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Abstract

BACKGROUND: In genome-wide screening studies for de novo mutations underlying autism 

and intellectual disability, mutations in the ADNP gene are consistently reported among the most 

frequent. ADNP mutations have been identified in children with autism spectrum disorder 

comorbid with intellectual disability, distinctive facial features, and deficits in multiple organ 

systems. However, a comprehensive clinical description of the Helsmoortel-Van der Aa syndrome 

is lacking.

METHODS: We identified a worldwide cohort of 78 individuals with likely disruptive mutations 

in ADNP from January 2014 to October 2016 through systematic literature search, by contacting 

collaborators, and through direct interaction with parents. Clinicians filled in a structured 

questionnaire on genetic and clinical findings to enable correlations between genotype and 
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phenotype. Clinical photographs and specialist reports were gathered. Parents were interviewed to 

complement the written questionnaires.

RESULTS: We report on the detailed clinical characterization of a large cohort of individuals 

with an ADNP mutation and demonstrate a distinctive combination of clinical features, including 

mild to severe intellectual disability, autism, severe speech and motor delay, and common facial 

characteristics. Brain abnormalities, behavioral problems, sleep disturbance, epilepsy, hypotonia, 

visual problems, congenital heart defects, gastrointestinal problems, short stature, and hormonal 

deficiencies are common comorbidities. Strikingly, individuals with the recurrent p.Tyr719* 

mutation were more severely affected.

CONCLUSIONS: This overview defines the full clinical spectrum of individuals with ADNP 
mutations, a specific autism subtype. We show that individuals with mutations in ADNP have 

many overlapping clinical features that are distinctive from those of other autism and/or 

intellectual disability syndromes. In addition, our data show preliminary evidence of a correlation 

between genotype and phenotype.
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Autism spectrum disorder (ASD) is a condition defined by deficits in social interaction, 

communication, and selected behaviors (1). Each aspect of the disorder may vary in 

presentation, range, and severity, cumulating in a broad clinical spectrum. The frequency of 

the disorder is under continuous debate, but ASD may affect up to 1.5% of the population 

(2). Although a genetic contribution to its etiology has been firmly demonstrated (3), it took 

the introduction of trio-based whole-exome sequencing to truly accelerate substantially the 

identification of ASD genes. In these studies, individuals are screened along with their 

parents, enabling the unbiased detection of de novo mutations in large ASD cohorts (4–6). 

These initiatives are complemented by targeted resequencing of larger cohorts (7). Studies in 

ASD cohorts comorbid with intellectual disability (ID) collectively demonstrate an 

unprecedented genetic heterogeneity of ASD, with no single gene responsible for more than 

a fraction of the total population. Several of the identified genes appear to cluster in a subset 

of cellular networks, including networks enriched for chromatin remodeling and synaptic 

functioning (5,8). Overlap between ASD genes and genes causative for other 

neurodevelopmental disorders, including ID and seizures, is common (9,10).

Despite the high heterogeneity and observed molecular overlap, there is preliminary 

evidence for the existence of clinical ASD subtypes. For instance, mutations in the 

chromatin remodeler CHD8 cause an ASD/ID subtype with specific physical characteristics, 

such as macrocephaly and significant gastrointestinal problems (11,12). In contrast, 

individuals with a mutation in DYRK1A, a gene duplicated in Down syndrome, have 

ASD/ID, microcephaly, intrauterine growth retardation, febrile seizures in infancy, impaired 

speech, stereotypic behavior, hypertonia, and a distinctive facial gestalt (13). Yet the clinical 

delineation of ASD/ID syndromes has lagged behind their respective molecular definition. 

Because possible future treatment may be based on targeting the underlying molecular 
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defect rather than on the basis of the clinical presentation, it is of primary importance to 

define autism subtypes correctly at the molecular level (14).

