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Metabolic syndrome (MetS) is a highly prevalent complex trait despite recent advances in
pathophysiology and pharmacological treatment. MetS can begin in early life by so-called
the developmental origins of health and disease (DOHaD). The DOHaD concept offers a
novel approach to prevent MetS through reprogramming. High fructose (HF) intake has
been associated with increased risk of MetS. HF diet becomes one of the most commonly
used animal model to induce MetS. This review discusses the maternal HF diet induced
programming process and reprogramming strategy to prevent MetS of developmental
origin, with an emphasis on: (1) an overview of metabolic effects of fructose consumption
on MetS; (2) insight from maternal HF animal models on MetS-related phenotypes; (3)
impact of HF consumption induces organ-specific transcriptome changes; and (4) appli-
cation of reprogramming strategy to prevent maternal HF consumption-induced MetS.
Research into the preventions and treatments of MetS that begin early in life will have a
lifelong impact and profound savings in disease burden and financial costs.

The worldwide per capita fructose consumption has grown
in the last half-century and its growth has been paralleled by
an increase in metabolic syndrome (MetS)-related disorders
[1,2]. MetS is a common complex trait comprising of a cluster
of medical conditions including hypertension, obesity, dys-
lipidemia, hyperglycemia, fatty liver, and insulin resistance
[3]. Emerging evidence suggests that the origins of suscepti-
bility for MetS in adult can be traced back to the early life,
referred to the developmental origins of health and disease
(DOHaD) [4]. On the other hand, the DOHaD concept offers a

novel approach to prevent MetS through reprogramming, to
shift therapeutic interventions from adulthood to early life,
even before clinical symptoms are evident [5]. A number of
dietary, genetic, surgical, and pharmacological models have
been developed to explore the pathophysiology and under-
lying mechanisms of developmental programming of MetS
[6,7]. As rodents fed with a fructose-enriched diet exhibit
many features of the MetS, high-fructose (HF) diet becomes
one of the most commonly used animal model to induce
MetS.
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This review provides an overview of maternal HF
consumption-induced programming process contributing to
MetS-related phenotypes, with an emphasis on the following
areas: metabolic effects of fructose on MetS; effects of
maternal HF consumption on developmental programming of
MetS-related phenotypes; maternal HF consumption induces
transcriptome changes; and application of reprogramming
interventions to prevent maternal HF-induced MetS-related
disorders.

Metabolic effects of fructose on metabolic
syndrome

Fructose is one of the monosaccharides along with glucose
and galactose. Fructose is found in all fruits and vegetables.
The human body obtains fructose through exogenous supply
or endogenously produces fructose from glucose through
aldose reductase pathway [8]. Nowadays, most of the increase
in fructose consumption is derived from refined sugars and
processed foods.

Fructose is absorbed in the intestine through specific
glucose transporters such as glucose transporter 5 (Glut 5) and
Glut 2. Fructose metabolism differs markedly from glucose
metabolism because these two sugars require different en-
zymes in the initial steps of metabolism. A growing body of
evidence indicates that HF diet causes various features of
MetS, such as obesity, adiposity, hypertension, hyper-
triglyceridemia, dyslipidemia, glucose intolerance and
decreased insulin sensitivity [2,6,7]. Also, previous studies
indicated that glucose or starch-feeding is not as effective as
fructose-feeding to induce MetS [2].

Unlike glucose, which is metabolized widely in the body,
fructose is converted into glucose, glycogen, lactate, and fatty
acids mainly in the liver [8]. Since fructose can be transported
and produced by the placenta [9,10], it is considered that the
fetal programming process is driven not only by fructose but
also by its metabolites [11].

Effects of maternal fructose consumption on
developmental programming of metabolic
syndrome-related phenotypes

Although a number of epidemiological studies support an
association between fructose consumption and adult MetS
[12], limited studies have explored the effects of early-life
fructose consumption on fetus and disease risk in adult
offspring. So far, only a limited number of human studies have
shown an association between excessive sweetened food and
beverage consumption and poor pregnancy outcome [13].
Notably, human studies have not yet established the direct
cause-and-effect relationship between excessive fructose
consumption and MetS-related disorders. It stands to reason
that the use of animal models is essential to investigate MetS-
related programming process and identify reprogramming
strategy for further translational research.

