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Abstract

The relationship between fat, bone and systemic metabolism is a growing area of scientific 

interest. Marrow adipose tissue is a well-recognized component of the bone marrow milieu and is 

metabolically distinct from current established subtypes of adipose tissue. Despite recent 

advances, the functional significance of marrow adipose tissue is still not clearly delineated. Bone 

and fat cells share a common mesenchymal stem cell (MSC) within the bone marrow, and 

hormones and transcription factors such as growth hormone, leptin, and peroxisomal proliferator-

activated receptor γ influence MSC differentiation into osteoblasts or adipocytes. MSC osteogenic 

potential is more vulnerable than adipogenic potential to radiation and chemotherapy, and this 

confers a risk for an abnormal fat-bone axis in survivors following cancer therapy and bone 

marrow transplantation. This review provides a summary of data from animal and human studies 

describing the relationship between marrow adipose tissue and hematopoiesis, bone mineral 

density, bone strength, and metabolic function. The significance of marrow adiposity in other 

metabolic disorders such as osteoporosis, diabetes mellitus, and estrogen and growth hormone 

deficiency are also discussed. We conclude that marrow adipose tissue is an active endocrine organ 

with important metabolic functions contributing to bone energy maintenance, osteogenesis, bone 

remodeling, and hematopoiesis. Future studies on the metabolic role of marrow adipose tissue may 

provide the critical insight necessary for selecting targeted therapeutic interventions to improve 

altered hematopoiesis and augment skeletal remodeling in cancer survivors.
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Introduction

Marrow adipose tissue is a well-recognized component of the bone marrow 

microenvironment and is metabolically distinct from other subtypes of adipose tissue. The 

functional significance of marrow adipose tissue remains unknown. However, growing 

evidence suggests an inverse association between marrow adipocytes and measures of 

hematopoiesis, as well as bone mineral density.[1] Recent advances in imaging modalities 

have provided improved tools to measure marrow adiposity; to investigate the underlying 

physiology; and to study the function of this intriguing fat depot. This review summarizes 

our current understanding of the following: (1) the role of stem cell interaction in the bone 

marrow niche in regulating hematopoiesis, marrow adiposity and bone formation; (2) current 

delineated subtypes of adipose tissue and their physiologic function; and (3) marrow adipose 

tissue as a distinct endocrine organ with future therapeutic implications.

Stem Cells and the bone marrow niche

The bone marrow microenvironment provides a critical regulatory milieu for the 

differentiation of hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). 

HSCs are the developmental origin of the hematopoietic system and comprise 0.001% of 

total bone marrow cells.[2] They arise from dorsal aortic section of the aorta-gonad-

mesonephros region to populate the fetal liver and subsequently migrate to the spleen and 

eventually to the bone marrow.[3] Differentiated hematopoietic cells include erythrocytes, 

platelets, and white blood cells, that give rise to innate and adaptive immune function.[4] 

MSCs, on the other hand, are the origin of connective tissue cells such as osteoblasts, 

adipocytes, chondrocytes and myocytes. In addition to the remodeling and repair of various 

organ systems, MSCs play a critical role in maintaining the HSCs population within the 

bone marrow microenvironment.[5]

The endosteal bone surface is the principal component of the hematopoietic niche, and plays 

an influential role in HSC differentiation and interaction with osteoblasts, osteoclasts, and 

MSCs.[6] While the primary function of osteoblasts is to secrete osteoid for bone 

mineralization, these cells also play a major role in HSC regulation.[7] Osteoblasts prevent 

HSC mobilization from the bone marrow niche and promote HSC quiescence through the 

secretion of soluble stromal-cell derived factor 1 (also known as CXCL12) and 

angiopoietin-1.[8, 9] Osteoblasts and MSCs are closely coupled to HSC proliferation, and 

increases in osteoblast population lead to concomitant increases in HSC numbers.[7, 10] 