ADNP was one of the most frequently mutated genes across multiple recent whole-exome 

sequencing and targeted molecular inversion probe sequencing studies in ASD/ID cohorts 

(6,7). The ADNP gene plays a role in embryonic development, especially during the time of 

neuronal tube closure, and is involved in chromatin remodeling (15–18). Based on the first 

10 individuals identified with ADNP-related ASD/ID, ADNP mutations were estimated to 

explain one or two per 1000 ASD/ ID cases. Some shared clinical features were suggested 

(19). Since that time, a number of case reports have expanded the phenotype of the 

Helsmoortel-Van der Aa syndrome (Online Mendelian Inheritance in Man [OMIM] 

identification 615873) (20–23). Here, we describe the clinical details of a cohort of 78 

individuals from 16 countries with a likely disruptive mutation in ADNP. We define a novel 

subtype of ASD/ID, and at the same time we present evidence for a significant genotype-

phenotype correlation.

METHODS AND MATERIALS

Participants

The study was performed at the University of Antwerp, Belgium. Individuals were identified 

through exome sequencing in our own center or gathered from genetic centers worldwide 

that offer exome-wide or targeted genetic screening in a clinical or a research setting. 

Additional individuals were collected on the website http://humandiseasegenes.nl/adnp/. A 

minority of the individuals were previously described in case reports (19–23). All 

individuals were enrolled between January 1,2014, and October 1, 2016. Inclusion required 

a clinical geneticist-confirmed diagnosis of a nonsense or frameshift mutation in the ADNP 
gene and presence of clinical information in at least three of the following domains: 

demographics, development, craniofacial features, and behavior. Essentially all mutations 

were identified by next-generation sequencing of individuals with autism and/or 

developmental delay, often in combination with additional syndromic features. In part, the 

ADNP mutations were identified in individuals in preassembled ASD/ID cohorts that were 

subjected to trio-based whole-exome sequencing or targeted molecular inversion probe 

sequencing as described in Helsmoortel et al. (19). The remainder of our cohort was 

assembled from the individuals in whom an ADNP mutation was diagnosed after genetic 

testing using either neurodevelopmental gene panels or trio-based whole-exome sequencing. 

After the identification of a causative ADNP mutation in an individual, the patient’s clinical 

geneticist asked for consent to be included in this study. In each case, the mutation that was 

identified using next-generation sequencing was independently verified using Sanger 

sequencing either in our own or in the referring laboratory. Individuals carrying a missense 

mutation in ADNP were excluded from this study. All gene annotations have been made 

according to reference sequence NM_015339.2 (human genome version 19). Approval for 

this study was obtained from the Ethics Committee of the Antwerp University Hospital. 

Pictures were published only if the parents provided written informed consent on behalf of 

their child.
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Procedures

Collaborating physicians were asked to fill out an extensive questionnaire with clinical and 

molecular information about the individuals they had identified and assessed. We 

specifically asked for the results of the test the individuals had been given, including but not 

limited to IQ test and Autism Diagnostic Observation Schedule. Medical specialist reports 

and magnetic resonance imaging data were collected and systematically reevaluated to refine 

the interpretation of the findings. To compare the data that were collected in various parts of 

the world, which did not in all cases use the same tests and terminology, we curated all 

incoming data and recontacted the collaborating clinicians to harmonize the medical 

information. The ADNPkids Facebook community (24) helped us contact clinicians and 

parents so we could complete and verify the details of the clinical information.

Statistical Analysis

Associations between reported clinical features were systematically tested in a pairwise 

analysis using one-way analysis of variance (ANOVA), Pearson correlation, and Fisher’s 

exact tests, depending on the nature of the variables. A listing of all 170 variables included 

in our analysis is provided in Supplemental Table S1. For one-way ANOVA, features for 

which only a single level was available were excluded. If ANOVA resulted in significant 

results (p < .05), post hoc Tukey honest significant difference testing was applied to identify 

significant differences in mean. For Fisher’s exact tests, a minimum of two levels per tested 

category and >10 records per tested condition were required. If either category contained 

three or more levels, p values were calculated via a Monte Carlo simulation using 10,000 

replicates. The association between demographic features, including gender, age, and 

clinical features, was analyzed similarly. Additionally, we evaluated the presence of 

