478 NADKARNI ET AL., EAV/CR Storage for Scientific Data

Application of Information Technology =

Organization of
Heterogeneous Scientific
Data Using the
EAV/CR Representation

PrakasH M. NADKARNI, MD, Luis MAReENcO, MD, RoLaND CHEN, MD,
EmmAaNoOUIL SKouFos, PHD, GOrRDON SHEPHERD, MD, DPHIL,

PERRY MILLER, MD, PHD

Abstract

Entity-attribute-value (EAV) representation is a means of organizing highly

heterogeneous data using a relatively simple physical database schema. EAV representation is
widely used in the medical domain, most notably in the storage of data related to clinical patient
records. Its potential strengths suggest its use in other biomedical areas, in particular research
databases whose schemas are complex as well as constantly changing to reflect evolving
knowledge in rapidly advancing scientific domains. When deployed for such purposes, the basic
EAV representation needs to be augmented significantly to handle the modeling of complex
objects (classes) as well as to manage interobject relationships. The authors refer to their
modification of the basic EAV paradigm as EAV/CR (EAV with classes and relationships). They
describe EAV/CR representation with examples from two biomedical databases that use it.

m JAMIA. 1999;6:478—-493.

The entity-attribute-value (EAV) approach is popular
for modeling highly heterogeneous data. (In the da-
tabase literature, alternative terms for entity and at-
tribute are object and parameter, respectively.) Histori-
cally, attribute-value (A-V) pairs were first used in
artificial intelligence applications in the form of LISP
association lists." Attribute-value pairs are the basis of
Web cookies,” the Microsoft Windows Registry, and
various tagged data interchange formats such as
ASN.1.° They are also important components of elec-
tronic patient record systems (EPRSs), notably the pi-
oneering HELP system*® and the Columbia-Presbyte-
rian clinical data repository.*’” An overview of EAV is
given in the “Background’ section.

Affiliation of the authors: Yale University, New Haven, Con-
necticut.

This work was supported by NIH grants U01-CA78266 from
the National Cancer Institute, R01-DC03972 from the National
Institute of Mental Health, and G01-LMO05583 and T15-LM07056
from the National Library of Medicine.

Correspondence and reprints: Prakash M. Nadkarni, MD, Cen-
ter for Medical Informatics, Yale University School of Medicine,
P.O. Box 208009, New Haven, CT 06520-8009.

e-mail: (Prakash.Nadkarni@yale.edu).

Received for publication: 3/26/99; accepted for publication:
6/10/99.

This paper describes an enhancement to EAV repre-
sentation, called EAV/CR (EAV with classes and re-
lationships), for modeling heterogeneous data and
discusses the types of scientific databases that could
benefit from its use. The incentive for creating EAV/
CR came from a production database for heteroge-
neous neuronal data (SENSELAB).® SENSELAB was Orig-
inally implemented as four separate databases with a
common Web interface. As the contents of these sep-
arate databases expanded in volume and diversity, the
number of interdatabase links increased greatly. We
realized that the purpose of close interdatabase cou-
pling would be best served by merging the databases
into a single physical structure. After discovering that
the resulting schema would become very complex
and hard to maintain, we decided to transform the
data into an EAV schema, for reasons discussed
shortly. (We have previously used EAV design for an
EPRS-like production system for managing clinical
studies data, ACT/DB, ° which is in production use
and continues to undergo enhancement.) The EAV/
CR design embodies the necessary enhancements re-
quired to the basic EAV model for this purpose. We
have subsequently implemented the EAV/CR frame-
work in a prototype database for pharmacogenetics
data.

Journal of the American Medical Informatics Association Volume 6 Number 6 Nov / Dec 1999 479

Background

Overview of the EAV Representation of Data

Conventional design is defined, for the purposes of this
paper, as one in which each parameter of interest is
represented in a separate column in a table. This is
the familiar design that most users of spreadsheets or
flat-file databases instinctively use to store their data.
The number of tables needs to grow as new kinds of
data need to be managed.