This expansion is mediated by osteoblastic Notch signaling[7] and other factors such as 

osteopontin,[11] Wnt, N-cadherin, thrombopoietin,[12] and angiopoietin.[13] The delicate 

interaction between these cell populations is further highlighted in conditions such as 

inflammation, obesity, aging,[14] type 1 diabetes mellitus [15], or cancer therapy that 
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change the number and activity of osteoblasts and MSCs, and invariably demonstrate an 

effect on HSCs.[16] Additionally, knockout of MSC severely impairs the maintenance of 

HSC progenitors and their ability to home to the bone marrow, further highlighting the 

critical role that MSCs play in HSC maintenance.[17] Therefore, the complex cellular 

interactions in conjunction with the properties of the bone marrow microenvironment form 

the marrow regulatory niche that influences the actions and activities of these marrow 

progenitor cells.

On the other hand, osteoclasts are multinucleated cells that arise from hematopoietic cells 

and are predominantly responsible for bone resorption. In addition to bone remodeling, 

osteoclasts are also involved in HSC mobilization within the bone marrow milieu through 

enzymatically cleaving CXCL12.[18] Thus, a competitive balance between osteoblasts and 

osteoclasts is necessary for the regulation of HSC in the marrow microenvironment (Figure 

1). Osteoclast-mediated bone resorption increases calcium levels and this further enables 

HSCs (via calcium receptors) to navigate and lodge within the bone marrow endosteal 

surface.[19] While the size of the HSC population is closely associated with osteoclast 

numbers, bisphosphonate therapy, which drastically slows osteoclast activity, results in 

curtailed osteoblast-mediated increases in HSC numbers.[20] Hence, bisphosphonate 

treatment increases the risk of impaired hematopoietic engraftment, as functional osteoclasts 

are required for the regulation of hematopoiesis both independently and through co-

operation with other marrow cells.

Accumulating evidence indicates that multiple niches are required for each hematopoietic 

process.[1] The physical and functional interaction of the different niches and cells residing 

within the bone marrow (i.e. changes in the bone marrow composition with enhanced 

adiposity) can affect HSC and hematopoiesis. For example, osteoblast lineage Gsα-

dependent signaling allows for normal B-cell development, thus emphasizing the importance 

of bone-cell interaction on B-cell fate.[21] Similar to HSCs, B-cells require exposure to 

CXCL12 during development. CXCL12 is critical for the maintenance of multipotent 

progenitors in differentiation to the B-cell lineage. By intercalating within the hematopoietic 

milieu and disrupting the cellular composition of the bone marrow niche, adipocytes 

displace and interfere with the connection between HSCs and other niche cells to exert a 

negative influence on hematopoiesis. Thus, even small changes in the microenvironment, 

such as enhanced bone marrow adiposity, can affect a particular niche or disrupt cellular 

trafficking.[22]

Adipocytes share the bone marrow milieu with osteoblasts, MSCs, osteoclasts, and vascular 

cells. The role of adipocytes on hematopoiesis in this niche is complex, though 

predominantly characterized as inhibitory.[1, 23] The increased bone marrow adiposity seen 

after chemotherapy and radiation treatment is antagonistic to hematopoietic recovery.[1] The 

peroxisome proliferator-activated receptor-c (PPAR-c) inhibitor bisphenol A diglycidyl ether 

(BADGE) prevents bone marrow adipocyte formation in vitro and in vivo in mice models of 

streptozocin-induced diabetes.[1, 24] Administration of BADGE to lethally irradiated mice 

two weeks after bone-marrow transplantation results in the inhibition of bone marrow 

adipocyte formation, with robust cellular engraftment and higher peripheral white blood cell 

counts.[1] This suggests that PPAR-c inhibitors, or other adipocyte inhibitors, might serve as 
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adjuvants to hematopoietic recovery following hematopoietic stem cell transplantation 

(HSCT).