genotype-phenotype correlations. First, the three most frequent mutations were analyzed 

separately: p.Tyr719* (17 individuals), p.Leu831Ilefs*82/ p.Asn832Lysfs*81 (14 

individuals), and p.Arg730* (5 individuals). Subsequently, mutations were grouped 

according to gene location: in the N terminus (25 individuals), at the center of the gene (49 

individuals), and in the C terminus (4 individuals). Finally, we analyzed mutations per 

domain. For each analysis, prevalence or extent of all individual clinical features was 

compared between the selected subcohort and the remaining individuals. Multiple testing 

correction was performed via the false discovery rate method [Qvalue add-on package in R, 

version 2.6.0 (25)]. All calculations were performed in the software package in R version 

3.3.1 (26). Significant correlations are indicated at the appropriate Results section.

RESULTS

We included 78 individuals with a disruptive mutation in ADNP, including 44 male subjects 

and 34 female subjects (Figures 1 and 2). The mean age of our cohort is 8 years 2 months, 

with a range of 1 to 40 years. Individuals were from 44 clinics in 16 countries. Parental 

consanguinity was not reported, and no sibling was diagnosed with a mutation in ADNP. 

Five individuals have nonidentical healthy twin siblings. We found 46 unique mutations on 

the DNA level, of which 25 were nonsense and 21 frameshift (Supplemental Table S2). All 

but three mutations were located in the fifth and last exon of the ADNP gene and were 

predicted to escape nonsense-mediated decay. On the protein level, three mutations, 
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including the p.Tyr719* mutation, were present in $5 individuals. Sixty-eight mutations in 

our cohort were confirmed de novo, eight mutations were of unknown inheritance, and two 

C-terminal mutations were inherited.

Pre- and Perinatal Observations and Congenital Abnormalities

Most children were born at term (mean gestational age 38.7 weeks, range 30–42 weeks). 

Mean maternal and paternal ages at birth were 30 and 32 years, respectively. Intrauterine 

growth retardation was not reported. Overall, birth weight, height, and head circumference 

were within normal ranges (Supplemental Table S3, Supplemental Figure S1A-C).

Six individuals (12.5%) were born with renal anomalies (narrow ureters, bilateral 

vesicoureteral reflux that was surgically repaired) (Table 1). Reported hand and feet 

abnormalities were nonspecific; they included fetal finger pads, clinodactyly, small fifth 

fingers, brachydactyly, single palmar crease, sandal gap, pes planus, long or broad halluces, 

and syndactyly of the second and third toes. Twenty-five percent had nail abnormalities such 

as thin or small nails, or hypoplastic nails of the fifth digit. Some had widely spaced nipples, 

pectus excavatum, pectus carinatum, or combined excavatum/carinatum deformity. One 

child had a submucous cleft palate. Two of the children were born with metopic 

craniosynostosis, and 1 of them needed surgery. Six children had plagiocephaly, of whom 3 

wore a cranial-molding helmet.

Failure to thrive in early childhood was noted in a number of individuals. Some of them 

appeared to have severe cardiac problems, requiring open heart surgery. Thirty-eight percent 

had one or more congenital cardiac defects. These were diverse: atrial septal defect, patent 

ductus arteriosus, patent foramen ovale, mitral valve prolapse, ventricular septal defect, and 

other cardiovascular malformations such as a right aortic arch, dysplastic aortic valve, 

tetralogy of Fallot, ductus arteriosus aneurysm, quadricuspidal aortic valve, aortic ectasia, 

and a mild pulmonary valve stenosis were found (Figure 3A).

Facial Appearance

Individuals shared similar facial features, including a prominent forehead with a high 

anterior hairline, a wide and depressed nasal bridge, and a short nose with full, upturned 

nasal tip (Figure 4, Supplemental Table S4). One third of the individuals had downslanted 

palpebral fissures and prominent eyelashes. Ear malformations were observed in nearly half 

of individuals. Abnormalities included small or dysplastic, low-set, and posteriorly rotated 

ears. The philtrum was long in 39.3% of study cohort. Seventy percent of individuals had a 

thin upper lip, often combined with an everted lower lip and a pointed chin that appeared 

more pronounced at younger age (Figure 5). One third have widely spaced teeth.

