Table 1.
Scale | Size | Convolution |
---|---|---|
1 | 192×192 | 3×3, 16 |
3×3, 16 | ||
2 | 96×96 | 3×3, 32 |
3×3,32 | ||
3 | 48×48 | 3×3, 64 |
3×3, 64 | ||
3×3, 64 | ||
4 | 24×24 | 3×3, 128 |
3×3, 128 | ||
3×3, 128 | ||
5 | 12×12 | 3×3, 256 |
3×3, 256 | ||
3×3, 256 | ||
upsample and concatenate scale 1 to 5 features | ||
predict | 192×192 | 1×1, 64 |
1×1, 64 | ||
1×1, K |
The first two columns list the resolution scale and feature map size. The third column lists the convolutional layer parameters, with “ 3×3,16” denoting 3×3 kernel and 16 output features. The last convolutional layer outputs K features, with K denoting the number of label classes