An EAV design, in contrast, conceptually involves a
table with three columns—a column for entity/object
identification (ID), one for attribute/parameter (or an
attribute ID pointing to an attribute descriptions ta-
ble), and one for the value for the attribute. The table
has one row for each A-V pair. In an EPRS, the entity
is typically a patient event (a patient ID plus several
time stamps recording when the event occurred, be-
gan, ended, or was recorded). In a Web cookie, the
entity is the cookie itself (so the entity column can be
omitted). Theoretically, most of the facts that are re-
corded in a database can be stored in a single EAV
table.

EAV representation is primarily a means of simplify-
ing the physical schema of a database, to be used when
simplification would be beneficial. However, regard-
less of the database’s physical storage, its users nat-
urally regard the data as conventionally structured—
that is, segregated into tables and columns. Further-
more, external programs used for graphical presen-
tation or data analysis always expect to receive data
as one column per attribute. The logical schema of a
database reflects the users’ perception of the data.

Because it implicitly captures a significant part of the
semantics of the domain being modeled, the logical
schema is domain-specific. In an EPRS, for example,
one aspect of the logical schema is the grouping of
individual parameters into a form, such as a battery
of laboratory tests. In an EAV database, the logical
schema differs greatly from the physical schema. (In
a conventional database, the two are very similar.)
The user interface of a good EAV system conforms to
the logical schema as closely as possible, creating the
illusions of conventional data organization.

An EAV system must record the logical schema
through metadata—*“dictionary” tables whose con-
tents describe the rest of the system. Well-designed
metadata are critical to the proper functioning of an
EAV system. If sufficiently rich, metadata can also be
used actively (i.e., during actual system operation), in-
stead of only describing the system passively. For ex-
ample, we use EAV/CR metadata to generate SQL for

data manipulation as well as Web forms for the user
interface. (A significant proportion of EAV/CR meta-
data is Web-related, because we are committed to this
mode of delivery.)

Advantages of EAV Design
The advantages of EAV design are:

m Flexibility. There are no arbitrary limits on the num-
ber of attributes per entity. The number of param-
eters can grow as the database evolves, without
schema redesign. This is important in the EPRS,
where thousands of parameters can apply to a pa-
tient across all clinical specialties. With a conven-
tional design, the information would have to be
partitioned across an ever-growing list of tables, be-
cause of vendor-specified limits to the number of
columns per table.

m Space-efficient storage for highly sparse data. In an
EPRS, while thousands of parameters are applica-
ble, only a few dozen parameters are actually re-
corded for a typical patient. In an EAV design,
space does not need to be reserved for attributes
whose values are null.

m A simple physical data format with partially self-describ-
ing data. This is important for cookies and registries.
For example, Windows developers are encouraged
to use the registry instead of proprietary formats to
store program settings. While the A-V pairs are pro-
gram-specific, a standard methodology for access-
ing them makes them accessible to third-party util-
ities.

m “Object-at-a-time’” queries against a highly complex log-
ical schema that are significantly easier to implement
with EAV than with conventional structure. This is
well known in cross-specialty clinical databases that
are oriented toward retrieval of individual patients’
data. The query “Tell me everything you know
about patient X, in reverse chronological order” can
be answered by a join of the EAV table with a table
of attribute descriptions, filtering the former on the
specified patient ID and sorting by time stamp.
With a complex conventional schema holding doz-
ens or even hundreds of specialty-specific data ta-
bles, on the other hand, each such table would have
to be searched, since a patient may have different
kinds of diseases over time. Also, as medicine pro-
gresses, new tables would be needed to handle pro-
tocols to manage new or existing disease conditions
(and queries would need manual re-coding).

EAV design is potentially attractive for databases with
complex and constantly changing schemas that reflect

480 NADKARNI ET AL., EAV/CR Storage for Scientific Data

rapidly evolving knowledge in scientific domains.
Here, when a conventional design is used, the tables
(and the code that manipulates them, plus the user
interface) need continuous redesign with each schema
revision. EAV design, by simplifying the schema, may
provide relative insulation against such consequences
of change. Along with simplification comes the poten-
tial for domain independence. With proper design,
none of the tables in the system (and only a modest
proportion of the code) are domain-specific. This ar-
chitecture should therefore be portable across scien-
tific domains.