Growth and Endocrine System

Twenty-three percent of the individuals had short stature (height < −2 SD, range 2–23 years 

old) (Supplemental Table S3, Supplemental Figure S1E). Nine individuals had hormonal 

deficiencies (Table 1). Of these, 2 had isolated growth hormone deficiency, 4 had 

hypothyroidism, and 3 a combination of both hormonal deficiencies. One 29-year-old 

woman had a narrow thorax with breast hypoplasia. Signs of early puberty were present in 3 
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of 10 individuals older than 6 years for whom information was available; 1 boy and 1 girl 

had pubic hair growth at the age of 7 and 8 years, respectively, and 1 girl had menarche at 8 

years of age.

Development and Neurology

Fifty-two percent of the individuals in this cohort presented with severe ID at the age of 

assessment, 36% had a moderate disability, and 12% had a mild disability. Developmental 

delay was present in all individuals, with motor delay being one of the key features. The 

average age to sit up independently was 12.8 months [cohort range 6–60 months, normal 

range 4–9 months (27)] (Supplemental Figure S2A). Delayed age of walking independently 

[after 18 months of age (27)] (Supplemental Figure S2B) was observed in 86.8% of the 

children, with an average age of 2 years 5.5 months (cohort range 15–72 months).

Interestingly, individuals with a p.Tyr719* mutation started walking at a mean of 3.5 years, 

significantly later than the 2 years 2 months of the remainder of the cohort (p < .0001, 

oneway ANOVA). Seventy-eight percent of the children had hypotonia, while hypertonia 

was present in 3 children. Standing unassisted for long periods of time or walking long 

distances is difficult for many of the children. The walking pattern can be abnormal (e.g., 

broad-based or tiptoe gait, foot slap). Six children learned to walk with support between 5.5 

and 8 years of age, after many years of physiotherapy. A minority were not able to walk at 

the time of last evaluation.

Another key feature was speech delay, which presented in 98.6% of individuals. The mean 

age of first words was 30 months (cohort range 7–72 months, as opposed to a normal range 

of 12–18 months) (Supplemental Figure S2C). Nineteen percent had no language 

development at all. Apparent loss of acquired abilities was reported in 12 children for skills 

such as speaking, counting, riding a bicycle, or being toilet trained. Eighty-one percent of 

the children had a considerable delay in bladder training and many were still not toilet 

trained when approaching puberty.

Sixteen percent had seizures, including absence seizures, focal seizures with reduced 

awareness, epilepsy with continuous spike and waves during slow-wave sleep, or 

unclassified seizures. At least 5 children were reported to have breathholding spells. Some of 

them were hospitalized for multiple cyanotic episodes causing an acute life-threatening 

event.

Autistic Features, Behavior, and Sleep

Ninety-three percent of the individuals presented with autistic features (Figure 3B). Sixty-

seven percent of them were reported to have a clinical diagnosis of ASD. They had a strong 

sensory interest, illustrated by putting fingers or objects in their mouth or being attracted to 

lights or water. Repetitive use of objects, hand and finger mannerisms, and stereotyped 

movements such as rocking back and forth or hand flapping were common. Some presented 

with echolalia. Sixty-seven percent had also been diagnosed with sensory processing 

disorder. A high pain threshold was reported in 63.6% of individuals. Interestingly, all 

individuals with a p.Tyr719* mutation are included in this group (p = 0.0003, Fisher’s exact 

test).
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Although parents report that 88% of the children were overall happy and friendly, behavioral 

problems were reported in 77.6% of them. Several presented with obsessive-compulsive 

behavior, mood disorder, a high anxiety level, temper tantrums, self-injurious behavior, and 

(verbally) aggressive behavior. Forty-four percent of the individuals were hyperactive or 

easily distracted. About one third of them had a diagnosis of attention-deficit/hyperactivity 

disorder. Several individuals were taking behavior-regulating medication such as 

methylphenidate or atypical antipsychotics such as risperidone or olanzapine to help control 

behavioral disturbances, particularly aggression.

