and voxel-wise network for clinical diagnosis applications.

Conclusion
This paper studied the patterns of inter and intra-hemisphere functional metabolic connectivity in NC, sMCI, 
pMCI and AD based on PET FDG data. Two major key metabolic network patterns were observed among these 
four groups in this study. Connection of temporal lobes to frontal or occipital is a characteristic pattern for con-
version of NC to MCI, and the density of links in the parietal-occipital network is a differential biomarker from 
sMCI to pMCI.

Figure 5.  Brain connectivity graphs in NC, pMCI, AD and sMCI. Brain inter- hemispheric connectivity graphs 
were visualized for four groups and obtained from thresholding the correlation coefficient matrix for each 
group. The inter-hemispheric connections were indicated by black lines and nodes by the color dots (deep blue 
for frontal; light blue for temporal; green for parietal; red for occipital; pink for thalamus, pallidum, caudate, 
putamen, amygdala; yellow for hippocampus; deep red for other regions).
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Methods
Subjects.  Data used in the preparation of this article were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). Te ADNI was launched in 2003 as a public-private 
partnership with a primary goal to test whether serial magnetic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to 
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). ADNI (ADNI 
ClinicalTrials.gov identifer: NCT00106899) is the result of efforts of many coinvestigators from a broad range of 
academic institutions and private corporations, with subjects recruited from over 50 sites across the United States 
and Canada. Details of the ADNI-1 and ADNI-2 protocol, timelines, study procedures and biomarkers can be 
found in the ADNI-1 and ADNI-2 procedures manual [https://www.adni-info.org/]. For up-to-date information, 
see www.adni-info.org

There were PET scans from 100 MCI subjects, 100 AD subjects, and 100 NC subjects included in this study. 
The 100 MCI subjects were further divided into two groups: (i) sMCI (stable MCI), if the diagnosis was MCI at all 
available time points, and at least for 36 months (n  =  45); (ii) pMCI (progressive MCI), if the diagnosis was MCI 
at baseline but progressed to AD was reported within 12 months after baseline, and without reversion to MCI or 
NC at any available follow-up (n  =  55)43. The main demographic and clinical data for each group are summarized 
in Supplementary Table S1. All subjects underwent thorough clinical and cognitive assessments at the time of 
each of their PET scans. Each subject’s cognitive evaluation included the following: (i) the MMSE to provide a 
global measure of mental status44; (ii) the Global CDR to determine the stage severity of dementia36. More details 
about all the tests can be found on the ADNI website at www.loni.ucla.edu/ADNI.

The study protocols were approved by the institutional review board of Chang Gung Memorial Hospital and 
ADNI (a complete list of ADNI sites is available at https://www.adni-info.org/.) and written informed consent 
was obtained from all participants or authorized representatives for the original data acquisition in ADNI. All the 
analytical methods were performed on the de-identified ADNI data. In addition, these methods were carried out 
in accordance with the approved guidelines.

Image analysis.  We downloaded the preprocessed FDG-PET scans from the public ADNI database (www.
loni.ucla.edu/ADNI). The PET image acquisition and preprocessing protocols prior to download can be found 
elsewhere2,45. All downloaded PET data were then further processed using PMOD image analysis software (ver-
sion 3.3; PMOD Technologies Ltd, Zurich, Switzerland) and spatially normalized into the Automated Anatomical 
Labeling (AAL) space. All images were automatically segmented into 90 anatomical structures (volumes of inter-
est, VOIs) using the AAL atlas45. For the standard quantification procedure of the FDG image, the regional radi-
oactivity concentration was first converted to standardized uptake values (SUVs)46. Then, the regional SUV ratio 
(SUVR) of the mean SUV between the target and reference regions was calculated with the entire cerebellum as 
the reference region47. Finally, each subject’s regional SUVR for each AAL structure was extracted to construct the 
SUVR data matrix. For each group (NC, sMCI, pMCI and AD), the data matrix had a size of M × N, where ‘M’ 
represents the number of subjects within each group, and ‘N’ the number of AAL structures.

Brain network.  From the network theory, a network (or graph) is a mathematical model representing a 
collection of nodes (or vertices) and edges (or connections) between pairs of node48. When considering brain 
networks, the network nodes should ideally represent meaningful brain regions. However, it is more common to 
convert the connectivity matrix to a binary matrix by retaining only the links above a certain threshold. This leads 
to a binary network model, where the links above the threshold are represented by 1 (presence of edge) and those 
below it are represented by 0 (absence of edge). In our study, a connection in a brain network is defined in terms 
of statistical associations between each pair of brain regions among the 90 anatomical structures49. The statistical 
association was obtained by synchronized co-variations and measured by computing their Pearson’s correlation 
coefficient, across subjects. Hence, an interregional Pearson’s correlation coefficient matrix (N × N, where N is the 
number of brain regions; here, N = 90) for the statistical connections was calculated using all pairs of anatomical 
structures. To obtain a binary connectivity network, a threshold is needed13,14. Here, various thresholds ranging 
from 0.5 to 0.9, in steps of 0.02, yielding a set of 21 values39 were applied, and that yielded a set of 21 binary con-
nectivity matrices for each group. We further used the BrainNet Viewer (www.nitrc.org/projects/bnv/) toolbox to 
display connections forming the subnetwork in four groups.

Statistical analyses.  Statistical analyses were performed with the SPSS 17.0 statistical package (SPSS 
Statistics for Windows, version 17.0, 2008), and p values  <  0.01 were considered significant. Two-sample t-tests 
were used to examine the differences in clinical characteristics (age, education, weight, MMSE and CDR) scores. 
The regional SUVRs among the four groups (NC, sMCI, pMCI, AD) were also compared using the multiple 
comparison test.

All methods were performed in accordance with the relevant ethical guidelines and regulations as stated in 
the first section of Methods.

Data Availability
PET images were downloaded online from ADNI (https://ida.loni.usc.edu) and further processed locally (see 
Image Analysis above). Processed ADNI data are not publicly available for download but are available from the 
corresponding author.

https://www.adni-info.org/
http://www.adni-info.org
http://www.loni.ucla.edu/ADNI
https://www.adni-info.org/
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
http://www.nitrc.org/projects/bnv/
https://ida.loni.usc.edu
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