Our previous reports showed that adult offspring rats of
mothers exposed to 60% HF diet during pregnancy and lacta-
tion developed MetS-related comorbidities [14—20], which is

in agreement with the results of earlier studies involving
fructose-fed adult rats [21]. Fructose appears to induce MetS in
part by increasing uric acid [2]. Unlike fructose-induced uric
acid generation that induces oxidative stress and nitric oxide
(NO) deficiency in adult rats [2,8], we observed that these ab-
normalities are not present in adult offspring exposed to
maternal HF intake [14]. It is speculated that mechanisms
underlying maternal HF consumption-induced fetal pro-
gramming of MetS in offspring might be different from those
underlying fructose feeding-induced MetS in adult rats [11].

It is noteworthy that adverse effects of fructose feeding
depend on the amount and duration of fructose consump-
tion [22]. Because rats express uricase (which degrades uric
acid), fructose does not increase uric acid level very effec-
tively [2]. Despite being viewed as far in excess of a relevant
load, most animal studies have been performed using diets
containing 50%—60% fructose [8]. However, a recent meta-
analysis study showed that various features of MteS can
be achieved using diets with as little as 10% w/v fructose in
drinking water, independent of variations in study design
and duration [21].

This review will primarily be limited to MetS-related phe-
notypes induced by HF consumption in early life in rodent
animal models, some of which are listed in Table 1. Despite
fructose alone can alter fetal programming to induce
numerous features of MetS [17—19,23,25,26,28—30], some an-
imal studies have often used fructose as a part of diet along
with salt [20,24] or fat [27].

HF diet induces hypertension in adult rats have been well
reviewed elsewhere [31,32]. However, limited data are avail-
able on the effects of maternal HF induced hypertension in
adult offspring. Studies listed in Table 1 indicate that con-
sumption of HF alone or as a part of diet by rodent mothers
induces programmed hypertension in adult offspring of both
sexes [14—17,19,24,27,30]. Several mechanisms have been
proposed to interpret HF-induced hypertension, including
oxidative stress, NO deficiency, increased sodium absorption,
endothelial dysfunction, activation of the renin-angiotensin
system (RAS) activation, and sympathetic nervous system
stimulation [11].

An obesogenic effect of HF intake was also observed in
animal studies [23,30]. Consumption of fructose has been re-
ported to induce obesity by several mechanisms, such as
direct effects on adipose tissue, indirect actions on the appe-
tite control and feeding behavior, and by disrupting neuro-
endocrine signaling between adipose tissue and the
hypothalamus [33]. Additionally, often considered the hepatic
manifestation of the MetS, non-alcoholic fatty liver disease
(NAFLD) is defined as hepatic steatosis in the absence of heavy
alcohol use. As shown in Table 1, maternal HF exposure has
been reported to induce hepatic steatosis in adult offspring
[28—30]. Fructose consumption can upregulate the hepatic
lipogenesis program, which is further amplified by hyper-
insulinemia in the context of insulin resistance. Also, con-
sumption of HF by rodent mothers induces insulin resistance
in adult offspring [16,23,26,30]. Metabolites from fructose
metabolism can directly affecting tissue and organ functions;
among these uric acid, free fatty acids and lactate play
important roles in mediating insulin resistance in systemic
and local tissue/organ [34]. Moreover, in several animal


https://doi.org/10.1016/j.bj.2018.02.006
https://doi.org/10.1016/j.bj.2018.02.006

98

BIOMEDICAL JOURNAL 41 (2018) 96—101

g
o
B
<%
£
=]
7]
=
o
o
]
]
<]
o=
7]
g
o
<
20
<
—_
©
=]
-
[
o=
[
&
<]
-
-]
[T}
]
o
.
E]
[}
n
v
Q,
2
o
=1
[}
<
Q,
-]
b
©
=
[
w
[}
£
o
-t
-]
=]
>
n
3]
=
o
Q
1]
-
]
&
Yt
<]
[
=]
o=
£
&
©
Tt
bo
o
Tt
Q.
—_
4]
S
=]
[}
£
[=9
(]
-
[}
»
(]
T
b
(<]
=2
[}
o
O
=
—
[}
)
©
[

Ref.

Age at evaluation

Phenotypes related to MetS

Species

Types of fructose intake

[23]
[24]

8 weeks
9 weeks

Obesity, insulin resistance

Hypertension

Male Sprague—Dawley rats

10% w/v fructose in drinking water throughout lactation

Male Sprague—Dawley rats

10% w/v fructose plus 4% NacCl in drinking water 28 days

before conception and throughout gestation and lactation

60% HF diet throughout pregnancy and lactation

[14,15,17,19]

[16]
[20]