Drawbacks of EAV Design

Most production “EAV” databases also use conven-
tional tables when it makes sense to do so. That is,
their schema is heterogeneous. It is therefore impor-
tant to know how to choose between a conventional
and an EAV representation for a given class of data.
A rational decision requires an understanding of the
drawbacks of EAV design:

m As discussed later, considerable up-front program-
ming is needed to do many tasks that a conven-
tional architecture would do automatically. On the
other hand, such programming needs to be done
only once, and availability of generic EAV tools
could remove this limitation.

® EAV design is less efficient than a conventional
structure for bulk retrieval of numerous objects at
a time. (For object-at-a-time retrieval, as through a
Web browser, the volume of data is small enough
that the difference is not noticeable.)

® The process of performing complex attribute-centric
gueries, which are based on values of attributes,
and returning a set of objects is both significantly
less efficient as well as technically more difficult. An
example of an attribute-centric query in the EPRS
context would be “Show me female patients less
than 50 years old, with persistently elevated direct
bilirubin levels over the last year, whose alanine
and aspartate transaminase levels have been con-
sistently normal.”

m For schemas that are relatively static or simple (e.g.,
databases for business applications, such as inven-
tory or accounting), the overhead of EAV design
exceeds its advantages.

A Brief Overview of EAV/CR

The terminology of EAV/CR representation borrows
heavily from the concepts of object-oriented program-
ming (OOP), because EAV/CR design overlays an ob-
ject-oriented framework on an EAV physical structure.

m A class in EAV/CR design is similar to one in OOP
—namely, a complex data structure comprising var-
ious fields, some of which may be complex data
structures themselves. An EAV/CR class differs
from an OOP class in that OOP also enforces the
concept of permissible operations on a class. EAV/
CR design does not currently do so, partly because
it deals with classes of domain-specific data rather
than, as OOP does, classes that encapsulate reusa-
ble program code or algorithms.

® As in OOP, the term object refers to an instance of
a class; thus, the object “dopamine” is an instance
of the class “neurotransmitter.”

® EAV/CR design allows modeling of interclass rela-
tionships. For example, there is a many-to-many re-
lationship between neuronal cell types and neuro-
transmitters. In addition, some neurons release a
particular neurotransmitter, while others only re-
spond to it.

m EAV/CR design allows classes to contain other classes
as members. For example, a particular neuron may
have muscarinic M1 receptors on its surface. The
“ML1 receptor’” object is an instance of a “receptor”
class. (A receptor possesses a protein sequence, and
a gene that encodes it. There are agonists and an-
tagonists for a receptor, and it is expressed by many
kinds of cells). Therefore, EAV/CR design supports
class instances (Object I1Ds) as values.

In summary, database models with complex objects
and relationships (represented through conventional
database schemas) are widely used. Therefore, extend-
ing the EAV model to incorporate these features (as
EAV/CR does) is necessary. This extension is espe-
cially important for scientific data, but it is also ap-
plicable to the EPRS (although some EPRSs, as well
as ACT/DB, are focused mainly on patient events as
the primary class of object).

The Challenge of Managing Highly
Heterogeneous Data

As a system manages an increasing variety of data,
the number of classes increases. The complexity of the
system grows in two directions.

®m \ery often, subclasses must be derived from a par-
ent class, because of the need to store additional
information with the former. For example, “en-
zyme’’ is a subclass of “protein.”” While an enzyme
has an amino acid sequence and three-dimensional
structure like its parent, it also requires the record-
ing of special data such as substrates, products, co-
factors, and inhibitors.

Journal of the American Medical Informatics Association Volume 6 Number 6 Nov / Dec 1999 481

® When a new class is introduced into an existing
schema, possible associations with each existing
class must be considered (although not all such as-
sociations may make sense). In a conventionally
structured schema, each class is represented as a
table, while many-to-one or many-to-many associ-
ations between classes are managed through
“bridge” tables, with foreign keys referencing one
or more of the class tables. Here, the number of
bridge tables can become unmanageable because,
with M classes, even if we consider binary relation-
ships alone (i.e., those involving only two classes),
the potential number of bridge tables is:

MM - 1)

M
2

where the term “+ M accounts for recursive re-
lationships in which both objects belong to the same
class, as in a parent-child hierarchy.