β-catenin signaling and activation of the canonical Wnt pathway, targeted by most cancer 

treatment regimens, play a critical role in MSC differentiation and are required for 

hematopoietic regeneration following injury.[25] Total body irradiation, used as part of the 

treatment regimens in allogeneic HSCT, is associated with enhanced marrow adiposity, 

suggesting that MSC interaction with HSCs within the bone marrow niche is required for 

successful engraftment.[26, 27] We previously demonstrated markedly increased marrow 

adiposity, abnormal bone microarchitecture, and abnormal fat distribution in long-term 

childhood HSCT recipients after total body irradiation.[26] Importantly, these patients also 

had occult vertebral compression fractures as well as widespread vertebral deformities, 

highlighting the fracture risk associated with increased marrow adiposity.

Bone marrow adipocytes may directly modify HSC differentiation through paracrine effects,

[28–30] and adipocyte-derived factors including adiponectin, leptin, prostaglandins, and sex 

steroids can regulate hematopoiesis.[31, 32] Bone and fat cells share a common MSC within 

the bone marrow. Human cell culture studies suggest that MSC osteogenic potential is more 

vulnerable to radiation and chemotherapy than adipogenic potential. Consequently, 

hormones and transcription factors such as growth hormone, leptin, and peroxisomal 

proliferator-activated receptor γ (PPAR- γ) can influence MSC differentiation into either 

osteoblasts or adipocytes. Secreted by adipocytes, leptin regulates appetite and energy 

metabolism. Leptin also plays a critical role in skeletal metabolism through sympathetic 

neuronal signaling within the hypothalamus.[33] Recent data indicate that human bone 

marrow adipocytes produce leptin in a regulated manner that becomes suppressed during 

caloric restriction and systemic inflammation.[34] While the systemic function of marrow-

adipose tissue derived leptin has yet to be determined, increasing evidence suggests that 

leptin produced by bone marrow adipocytes acts predominantly as an autocrine and 

paracrine factor within the bone marrow milieu to influence hematopoiesis and 

osteoblastogenesis.[30, 35]

Adipose tissue an intriguing endocrine organ

Adipose tissue is a metabolically active tissue comprised of mature adipocytes, endothelial 

cells, immune cells, pre-adipocytes, and adipose progenitor cells. Mammalian adipose tissue 

is traditionally classified into two distinct subtypes: white adipose tissue (WAT); and brown 

adipose tissue (BAT), and further divided into regional depots based on structural 

organization, cellular composition, biochemical profile, and biological function.[36] The 

traditional role of WAT is long-term energy storage. Excess energy stimulates lipogenic 

enzymes that synthesize triglycerides for storage,[37] while reduced caloric intake 

stimulates enzymatic lipid hydrolysis and release of free fatty acids from fat stores into the 

blood stream for metabolism by other organs.[38] WAT is dispersed throughout the body. 

The largest WAT depots are located within the visceral and subcutaneous regions and exhibit 

notable region-specific metabolic differences. In general, the expansion of visceral adipose 

tissue is associated with an increased risk of type 2 diabetes mellitus (T2DM), 

cardiometabolic disease and the metabolic syndrome.[39] In mice, transplanting 
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subcutaneous fat into the visceral cavity improves glucose metabolism, further highlighting 

the intrinsic difference of these two fat depots.[40] Visceral adipocytes are also more 

responsive to lipolytic signals which upregulate the transport of free fatty acids, while 

subcutaneous adipocytes serve as stable energy reserves.[41] During periods of caloric 

excess, WAT mass expands through adipocyte hypertrophy and hyperplasia by terminal 

differentiation of committed pre-adipocytes into mature adipocytes, a process dependent on 

PPAR-γ.[41] As WAT deposits expand in states of obesity, the fat tissue undergoes 

remodeling to facilitate tissue expansion. Dead adipocytes are removed by adipose tissue 

macrophages that infiltrate the fat tissue in response to adipocyte death,[42] and these 

macrophages contribute to an increased inflammatory profile in WAT depots present in 

states of obesity and often associated with the development of insulin resistance.[43]

In contrast to WAT, BAT appears as discrete adipose tissue located along the neck, 

supraclavicular, paravertebral, and peri-renal regions. Brown adipocytes originate from 