3 months
3 months
3 months

Hypertension

Male and female Sprague—Dawley rats

Male Sprague—Dawley rats

Hypertension, insulin resistance, dyslipidemia

Hypertension

60% HF diet throughout pregnancy and lactation

Male Sprague—Dawley rats

60% HF diet throughout pregnancy and lactation plus 1% NaCl

in drinking water from weaning to 3 months of age

60% HF diet throughout pregnancy and lactation

3 months
3 months

Bladder dysfunction

Male Sprague—Dawley rats

Adiposity, dyslipidemia

Male and female Sprague—Dawley rats

10% w/v high fructose corn syrup (HFCS-55) in drinking water

throughout pregnancy and lactation
10% w/v fructose in drinking water throughout gestation

3 months
4 months
5 months
8 months
12 months

Insulin resistance

Male Sprague—Dawley rats

Hypertension, hyperglycemia, kidney disease

Dyslipidemia, hepatic steatosis

Male Sprague—Dawley rats

56.7% HF/high-fat diet throughout pregnancy and lactation

60% HF diet throughout pregnancy and lactation

Male Sprague—Dawley rats

Dyslipidemia, hepatic steatosis

Female Sprague—Dawley rats

C57BL/6] mice

10% w/v fructose in drinking water throughout pregnancy
10% w/v fructose in drinking water throughout pregnancy

Hypertension, insulin resistance, obesity,

hepatic steatosis

and lactation

Studies have been tabulated according to the age at which the effects were measured.

models of MetS, bladder overactivity is the major phenotype
of voiding behavior associated with metabolic bladder
dysfunction [35,36]. These findings are supported by our
recent work showing that male adult offspring of mothers
exposed to 60% HF diet during pregnancy and lactation
developed MetS-related bladder dysfunction [18]. However,
not all studies in rodents have demonstrated deleterious ef-
fects of excess fructose consumption [37].

HF consumption induces transcriptome changes

Previously, we have utilized RNA next-generation sequencing
(NGS) technology to analyze the transcriptome expression in
several organs from male rat offspring exposed to maternal
HF diet [11,15,16]. We observed that maternal HF intake can
induce long-term transcriptome changes. Importantly,
different organs react differently to developmental program-
ming, leading to organ-specific transcriptional modification of
gene cascades [16].

There are several shared differentially expressed genes
(DEGS) related to fructose metabolism, glycolysis/gluconeo-
genesis, fatty acid metabolism, and insulin signaling in
offspring at 1 day of age [16], including liver-type 6-
phosphofructokinase  (Pfkl), peroxisome  proliferator-
activated receptor gamma coactivatorl-a (Ppargcla), glucose
transporter1 (Slc2al), insulin receptor substrate 2 (Irs2), lactate
dehydrogenase A (Ldha), sterol regulatory element-binding
transcription factor 1 (Srebfl), hexokinase 2 (Hk2), 6-
phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
(Pfkfb3), suppressor of cytokine signaling 3 (Socs3), liver
glycogen phosphorylase (Pygl), forkhead box protein O1
(Foxo1), and short/branched chain specific acyl-CoA dehydro-
genase (Acadsb). Since fructose and its metabolites are
important cellular nutrients, our NGS data suggest that the
nutrient-sensing signaling might be crucial for the response of
different organs to maternal fructose consumption, leading to
differential phenotypes of MetS.

Also, we identified 14 significantly regulated Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways shared by at
least two different organs at 1 day of age. Among them,
peroxisome proliferator-activated receptor (PPAR) signaling
pathway can serve as a nutrient-sensing signaling linking
nutritional programming to MetS and hypertension [38].
Additionally, we found PPAR signaling pathway is a significant
KEGG pathway shared by one-day, three-week, and three-
month-old offspring kidney exposed to maternal HF intake
[15], which supports previous studies showing that PPARs
might be attractive drug targets for treating MetS [39,40].
Another significant KEGG pathway shared by three different
developmental stages is arachidonic acid metabolism [14].
Soluble epoxide hydrolase (SEH) plays a role in arachidonic
acid metabolism. SEH can metabolize vasodilatory epox-
yeicosatrienoic acid to vasoconstrictive dihydroxye-
icosatrienoic acids [41]. In this aspect, in another study we
found that the protein level and activity of SEH are induced by
maternal HF exposure in offspring at three months of age.
These observations implicate that PPAR signaling pathway
and SEH might be therapeutic targets for MetS programmed
by maternal fructose consumption.
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Reprogramming strategy to prevent maternal HF
consumption-induced metabolic syndrome

MetS affects more than one in five adults, and its prevalence is
growing worldwide despite progress made in recent years in
improving the care of patients with MetS [42]. Since MetS may
take origin from early-life insults, a better understanding of
the programming mechanisms underlying fructose con-
sumption that lead to MetS may aid in developing early
reprogramming intervention to halt the globally growing
epidemic of MetS-related disorders. Several intervention
strategies, including taurine, arginine, resveratrol, grape-
derived polyphenols, sardine protein, vitamin E and «-lipoic
acid, have been examined to prevent the adverse metabolic
effects of excess fructose consumption in adults [43]. While
none of these strategies has thus far been examined as a po-
tential reprogramming strategy in maternal HF consumption-
induced MetS of developmental origins.