To further complicate the scenario, relationships are
not always binary: some relationships involve more
than two classes. In pharmacogenetics, for example,
one must consider the idiosyncratic effect of a drug,
which produces a particular adverse reaction, in pa-
tients with a particular genotype (genetic composi-
tion).

To summarize, with highly heterogeneous data, we
expect to eventually have numerous classes, numer-
ous relationships between them, and a complex class
hierarchy. An EAV schema, by definition, allows us to
add subclasses without additional tables. Further-
more, as we shall see, an EAV/CR schema represents
any number of associations of arbitrary complexity
through the same physical structure.

Design Objectives

The EAV/CR framework is intended to fulfill several
roles:

m |t should fully support basic functions such as
browsing and data editing (with some degree of
data validation). In particular, it should support
on-the-fly generation of Web-based user interfaces
based on the metadata contents. It should make
full use of the Web interface metaphor—in partic-
ular, the generation of hyperlinks where appro-
priate.

m |t should be immune to changes in the logical
schema. Only the metadata should change as sci-
entific advances augment the domain knowledge.
While the code that accesses the EAV/CR schema

is harder to create, it should be generic and require
little or no modification as the logical schema
evolves.

m |t should embody domain independence.

System Description

The EAV/CR framework consists of three compo-
nents—metadata tables, data tables, and a library of
code that manages the user interface and data manip-
ulation tasks. The operation of the code library is con-
trolled by the metadata contents. This paper focuses
primarily on the tables. (While the code is not trivial,
its operation can in most cases be inferred from
knowledge of the table structure.) Where appropriate,
we describe how an EAV/CR schema deals with the
specific challenges posed by heterogeneous scientific
data.

The Data Tables

The data tables within the EAV/CR schema are illus-
trated in Figure 1. (In all schema diagrams, a table
name with the suffix “_1" indicates use of the same
table more than once, as when two fields in one table
are both related to another table). Before describing
the tables themselves, we give a functional overview.

The Object Dictionary Approach

The EAV/CR schema uses the object dictionary (OD)
approach, where common information on all objects
across all classes is stored in a single Objects table,
while information that is specific to each class is
stored elsewhere. The OD approach is orthogonal to
EAV/CR; that is, class-specific information can be
stored in (numerous) conventional tables or (a few)
EAV tables. (We take the latter approach.) In either
case, information in these tables is linked to the Ob-
jects table through the unique identifier of each object
(object ID).

The OD approach was pioneered in bioinformatics da-
tabases by Tom Slezak’s team during the Lawrence
Livermore chromosome 19 mapping project.”® It has
been subsequently adopted in numerous production
systems, such as version 5 and subsequent versions
of the Human Genome Database (HGD).""** Our
group has used an OD in DNA Workbench, which
manages physical mapping data within a chromoso-
mal region.”

The OD approach allows the use of a supporting syn-
onyms/keyword table to provide enhanced search ca-
pability. Synonyms are very common in science (e.g.,
the terms 5-HT, serotonin, and 5-hydroxy-tryptamine

482 NADKARNI ET AL., EAV/CR Storage for Scientific Data

Object_ID
Object_Class
Object_Name
Object_Description
Date_Created
Date_last_Changed A:j

Object_ID
Keyward
keyward_type

object_id
Attribute_ID
Yalue
Serial_Number

object_id
Attribute_ID

B | 4
object_id =

{Aktribute _ID
Yalue

object_id
Attribute_ID
Yalue

Yalue

Yalue _‘j

object_id ‘-! e é object_id
Attribute_ID Attribute _ID
Yalue

Figure 1 The EAV/CR subschema for data tables. The Objects table stores common information on all objects across
all classes of data in the system. It has a supporting table, Keywords, to assist in the search for individual objects.
Class-specific data are stored in the tables with an EAV_ prefix and are segregated by data type. In particular, the
EAV _Objects table records objects that are components of other objects.

refer to the same neurotransmitter molecule), and any
one of several synonyms should be able to locate an
object. Furthermore, many objects have unique names
even across classes (e.g., “muscarinic’” can only refer
to a receptor type, and amacrine refers only to a kind
of retinal cell). When keywords for all objects across
all classes are stored in one place, search tools can
locate such objects directly. It is necessary to display
all matches, and let the user choose one, only if the
same keyword applies to different objects (possibly
belonging to different classes).