MYF-5 positive dermomyotomes and become active upon cold exposure.[44, 45] BAT is 

rich in mitochondria and functions in basal and inducible energy expenditure by uncoupling 

protein 1 (UCP1),[46] which stimulates proton leak from the mitochondrial membrane to 

uncouple respiration from ATP synthesis and produce heat. BAT’s thermogenic activity is 

typically controlled by catecholamines, including the β-adrenergic signaling, as well as 

thyroid hormone.[47] BAT inversely correlates with body mass index[48] and, along with its 

role in adaptive thermogenesis, also functions in protecting against obesity, insulin resistance 

and T2DM.[49] In the past decade, a “third” fat tissue (the so-called “beige” adipose tissue) 

has been described and sparked much research interest. Beige adipose tissue is an inducible 

thermogenic adipose tissue that forms in WAT after exposure to different environmental 

triggers, including chronic cold exposure.[50] Beige fat resembles BAT in terms of 

displaying thermogenic activity, and originates from mesenchymal stem cells that express 

Pdgfrα, MYF5-negative mesoderm precursors, with a subset (approximately 15%) 

originating from MYH11-positive smooth muscle-like precursors.[44, 51] Unlike the firmly 

established metabolic and endocrine role of WAT in various physiologic states and disorders, 

markers and pathways associated with brown and beige adipose tissue are currently under 

active investigation. There is growing scientific interest in activating these specific fat tissues 

as potential therapeutic options to reduce metabolic disorders. Additional studies are needed 

to better elucidate metabolic properties and systemic regulating factors for “browning” of 

WAT as future therapeutic targets for treating obesity, T2DM and other metabolic disorders 

in cancer survivors.[45]

Marrow adipose tissue, a distinct fat tissue

Situated within the bone marrow cavity, marrow adipose tissue (MAT) accounts for 

approximately 10% of the total fat mass in healthy adult humans.[52] The origin of bone 

marrow adipocytes remains unclear and it is thought that these adipocytes differentiate from 

MSCs located within the bone marrow cavity, where they subsequently differentiate into 

white and beige adipose tissue. During early childhood, bone marrow is predominantly 

composed of hematopoietic tissue.[53] However, in both males and females, exponential 

accumulation of MAT begins at birth, starting with the distal bones,[53] with males 

demonstrating greater amounts of MAT compared to females.[54] By age 25 years, 
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approximately 70% of the human bone marrow consists of MAT, with continued gradual 

accumulation of MAT throughout life.[52] While MAT was originally recognized as a 

distinct adipose depot by the mid to late twentieth century,[55] recent advances in medical 

research along with newer imaging modalities such as magnetic resonance spectroscopy, 

positron emission tomography-computed tomography (PET-CT), and osmium tetroxide 

staining coupled with micro-CT, have provided the necessary tools to study the function and 

physiology of this unique fat depot.[56]

MAT’s origin is distinct to both WAT and BAT and is derived from progenitors that express 

osterix (Sp7), a transcription factor essential for osteoblastogenesis and bone formation.[57] 

Recent gene profiling comparing adult bone marrow-derived adipocytes to epididymal 

adipocytes also reveal different gene patterns, further highlighting MAT differences from 

WAT and BAT.[58] For example, bone marrow adipocytes demonstrate low expression of 

adipocyte-specific genes such as PPARγ, but high expression of genes associated with early 

adipocyte differentiation (C/EBPβ, RGS2), as well as genes that regulate bone cell function 

(SFRP4, TNFα, TFG).[59]

The distinct developmental origin and lipid composition of marrow adipocytes has generated 

new-found scientific interest into the role and metabolic function of MAT.[60] Similar to 

WAT, the lipid content of MAT is entirely composed of triglycerides,[23] but, unlike WAT, 

the MAT fatty acid component consists of saturated, monounsaturated, and polyunsaturated 

fat.[52] Fatty acid metabolism is critical for HSC and MSC proliferation and function. 