Sleep problems were present in 65.2%. Some individuals were extremely anxious, with 

struggles falling asleep and frequent nighttime awakenings. Some were treated with 

melatonin. Many individuals had a low daytime activity level or excessive daytime 

sleepiness; a minority had sleep apnea.

Cerebral Imaging

In this cohort, magnetic resonance imaging of the brain was performed in 75.6% of the 

individuals. Fifty-six percent of them appeared to have cerebral abnormalities, including 

atypical white matter lesions, delayed myelination, cortical dysplasia or atrophy, perinatal 

hypoxic ischemic encephalopathy, hydrocephalus, and hippocampal hypoplasticity (Figure 

3C).

Magnetic resonance images of 5 individuals were studied in detail. The following 

abnormalities were seen in multiple individuals: underdevelopment of the frontal lobes with 

simplified gyral pattern of the cortex and occasional hypoplasia of the bulbus olfactorius and 

chiasma opticum; a thin and/or short, underdeveloped corpus callosum and inferior vermis 

hypoplasia; abnormal, often asymmetric opercularization of the Sylvian fissure with 

sometimes abnormal overlying cortex; dilatation of the lateral ventricles, mostly in the 

frontal areas; and dilated perivascular spaces of Virchow-Robin in the cerebral white matter 

(Figure 6).

Gastrointestinal Problems

Eighty-three percent of the individuals had feeding or gastrointestinal problems, mainly 

gastroesophageal reflux, frequent vomiting, and constipation (Figure 3D). A few had 

excessive appetite. At the age of assessment, 20.9% of the individuals were overweight and 

7.5% were obese, according to standard World Health Organization classification (28). Two 

individuals had Crohn’s disease, 1 of them with a positive familial history. Oral movement 

problems, with implications for feeding and speech, were common (45.6%) and were 

significantly more common in individuals with mutations in the nuclear localization signal 

and C terminal of this domain (p = .0004, Fisher’s exact test). Problems with drinking 

liquids or aspiration difficulties were frequent. Eight individuals were fed by gastrostomy 

tube in early childhood. The individuals suffering from gastrointestinal problems presented 

more often with sleep disturbances (p = .0005, Fisher’s exact test).
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Visual Problems

In 73.6% of the individuals, visual problems, especially hypermetropia (40.3%) and 

strabismus (49.2%), but also myopia and astigmatism, were present (Figure 3E). Many of 

these individuals were prescribed eyeglasses. Forty-one percent of the individuals had a 

diagnosis of cerebral visual impairment. Ophthalmologic defects were diverse: ectropion, 

coloboma, congenital cataracts, nystagmus. Some had an everted or notched eyelid, or mild 

ptosis, the latter observed particularly in individuals with mutations in the nuclear 

localization signal and C terminal of this domain (p = .0004, Fisher’s exact test).

Additional Problems

Musculoskeletal problems were common (Figure 3F). In addition to joint hypermobility, 

mild scoliosis was present in some individuals. Four had hip problems. Thirty-four percent 

of the male individuals had unilateral or bilateral cryptorchidism; 2 had bilateral inguinal 

hernias. Fifty-one percent of the individuals had recurrent infections. Many of the children 

experienced chronic otitis media requiring ventilation tubes. Some individuals (11.7%) were 

diagnosed with mild hearing loss in childhood. Two children had hearing aids for 

sensorineural hearing loss. Ear-nose-throat problems, including narrow ear canals, 

laryngomalacia, and sleep apnea, were present in 32.1% of the individuals.