Virtual Classes

The object dictionary approach would seem to imply
that every class must have instances (objects) and that
every object in the database must be recorded in the
Objects table and given a unique object ID. However,
this is not always necessary. In OOP terminology, a
class without any actual instances is called virtual. We
illustrate virtual classes with an example below.

Bibliographic citations are ubiquitous in a scientific
database, being tagged to the descriptions of numer-
ous other classes of objects. Because many biblio-
graphic databases, such as MEDLINE, are accessible
through the Web, one need not record all the detailed
information (title, journal, author list, etc.) on most

citations. Only a single value (e.g., MEDLINE UID) is
necessary to provide a hyperlink to the desired cita-
tion, e.g., through the National Center for Biotechnol-
ogy Information’s PubMed.

From the EAV/CR viewpoint, a MEDLINE citation is a
class that is a member of several other classes and has
a single attribute (MepLiNE UID). “MEDLINE citation”
should be a distinct class, because the attribute infor-
mation records a URL (unique resource locator) tem-
plate (as discussed later) that lets us compose the cor-
rect hyperlink. If the template needed to be changed,
it would have to be changed in only a single place.
However, it is not worth creating an object in the da-
tabase for every MEDLINE citation in the system, be-
cause the object ID does not do much more for us than
the mebLiNE UID itself. Instead, the mebLINE UID can
be stored directly with the object that it describes.
Therefore, we implement “MEDLINE citation™ as a vir-
tual class—it has values that are not objects.

Storage of Class-specific Data

EAV/CR representation allows EAV data to coexist
with conventional data. In sENSELAB, the only conven-
tional class is a table of references, which is used only
to store references without an external bibliographic
(e.g., MEDLINE) ID, because the references are very re-

Journal of the American Medical Informatics Association Volume 6 Number 6 Nov / Dec 1999 483

cent or represent personal communications. Most of
the records in this table are transient. In the prototype
pharmacogenetics database, the genetics-related ta-
bles—pedigrees, populations, typing data on individ-
uals, allele information—are stored conventionally, in
part because these are components that can be used
across databases, and in part because a large body of
code depends on them. (For example, we have reused
code from other databases previously created by our
group, such as PhenoDB,* that performs computa-
tions such as Hardy-Weinberg frequencies and tests of
significance.)

For a heterogeneous (i.e., EAV and conventional) sys-
tem, it is critical that the metadata record how a class
is actually stored, so that the appropriate user inter-
face or data manipulation code can be generated.
Generation of such code understandably becomes
more complex with mixed data, but in the real world
this is unavoidable. (In our system, the code genera-
tion for conventional data is partly derived from
the earlier sQLGeN library, built by Nadkarni and
Cheung.™) In this paper, we describe only the EAV
tables, which have a generic structure.

The Structure of the Objects and Keywords Tables

The Obijects table records the following data for each
object.

® Object ID (a machine-generated unique ID), (pre-
ferred) object name, object description, date/time
of creation, and date/time of last change.

m Class ID, the class to which it belongs. This refer-
ences a Classes metadata table, described later.

m |n databases used in large-scale scientific collabo-
rations, such as HGD, the creator/owner of the ob-
ject would also be recorded.

The Keywords table is linked to the Objects table. For
each keyword, we record the keyword type—synonym
or nonsynonym. For simplicity in searching, the pre-
ferred name of each object is redundantly recorded in
the Keywords table.

EAV Tables for Class-specific Data

EAV/CR representation uses strong data typing; that is,
when an attribute is defined, its data type is defined
as well, and there is a separate EAV table for each data
type. (Many EPRSs, in contrast, store all data, even
numbers and dates, as short strings.) Strong data typ-
ing is used for several reasons.

m Binary large object (BLOB) data, such as nucleotide
sequences, chemical formulas, or three-dimensional

structural coordinates, cannot be coerced into short
strings and therefore need their own EAV table.

m Strong data typing greatly simplifies code genera-
tion for form-based (i.e., browser-side) data vali-
dation. Browser-side validation, where possible,
provides instant feedback. When all errors are de-
tected only at the database server, in contrast, error
messages are returned after some delay, the dura-
tion of which may be unacceptable over a relatively
slow communication link over a wide area network.

m Strong data typing is necessary for support of class
instances (object IDs).