During times of metabolic need, adipose tissue lipases break down triglycerides to release 

free fatty acids for use as an energy source to regulate osteoblasts, osteoclasts, and 

hematopoietic cell populations.[61] In humans, the fatty acid composition of MAT is 

significantly higher in saturated fat content, which is distinct from fatty acid composition of 

subcutaneous WAT.[62] The difference in fatty acid content of adipocytes located within 

hematopoietic dominant regions of the bone marrow compared to non-hematopoietic regions 

suggest that bone marrow adiposity influences hematopoiesis by providing local source of 

fatty acids [23, 60]. Thus bone marrow adiposity can also influence hematopoiesis by 

providing a local source of fatty acids.

Theories regarding the functional role of MAT have varied over the past few decades, 

particularly as MAT accumulation is associated with aging, osteoporosis, type 1 diabetes 

mellitus (T1DM), T2DM, anorexia nervosa, estrogen and growth hormone deficiency.[52] 

During states of nutritional deprivation, MAT and WAT show marked differences, with 

varying responses to nutritional cues. In human models of caloric restriction, such as 

anorexia nervosa, MAT stores are increased compared with healthy weight controls, while 

WAT stores are low.[63–65] The mechanism of how caloric restriction triggers the 

development of MAT is unclear and a signal, such as the hormone ghrelin released 

systemically or locally, may trigger other hormonal responses to induce marrow 

adipogenesis.[66] The increased MAT stores seen in anorexia nervosa and caloric restriction 

have been discussed extensively in prior reviews.[57, 65]

MAT exists in two distinct subtypes designated as constitutive and regulated MAT, each with 

different characteristics and function.[60] Regulated MAT (rMAT) is predominantly located 
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in proximal skeletal sites and is interspersed within regions of active hematopoiesis. In 

contrast, constitutive MAT (cMAT) forms in the distal skeletal regions in early postnatal life 

and remains largely unchanged in the face of systemic or environmental challenges. The 

distinct metabolic role and function of these MAT subtypes are further highlighted by 

variations in lipid composition and gene expression.[60] However, future studies are 

required to better delineate the role of these distinct MAT subpopulations, where cMAT may 

serve an important function in early vertebrate development, in contrast to rMAT’s role in 

hematopoiesis and skeletal remodeling.[56, 60]

Is marrow adipose tissue an endocrine organ?

Increases in MAT with aging and other clinical conditions such as anorexia nervosa, T1DM, 

T2DM, glucocorticoid treatment and cancer therapy raises the fundamental question 

regarding the function of this unique adipose tissue. MAT expresses and secretes adiponectin 

and this exerts systemic metabolic effects, prompting investigators to classify it as a 

functional endocrine organ.[57] In humans, low circulating levels of adiponectin are present 

in states of obesity, and enhanced WAT is a well-established biomarker of insulin resistance 

and cardiovascular disease.[67] Conversely, serum adiponectin concentrations increase in 

lean states, such as caloric restriction in humans with anorexia nervosa.[68] Reduced 

circulating levels of adiponectin in obesity likely derives from reduced adiponectin 

expression and secretion due to mitochondrial dysfunction from increased inflammation, 

hypoxia, as well as endoplasmic reticulum stress.[67] Findings in animal models collectively 

suggest that MAT expansion is required for increased adiponectin production during periods 

of caloric restriction, supporting the conclusion that MAT contributes to the increases in 

circulating adiponectin measured in this context. In addition, the increased adiponectin 

concentrations seen during caloric restriction may also play a role in skeletal muscle 

adaptation.[57] However, the consequences of adiponectin production from MAT have yet to 

be fully delineated.

Fat and bone: the role of adipose tissue and the skeleton

MAT is found across all skeletal sites in humans, and compromises up to 15% of total fat 

stores in adults.[57] Skeletal homeostasis is actively mediated through MAT interaction with 

osteoblasts.[69–71] While endosteal adipocytes are rare in neonates, these cells steadily 

accumulate throughout the lifespan and occupy a greater proportion of the bone marrow 

cavity in the axial skeleton with aging.[72] MAT is increased in metabolic disorders with 

low bone mass (e.g. T1DM or anorexia nervosa).[63, 73] As noted, osteoblasts and 

adipocytes derive from a common pool of mesenchymal progenitors, superficially 

suggesting a simple tradeoff between bone and fat mass. Pref-1, a member of the epidermal 