DISCUSSION

Individuals with mutations in ADNP present with mild to severe ID, autistic features, and a 

delay in language and motor development (Table 1). In addition, the syndrome may be 

accompanied by a wide range of medical conditions, including very frequent (>75%) 

gastrointestinal and feeding problems, hypotonia, and behavioral disturbances. Frequent 

comorbidities (50%−75%) include visual problems, brain malformations, sleep disturbances, 

hand/foot and musculoskeletal abnormalities, and frequent infections. Common (25%−50%) 

associated features include congenital heart disease, otorhinolaryngologic problems, and 

urogenital defects. Up to 25% of individuals have hormonal deficiencies, short stature, or 

seizures. The clinical symptoms of Helsmoortel-Van der Aa syndrome show partial overlap 

with other genetic syndromes that include developmental delay and ASD, as evidenced by 

genetic testing of our cohort for disorders such as Angelman, Prader-Willi, Kleefstra, Smith-

Magenis, or Rett syndromes prior to the diagnosis of an ADNP mutation. As we did not 

have access to the full clinical data of all individuals in the screening cohorts from which our 

cohort was assembled, we cannot determine to what extent a possible ascertainment bias has 

influenced the clinical presentation of the syndrome.

A striking element is the presence of mutational hot spots. The p.Tyr719*, 

p.Leu831Ilefs*82/p.Asn832Lysfs*81, and p.Arg730* mutations each occurred 

independently in $5 individuals. Interestingly, we found evidence for a genotype phenotype 

correlation. We noticed, for instance, that individuals with a p.Tyr719* mutation walked 

later and had a higher pain threshold than the individuals with other mutations. Individuals 

with mutations in the C terminal of the nuclear localization signal domain more often had 

ptosis or oral movement problems than individuals with mutation elsewhere in the gene. Our 

findings encourage further investigations on larger study cohorts to unveil possible 
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additional genotype-phenotype correlations. We did not find any evidence for gender-, IQ-

level- or age-specific correlations.

Social media is increasingly used by parents to connect with one another and with scientists. 

This has been the case for this syndrome (24). These interactions helped us to collect genetic 

and clinical information and the parents’ experiences, providing us with important new 

insights into symptoms, daily struggles, and challenges. While consensus has to grow to 

determine what level of evidence is required to include parental observations of this type in a 

scientific publication, some of these hypotheses have been successfully tested in follow-up 

studies. As an example, the recently reported early teething in individuals with an ADNP 
mutation started as a parental observation (29).

Conclusions

Through a careful and structured comparison of the clinical symptoms of 78 individuals with 

a mutation in the ADNP gene, we delineated the clinical presentation of this specific subtype 

of autism. Our synthesis is indispensable in the decisionmaking process for caretakers and 

relatives. Moreover, it will significantly improve the interpretation of the clinical relevance 

of novel rare variants in the gene. The main limitation of our study is the relatively young 

age of our study cohort. Longterm follow-up studies are necessary to define the 

developmental path of individuals with a mutation in ADNP. While to date most cases have 

been found on a genotype-first basis, a specific combination of features such as ID, ASD, 

speech and motor delay, and additional problems may emerge to screen for ADNP mutations 

in cohorts including older individuals. Finally, this clinical delineation can be used to 

monitor effects of potential future treatment, when available.
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Figure 1. 
Schematic illustration of ADNP and its functional domains. ADNP consists of five exons 

and 14 domains, including nine zinc fingers, NAP (a short octapeptide sequence, single 

letter code, NAPVSIPQ), an eIF4E interaction motif, a nuclear localization signal (NLS), an 

alanine-arginine-lysine-serine (ARKS) motif, a DNA-binding homeobox domain, and a 

PxVxL motif (15,17,30). Zinc fingers: AA 74–97, 107–129, 165–188, 221–244, 447–469, 

489–510, 512–535, 622–647, 662–686; NAP amino acid (AA) 354–361; eIF4E NAP AA 

490–499; NLS AA 716–733; ARKS motif AA 765–768; DNA-binding homeobox domain 

AA 754–814; PxVxL heterochromatin protein 1 (HP1) interaction motif AA 819–823. Black 

arrows indicate the location of the mutations in the reported individuals, highlighting the 

three most frequent mutations.
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Figure 2. 
Demographic data of the reported individuals: (A) country of origin, (B) gender, and (C) age 

distribution.
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Figure 3. 
Clinical features reported in individuals with ADNP mutation: (A) cardiac abnormalities, 

(B) behavioral problems, (C) brain magnetic resonance imaging (MRI) abnormalities, (D) 
feeding and gastrointestinal problems, (E) visual problems, and (F) general health problems. 