® We eventually want to explore the possibility of at-
tribute-centric queries. Ensuring the correctness of
attribute-centric queries is greatly facilitated by
strong typing. We have previously described attrib-
ute-centric query in the context of ACT/DB.” In
some respects, the attribute-centric query problem
for scientific data is more complex, because of the
existence of numerous classes as opposed to a sin-
gle “patient” class. In other respects, it is simpler,
because we do not have a stream of time-stamped
values for the same object, unlike a series of labo-
ratory values for the same patient over time.

Seven data-type-specific tables record, respectively, in-
tegers, reals, short string,* long string, date/time, bi-
nary (to handle BLOBS), and object IDs. The last table
EAV_Obijects, which is doubly related to the Objects
table) is essential for allowing objects to become mem-
bers of other objects, or to let objects associate with
each other.

Each EAV table has at least three columns—an Object
(Entity) ID, an attribute 1D, (which is linked to an
Attributes metadata table that is described later), and
Value. The EAV_Binary and EAV_Obijects tables have
an extra field each, whose functions are described
later.

Enumerated Values and Booleans

The EAV_Int table in Figure 1 records Boolean values
as well as enumerated values (choice sets). The latter are
codes that are associated with descriptive phrases,

*The maximum length of a “short string’” depends on the da-
tabase engine—2,000 characters in Oracle, 8,000 in Microsoft
SQL Server 7.0, and 255 in Microsoft SQL Server 6.5 and Sybase.
The differences between short and long strings are that the for-
mer can be indexed, whereas the latter (which have arbitrary
length) cannot be. Also, characters in a short string are stored
contiguously on disk, whereas characters in a long string are
stored as separate “blocks,” possibly on different disk sectors,
that are chained together.

484 NADKARNI ET AL., EAV/CR Storage for Scientific Data

e

SuperClass
SubClass

Choice_Set_ID

Class_ID
attribute_Name
Attribute_Caption
Attribute_Descriptior
Datatype

Required
Default_value
Upper_Bound
Lower_Bound

Width

Height

Searchable

Format
Attribute_Class
Serial_Number
URL_Param
Computed_Formula
virtual_attribute
Default_File_Extensi
Inline_Image
Multi_instance :j

Value

Attribute 1D
Reciprocal_attr_ID

Choice_ID
Reciprocal_Choice_ID

Figure 2 The EAV/CR subschema for metadata tables. The Classes table stores basic descriptions of each class of
data, while the Attributes table records details on the attributes of each class. Classes may have subclasses, as recorded
in the Class_Hierarchy table. The table Class_Presentation_Info indicates which class data are presented when a par-
ticular object is displayed in a browsing interface. The values of some attributes may be derived from controlled-
vocabulary items, whose contents are recorded in the tables Choice_Sets and Choice_Set_Values. The tables
Reciprocal _Attributes and Reciprocal_Choice_Sets record semantic inverses.

which are displayed in the user interface as pull-down
or scrolling lists. Enumerated values are of two types
—nominal and ordinal. Ordinals can be compared for
relative magnitude, whereas nominals can be com-
pared only for equality. In pharmacogenetics, an ex-
ample of an ordinal parameter is the clinical impor-
tance of a drug effect in patients with a genetic
syndrome—theoretically possible, minor, major, life-
threatening (with the codes 1 to 4, respectively). An
example of a nominal parameter is the broad category
of site of drug-syndrome interaction—absorption,
distribution, target site, metabolism, excretion, or un-
known. A Boolean is a special case of an enumerated
parameter that takes just two values, True and False.

The definitions of the sets of enumerated values (and
the values themselves, with their associated descrip-
tions) are kept in two metadata tables, Choice_Sets
and Choice_Set_Values respectively.