growth factor-like family of proteins, is a known regulator of adipocyte and osteoblast 

differentiation.[65] Wren et al. were the first to report an inverse association between 

femoral cortical bone area and MAT in both young and older subjects.[74] Furthermore, an 

inverse relationship between bone mineral density (BMD) and MAT was also demonstrated 

in groups of healthy Caucasian women[75] and middle-age Caucasian and African 

American men and women.[76] Yet, the negative association of high marrow adiposity and 

low bone mass is variable and far from a simple inverse relationship. In healthy individuals, 
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marrow adipocytes increase rapidly in long, axial bones around peak skeletal mass 

acquisition during puberty. As noted previously, males have greater amounts of MAT when 

compared with females, despite higher BMD.[54, 72] Several animal models have also 

demonstrated high bone mass despite increased marrow adipose tissue.[52, 77] These 

findings suggest that simultaneous accumulation of bone mass and MAT can occur, and that 

the MAT in healthy individuals somehow differs from the marrow fat accumulation seen in 

various disease processes, including cancer survivors following radiation and chemotherapy. 

Similarly, the relationship between WAT and bone is equally complex and highly dependent 

on the location of the fat depot. High body mass confers greater mechanical loading and 

enhanced bone mass, yet greater visceral WAT has deleterious effects on bone and 

contributes to osteoporosis by disrupting bone remodeling through the release of 

inflammatory cytokines, such as IL6 and TNFα.[78] In our study of long-term HSCT 

survivors following total body irradiation, MAT volume was two-fold greater when 

compared with age- and sex-matched controls. The enhanced MAT was also associated with 

greater visceral adiposity and fat infiltration of muscle, reduced bone volume fraction, and 

abnormal bone microarchitecture.[26] Similarly, adult patients receiving pelvic radiation 

therapy in combination with chemotherapy experience significant bone marrow cell 

depletion, bone loss with increased fracture risks, and enhanced MAT.[79]

Increased MAT is present in osteoporosis, and MAT is an important indicator of bone 

integrity.[80] Iliac bone biopsies in osteoporotic individuals demonstrate increased MAT 

volume and decreased trabecular bone volume compared with age-matched controls, 

suggesting increased fracture risk in individuals with increased MAT.[81, 82] Similarly, 

Wehrli et al. demonstrated that enhanced vertebral adiposity is an independent predictor of 

fracture risk.[83] Lower proportion of unsaturated lipid content is noted in MAT of 

individuals with osteoporosis and osteopenia based on proton spectroscopy imaging.[84] 

However, it is not known whether marrow fat saturation or unsaturation contributes to 

increased fracture risks.

Mechanical loading also serves as an important player in the bone-fat interaction for skeletal 

homeostasis. PPAR-γ is required for adipocyte differentiation, and treadmill running in rats 

prevents ovariectomy-induced bone loss by limiting PPAR-γ expression.[85] Unloading in 

humans and animal models is associated with increased MAT and low bone mass.[86] In rat 

models exposed to hind limb unloading, impaired bone acquisition and greater marrow 

adiposity is seen, and these abnormalities normalize upon skeletal reloading.[87, 88] At the 

cellular level, MSCs subjected to subtle mechanical signals in vivo demonstrate an increased 

propensity towards osteoblastogenesis, even if situated in highly adipogenic environments.

[89, 90] Similarly, in vitro stretching of MSCs reduces PPAR-γ signaling and adipogenesis, 

even during PPAR-γ activation.[91] Interestingly, β-catenin signaling is also increased 

during mechanical stretching and serves as an important mechanosensitive regulatory 

mechanism in the stem cell niche and a further explanation of how exercise can influence the 

bone marrow microenvironment.[92] Recent intervention studies in healthy children 

demonstrate increases in BMD along with significant decreases in femoral MAT with 

activity.[93, 94]
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Lastly, in addition to exercise, growth hormone serves as another key factor in the bone-fat 

interaction, particularly as growth hormone is secreted in response to exercise.[95] During 

aging, the bone marrow cavity gradually becomes filled with adipocytes and bone is lost. 