A growing body of evidence indicates that PPARs ligands
have therapeutic potential in treating MetS-related comor-
bidities [39,40]. Thus far, however, only a few studies explored
the impact of PPAR modulators as reprogramming strategies
to prevent MetS of developmental origins [38], especially in
models of excess maternal fructose consumption. Therefore,
there is a need for studies to address PPAR modulators in
maternal HF-induced MetS animal models and a need for
prospective cohort data linking biomarkers in PPAR signal
pathway to clinical outcomes or surrogate biomarker end-
points in humans.

Our data suggest that several mechanisms are involved
in maternal HF-induced programmed hypertension, such as
epigenetic regulation, glucocorticoid effects, RAS and so-
dium transporter alterations, and oxidative stress [11]; these
mechanisms, thus, may serve as potential reprogramming

strategies. Previously, we prevented hypertension develop-
ment in adult offspring exposed to maternal HF diet by
using three reprogramming approaches, namely, SEH in-
hibitor [17], melatonin [14], and renin inhibitor aliskiren [19].
First, our NGS data indicate that the SEH is involved in
maternal HF consumption-induced renal programming and
programmed hypertension [14]. In agreement with this
finding, early postnatal SEH inhibitor 12-(3-adamantan-1-yl-
ureido)-dodecanoic acid (AUDA) treatment ameliorated hy-
pertension in maternal HF consumption-induced hyperten-
sion [17]. However, it would be interesting to see whether
SEH inhibition also prevents other phenotypes of MetS.
Second, most reprogramming strategies have focused on
restoring the balance of NO and reactive oxygen species
(ROS) to prevent cardiovascular disease [44]. Melatonin, an
endogenous indoleamine produced by the pineal gland, has
pleiotropic bioactivities those are beneficial in many
DOHaD-related disorders, as reviewed elsewhere [45]. Our
data showed that maternal melatonin treatment can pre-
vent HF consumption-induced programmed hypertension in
adult offspring [14]. Thus, reprogramming strategies that
restore the NO—ROS balance can be applied in MetS-related
disorders, such as hypertension. Last, MetS increases car-
diovascular risk and the RAS plays an essential role in car-
diovascular homeostasis. Blockade of RAS in young
offspring from ages 2—4 weeks have been reported to protect
against fetal programming of hypertension in a variety of
programming animal models [46,47]. We recently found that
early postnatal aliskiren administration prevented maternal
HF consumption-induced programmed hypertension in
adult offspring [19]. Therefore, a better understanding of the
underlying mechanisms of early-life fructose consumption-
induced MetS-related phenotypes in the developing
reprogramming strategy to prevent MetS is pretty
warranted.

Fructose =

Metabolic syndrome

Glucose, lactate,
glycogen, fatty
acids

— u —
Programming process

Fructose metabolism
Glycolysis/gluconeogenesis

Fatty acid metabolism
Insulin signalling

PPAR signaling pathway
Arachidonic acid metabolism

Hypertension
Obesity
Dyslipidemia
Hyperglycemia
Insulin resistance

Fig. 1 Schematic illustration of the interplay between early-life fructose consumption and programming process to increase the
vulnerability to metabolic syndrome-related phenotypes in later life, of which can be prevented by reprogramming strategies.
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Conclusions

Overconsumption of fructose in early life is a risk factor for the
epidemic of MetS with dysfunctions in multiple tissues and
organs in later adulthood. A schematic summarizing the links
between early-life fructose consumption, mechanisms un-
derlying programming process, and MetS of developmental
origin is presented in Fig. 1. Despite results from animal
models indicate that maternal HF intake plays a role in the
developmental  programming of MetS, early-life
fructose—gene interactions in humans might be more com-
plex and multifactorial. Although major progress has been
made in animal research on fructose consumption induced
MetS of developmental origin, these potential pharmacolog-
ical interventions need to be validated clinically. Future
research should aim to bridge the translational gap between
animal models and human therapeutics. Underlying the
DOHabD concept, research into effective reprogramming stra-
tegies for MetS-related programming process that begin early
in life will have a profound impact on economic burden of
MetS-related disorders over the next century.
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