The Metadata Tables: Classes and Attributes

In a database’s logical schema, classes are analogous
to tables and attributes to fields in those tables. In an

EAV/CR schema, the Classes and Attributes tables are
the most important part of the metadata and contain
not only the logical schema description but also in-
formation essential to a Web-based user interface.
Their structure is illustrated in Figure 2 and is de-
scribed below.

The Structure of the Classes Table

The Classes table has the following fields.

m Class name, Description, and a unique Class ID.

® EAV_Flag (Boolean), indicating whether the class is
in stored in EAV or conventional form.

m Class Type, Entity or Association. (As discussed
later, an association between class instances is itself
treated as a class.)

m Virtual (Boolean), as discussed earlier.

m [nline (Boolean). If a class is contained in another
class, then when an object belonging to the *“con-
tainer” class is shown in a Web form, the default
method for displaying the *“contained’ object is by

Journal of the American Medical Informatics Association Volume 6 Number 6 Nov / Dec 1999 485

generating a hyperlink. (The hyperlink, which trig-
gers code that retrieves the details of the compo-
nent object, is appropriate when the component ob-
ject itself has numerous attributes.) However, if a
class has very few fields, the user can be saved a
mouse click if the details of the component object
are displayed inline, i.e., along with the parent ob-
ject. Virtual classes are always inline.

The Class_Hierarchy Table

The Class_Hierarchy table has two fields, Parent
Class and Child Class, both linked to the Classes ta-
ble. It records parent-child relationships between class
definitions. It is consulted when the user specifies a
query based on a superclass that might encompass
subclasses as well. (In pharmacology, for example, the
class Drug Family is a parent of the class Drug.) We
discuss object and class hierarchies later.

The Attributes Table

The Attributes table has the most detail of all the me-
tadata tables. It has the following fields:

m Attribute ID (a unique ID), Class ID (points to the
class to which the attribute belongs), Internal
Name, a Caption (seen by the user), Description (for
documentation), and Serial Number (order of pre-
sentation in a generic Web form).

m Datatype, which indicates which of the seven EAV
tables is used to store the data.

m Attribute Class, applicable only where the data
type is Object. Indicates the class of the attribute
itself.

m Defaulted Value (applicable only for integer, real,
string, and date/time data types). If specified, and
if the actual value of this attribute does not happen
to be stored for a particular instance, then this value
is presented to the user. Upper Bound and Lower
Bound, if applicable, are used for data entry vali-
dation along with data type.

m Required (Boolean). If true, this value must be sup-
plied for a new record.

® Width and Height. These numbers, applicable to
strings and images, indicate how the attribute is to
be displayed in a Web form. (A short string may be
displayed either as an INPUT field, if the height is
zero, or a TEXTAREA field, where the height indi-
cates the number of columns. A long string will al-
ways be displayed as a TEXTAREA.) For numbers
and dates, the width computation is based on de-
faults or on the format (see below), if specified.

® Format (picture), a data-type-specific string indicat-

ing how a value is to be formatted when displayed
—e.g., dates may be shown with date and time or
date alone, and real numbers may be displayed
with a certain number of decimal places.

Searchable (Boolean). If true, it indicates that a field
for this attribute should be included in the search
form generated by the system to let the user search
for objects within a class on complex Boolean cri-
teria.

Computed Formula. Certain attributes may be
computed on the basis of the value of other attri-
butes (if they are non-null). This field holds a Java-
script template—an expression with placeholders
that are replaced by the values of the appropriate
attributes during run time.

Virtual Attribute (Boolean). This is applicable only
to attributes with computed formulas. If true, this
implies that the computed value is shown on screen
but not permanently stored in the database. Notice
that most attributes, even those based on formulas,
are not virtual, because they need permanent stor-
age. Very often, it happens that data are transcribed
from another source, where the value of the com-
puted attribute is available but the values of one or
more of the attributes used in the computation are
not. In such a case, the computed formula on screen
would be null, so we must allow overriding during
data entry.

URL Template, a string used to generate a hyper-
link to an external data source. The template con-
tains one or more placeholders (vertical bars),
which are replaced at run time with segments of
the attribute’s value. (This value, if it consists of
more than one part, is itself a string segmented by
vertical bars.)