Concomitantly, levels of growth hormone also decline. In mice and humans with growth 

hormone deficiency, adipocytes accumulate within the bone marrow cavity and these levels 

normalize with growth hormone replacement.[96] In these individuals, growth hormone 

replacement is also accompanied by parallel increases in osteoblast activity and increased 

BMD.[96]

Marrow adipose tissue and metabolic disorders

T1DM is a significant risk factor for impaired cortical geometry, low bone mass, and 

fractures.[73, 97] Increased MAT is present in patients with T1DM regardless of disease 

severity,[98] yet it is still unclear if marrow adipocyte infiltration in these patients plays a 

central role in bone loss. In animal models of streptozocin-induced T1DM, expression of 

proadipocyte genes such as PPARγ was increased in long bones along with reduced 

expression of osteocalcin.[99, 100] Interestingly, subsequent treatment with PPARγ 
antagonist, BADGE, in these animal models prevented the accumulation of marrow 

adiposity, without improvement in the accompanied skeletal loss.[100] These investigations 

suggest that the PPARγ-mediated interaction between bone formation and enhanced marrow 

adiposity is probably not the sole mechanism responsible for bone loss in T1DM. On the 

other hand, treatment with thiazolidinediones (TZD), agonists of the PPARγ receptors and 

strong inducers of MAT, are linked with bone loss in the appendicular skeleton of rodents.

[47, 101] Yet, conflicting results are noted in humans with respect to TZD treatment and 

marrow adipose tissue expansion, suggesting need for more detailed investigation.[102]

Skeletal fragility is also a well-recognized feature of T2DM even in the presence of normal 

BMD.[103] Despite elevated fracture risks, increased MAT is not consistently present in 

patients with T2DM. To date, studies using magnetic resonance spectroscopy suggest an 

increased saturated to unsaturated lipid ratio within the marrow cavity of women with 

T2DM who have fractures.[104] While marrow adiposity is not a feature of insulin 

resistance, in women with T2DM who have hemoglobin A1C levels >7%, higher levels of 

MAT were noted compared with those who have levels ≤ 7%, alluding that perhaps MAT is 

affected by glycemic control.[105]

The decline in estradiol and dihydrotestosterone levels, as seen with aging or as a 

consequence of cancer therapy, increases expression of PPARγ and differentiation of MSCs 

into adipocytes. In animal models following ovariectomy, adipocyte infiltration and marked 

increase in bone marrow adiposity are seen.[106] In addition, postmenopausal women 

undergoing estrogen treatment demonstrate a decline in bone marrow adipocyte number and 

size as well as in MAT, suggesting a regulatory action of estrogen and androgens on bone 

marrow cells.[107] Finally, mice deficient in 11β-hydroxysteroid dehydrogenase 1, an 

isoenzyme that interconverts active glucocorticoids to its inert 11-keto forms, lack marrow 

adipocytes, suggesting a role for active glucocorticoids in MAT expansion.[108] Hence, the 

increased MAT seen in anorexia nervosa may also reflect an impact of elevated circulating 

cortisol levels.[109, 110]
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Future directions and therapeutic implications of marrow adiposity

Over the past few decades, the majority of studies have focused on discerning the basic 

function and endocrine role of MAT, an intriguing source of adiposity in mammals. Animal 

studies indicate that MAT is an endocrine organ capable of undergoing pathologic changes 

and evolving in the presence of various disease states. The bone marrow niche regulates 

hematopoiesis and osteoblastogenesis. Factors influencing this process occur through 

delicate cellular, physical and chemical interactions within the bone marrow 

microenvironment. Thus, even small changes to the niche composition (e.g. cancer therapy) 

can have profound impacts on hematopoiesis, adiposity and skeletal health. While data from 

animal and human studies support the hypothesis that MAT is associated with skeletal 

remodeling, many questions still remain unanswered regarding the source, origin, and 

function of MAT and the local role of MAT in the skeletal microenvironment. Although 

animal studies have informed our basic understanding of MAT, future comprehensive 

clinical studies are needed to determine its relevance in treating metabolic disorders, 

improving skeletal health, and enhancing hematopoiesis. These efforts will provide the 

foundation for future targeted therapeutic interventions with the aim to address altered 

hematopoiesis and maximize skeletal remodeling in different patient groups including 

survivors of cancer and bone marrow transplantation.
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Abbreviations