ADHD, attention-deficit/ hyperactivity disorder.
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Figure 4. 
Facial features of individuals with mutations in ADNP. Frontal and lateral views. Note the 

prominent forehead with high anterior hairline, the wide and depressed nasal bridge, and 

short nose with full, upturned nasal tip. Informed consent has been obtained for publication 

of all images present in this paper. (Individual numbers from Supplemental Table S2 

corresponding to the pictures: A = 49, B = 34, C = 44, D = 21, E = 17, F = 63, G = 28, H = 

29, I = 45, J = 11, K = 38, L = 15, M = 48, N = 50, O = 60, P = 36, Q = 58, R = 33, S = 51, 

T = 39, U = 42, V = 31, W = 41, X = 10, Y = 70, Z = 27).
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Figure 5. 
Individuals at different ages showing evolution with age. (A) Individual 1 at 10 months, 15 

months, 29 months, 4 years, and 6 years of age; (B) individual 32 at 13 months, 26 months, 

3 years 10 months, 5 years 11 months, 5 years 11 months of age; (C) individual 40 at 4 

months, 13 months, 13 months, 3 years 6 months, 3 years 6 months of age; (D) individual 65 

at 3 months, 10 months, 24 months, 4 years 9 months, 8 years 9 months of age. Informed 

consent has been obtained for publication of all images present in this paper.
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Figure 6. 
Brain magnetic resonance imaging of a child with a mutation in the ADNP gene. (A) Brain 

magnetic resonance image of individual 49 performed at 13 months of age, showing 

generalized and frontal cortical atrophy and a gracile corpus callosum (sagittal, T2 weighted 

fluid-attenuated inversion recovery). (B) Brain magnetic resonance image of individual 49 

performed at 19 months of age, showing frontotemporal atrophy (axial, T1-weighted). (C) 
Brain magnetic resonance image of individual 45 performed at 12 years of age, showing 

mild frontal atrophy (axial, T2-weighted).
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Table 1.

Clinical Features of the Reported Individuals With Mutation in the ADNP Gene

Clinical Features Sample n/
Total N

General Information

    Age at examination, range (mean) 1–40 years
(8 years 2 mo)

78/78

    Gender, female:male, n 34:44 78/78

    Gestational age, weeks 38.7 70/70

    Age of father at time of birth, years 32.1 65/65

    Age of mother at time of birth, years 29.8 67/67

Mutation Information, %

    De novo ADNP mutation 97.1 68/70

    Nonsense mutation 56.4 44/78

    Frameshift mutation 43.6 34/78

Growth

    Short stature, < −2 SD, % 23.2 16/69

Neurodevelopmental Features

    Developmental delay/ID, % 100.0 73/73

        Mild ID 12.3 9/73

        Moderate ID 35.6 26/73

        Severe ID 52.1 38/73

    Motor delay, % 95.9 71/74

        Age at sitting independently, years,
Mean

1.1 58/58

        Walking independently, % 86.8 66/76

        Age at walking independently, years,
Mean

2.5 64/64

    Speech delay, % 98.6 70/71

        Age at first words, years, mean 2.5 49/49

        No speech, % 19.4 14/72

    Autism spectrum disorder including
autistic features, %

92.8 64/69

    Attention-deficit/hyperactivity
disorder, %

43.9 25/57

    Loss of skills, % 20.3 12/59

    Bladder training delay, % 81.1 43/53

Feeding and Gastrointestinal Problems, % 83.3 60/72

    Gastroesophageal reflux (disease) 58.5 38/65

    Constipation 49.3 34/69

    Oral movement problems 45.6 26/57

    Lack of satiation 41.5 22/53
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Clinical Features Sample n/
Total N