BADGE Bisphenol A diglycidyl ether

BAT Brown adipose tissue

BMD Bone mineral density

cMAT Constitutive marrow adipose tissue

HSC Hematopoietic stem cell

HSCT hematopoietic stem cell transplantation

MAT Marrow adipose tissue

MSC Mesencymal stem cell

PPAR-c Peroxisome proliferator-activated receptor-c

PPAR- γ Peroxisomal proliferator-activated receptor γ

rMAT Regulated marrow adipose tissue

Sp7 Ostirix

T1DM type 1 diabetes mellitus
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T2DM type 2 diabetes mellitus

TZD Thiazolidinediones

UCP1 Uncoupling protein 1

WAT White adipose tissue
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Figure 1. 
The endosteal bone surface is the principal component of the hematopoietic niche, and plays 

an influential role in hematopoietic stem cell (HSC) differentiation and interaction with 

osteoblasts, osteoclasts, and mesenchymal stem cells (MSCs). Osteoblasts and MSCs are 

closely coupled to HSC proliferation. Knockout of MSC severely impairs the maintenance 

of HSC progenitors and their ability to home to the bone marrow, further highlighting the 

critical role that MSCs play in HSC differentiation. Activation of the canonical Wnt 

pathway, targeted by most cancer treatment regimens, play a critical role in MSC 

differentiation. Hormones and transcription factors such as Pref 1, growth hormone, leptin, 

and peroxisomal proliferator-activated receptor γ (PPAR- γ) can influence MSC 

differentiation into either osteoblasts or adipocytes. Osteoclasts are multinucleated giant 

cells that arise from hematopoietic cells and are predominantly responsible for bone 

resorption. In addition to bone remodeling, osteoclasts are also involved in HSC 

mobilization within the bone marrow milieu through enzymatically cleaving soluable 

stromal-cell derived factor 1 or CXCL12. The receptor activator of NF-κB ligand (RANKL) 

plays a critical role in osteoclast formation, and the biological activity of RANKL is 

moderated by osteoprogerin (OPG), a physiological decoy receptor. Thus, a competitive 

balance between osteoblasts and osteoclasts is necessary for the regulation of HSC in the 

bone marrow milieu.
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Figure 2. 
Mammalian adipose tissue is currently classified into distinct subtypes of white adipose 

tissue (WAT), brown adipose tissue (BAT), and marrow adipose tissue (MAT). Not shown in 

this figure, is another subtype referred to as “beige” adipose tissue further described in the 

review text. These adipose tissues are further divided into regional depots based on structural 

organization, cellular composition, biochemical profile, and biological function. MAT has 

endocrine and paracrine functions. Recent gene profiling of marrow-derived adipocytes 

reveal different gene patterns, further highlighting its difference from WAT and BAT. MAT 

is further divided into two distinct subtypes: regulated MAT (rMAT) and constitutive MAT 

(cMAT). rMAT is predominantly located in the proximal skeletal sites and interspersed 

within regions of active hematopoiesis, while cMAT is found predominantly in the distal 

skeletal regions with no corresponding interspersed areas of active hematopoiesis. MAT 

expresses and secretes adiponectin to exert systemic metabolic effects. However, many 

systemic effects of adiponectin and other MAT-derived endocrine factors have yet to be 

delineated. Local production of leptin or adiponectin might influence osteoblast and 

osteoclast function. The positive and negative effects of these factors are indicated by “+” or 

“−”, while inconclusive effects by a “?”. Future clinical studies are needed to better delineate 

the paracrine and endocrine functions of MAT as potential targeted interventions for 

treatment of various hematopoietic, metabolic and skeletal disorders.
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