    Problems swallowing liquids 32.2 19/59

    Frequent vomiting 29.5 18/61

    Aspiration difficulties 21.4 12/56

    Gastrostomy tube 12.7 8/63

    Obesity 7.5 5/67

Neurological Problems and Behavior, %

    Hypotonia 78.3 54/69

    Hypertonia 3.8 3/78

    Seizures 16.2 12/74

    Cerebral imaging-structural brain
Abnormalities

55.9 33/59

        Wide ventricles 29.4 15/51

        Corpus callosum
Underdevelopment

18.4 9/49

        Cerebral atrophy 17.8 8/45

        Delayed myelination 8.9 4/45

        White matter lesions 7.5 4/53

        Cortical dysplasia 3.8 2/52

        MRI brain abnormalities,
unspecified

36.2 17/46

    Behavioral problems 77.6 38/49

        Temper tantrums/aggression 83.3 20/24

        Obsessive-compulsive behavior 64.0 16/25

        Mood disorder 56.3 9/16

        Self-injurious behavior 20.0 2/10

    Insensitivity to pain 63.6 35/55

    Sensory processing disorder 66.7 28/42

    Sleep problems 65.2 45/69

Visual System, % 73.6 53/72

    Strabismus 49.2 31/63

    Cerebral visual impairment 41.2 14/34

    Hypermetropia 40.3 25/62

    Ptosis 24.2 15/62

    Nystagmus 11.7 9/77

    Myopia 7.9 5/63

    Colobomata 5.6 4/72

Ear-Nose-Throat System, % 32.1 25/78

    Narrow hearing canal 87.5 7/8

    Frequent otitis media 85.7 12/14

    Hearing tubes 73.3 11/15
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Clinical Features Sample n/
Total N

    Hearing loss 11.7 7/60

    Obstructive sleep apnea syndrome 6.6 5/76

Cardiovascular System, % 37.7 26/69

    Atrial septal defect 15.9 11/69

    Patent ductus arteriosus 8.7 6/69

    Mitral valve prolapse 5.8 4/69

    Patent foramen ovale 5.8 4/69

    Ventricular septal defect 4.3 3/69

    Tetralogy of Fallot 1.4 1/69

    Cardiac defect, unspecified 8.7 6/69

Urogenital System, % 28.0 21/75

    Cryptorchidism 34.3 12/35

    Renal anomalies 12.5 6/48

    Small genitalia 5.4 4/74

Endocrine System, % 24.5 12/49

    Early puberty 30.0 3/10

    Thyroid hormone problems 15.2 7/46

    Growth hormone deficiency 10.9 5/46

Musculoskeletal System, % 54.9 39/71

    Joint hypermobility 37.7 23/61

    Scoliosis 17.2 11/64

    Hip problems (hip dysplasia, Perthes’
disease, dislocated hips)

7.5 4/53

    Thorax abnormalities 22.2 12/54

        Pectus excavatum 14.8 8/54

        Pectus carinatum 5.6 3/54

        Narrow thorax 1.9 1/54

    Abnormal skull shape 13.9 10/72

        Plagiocephaly 8.3 6/72

        Trigonocephaly 2.8 2/72

        Brachycephaly 4.2 3/72

Hand and Foot Abnormalities, % 62.3 43/69

    Finger abnormalities (prominent
distal phalanges, prominent
interphalangeal joints, polydactyly,
interdigital webbing, 2–3 toe
syndactyly, fifth finger clinodactyly,
small fifth finger or absent distal
phalanx of fifth finger,
tapering fingers, brachydactyly, broad 
fingers, fetal
fingertip pads)

46.3 31/67

    Single palmar crease 10.8 7/65
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Clinical Features Sample n/
Total N

    Nail anomalies 25.0 14/56

    Sandal gap 19.6 11/56

    Toe abnormalities (broad halluces,
2–3 toe syndactyly,
brachydactyly)

10.8 7/65

Other, %

    Early teeth 71.1 32/45

    Frequent infections 50.7 35/69

    Widely spaced nipples 20.4 11/54

    Umbilical/inguinal hernia 8.5 5/59

ID, intellectual disability; MRI, magnetic resonance imaging.
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