For the “mMebpLINE ID” example cited earlier, the
template is www.ncbi.nlm.nih.gov/htbinpost/
Entrez/query?uid=|&form=6&db=m&Dopt=b.”” The
stored MeDLINE ID replaces the vertical bar after the
designation “uid=."

Default File Extension (for binary data types only).
Binary data are treated by most database engines
merely as a stream of bytes. When a binary object
is to be served via the Web, the bytes must first be
downloaded from the database to the Web server,
and a temporary file created on a Web server folder.
This file, which is indicated in a Web page via a
hyperlink, must have an extension that the client
browser recognizes, so that it can call the appro-
priate program to handle it when downloaded. (For
example, files with the extension WAV are handled
by the CD player software on Windows).

486 NADKARNI ET AL., EAV/CR Storage for Scientific Data

The EAV_Binary table differs from the other EAV
tables in that the actual file extension is stored for
each object if it differs from the default extension.
(This allows, for example, more than one image for-
mat for a particular attribute.)

m Inline Image (Boolean). This is currently applicable
to binary image objects only. If true, it causes the
image to be placed inline (along with the text), us-
ing the IMG SRC= tag. If false (the default), then
only a hyperlink is created. (In the latter case, click-
ing the link would open the image in a separate
window.)

® Multi-instance (Boolean). This is applicable only
when the data type equals Object. This allows an
array of objects, if needed, instead of a single object
alone. (Each object in an array is distinguished by
a serial number in the EAV_Objects table. Serial
numbers are used for ordering the elements during
presentation. If ordering is not needed, serial num-
bers may be left null.) Multi-instance attributes al-
low us to simulate non-first-normal form (NF-NF or
NF2), a feature of object-oriented databases,”® so
called because it violates E. F. Codd’s first rule of
relational database normalization (“repeating
groups should be eliminated”)."” An example of an
array of objects in both our databases is a list of
bibliographic citations associated with a single ob-
ject. The use of simulated NF2 arrays is discussed
when we consider the EAV/CR representation of
associations.

For multi-instance attributes, we also record Mini-
mum Repeat Count and Maximum Repeat Count,
to specify the minimum and maximum number of
times this particular attribute must occur. (If not
specified, the number of occurrences is indefinite).

Tables to Manage Reciprocal Semantics

Two metadata tables, Reciprocal_Attributes and
Reciprocal _Codes, are used to store reciprocal seman-
tic information when semantic tags are assigned to
objects in a relationship. Their function is described
later.

Controlling Web Display of Associated
Information on an Object

When an object is displayed in a Web page, all the
attributes specific to that object’s class must be shown.
In addition, however, a class can also participate in
one-to-many or many-to-many relationships with
other classes. Some of these relationships (which are
classes in their own right, as discussed later) are im-
portant enough that it is useful to display them when-
ever an object from a given class is displayed. For
example, when basic information on a genetic locus (a

site on a chromosome responsible for a particular ge-
netic trait) is displayed, one almost invariably wants
to look at the variants (alleles) for that locus.

The metadata table Class_Presentation_Info records,
for each class, the associated data from other classes
that are to be displayed and the order in which these
data are to be presented.

EAV/CR and the Management of Relationships
(Associations)

In EAV/CR, associations between class instances (ob-
jects/entities) are themselves treated as classes. The
management of associations is discussed below.

With neuronal data, associations between objects are
often N-ary, where N is greater than 2. For example,
consider the following information on the neurons of
the nigrostriatal pathway (whose function is impaired
in parkinsonism).

Neurons: nigrostriatal

Anatomic origin: pars compacta of substantia nigra

Projecting to: corpus striatum

Neurochemical/s released: dopamine

Receptors/s involved: D2

Electrophysiological function: inhibitory

Neurons projected to (efferents): striatopallidal neu-
rons, striatostriatal neurons

Neurons providing input (afferents): pars reticularis of
substantia nigra, striatonigral fibers

This information is multi-axial; that is, each referenced
class of object—receptor, transmitter, neuron, ana-
tomic structure, etc.—represents one axis of the data.
One method of representing multi-axial associations,
widely employed in business data-warehouse design,
is the “star” schema.’®™ Here a central Facts table,
which stores one or more quantitative columns and
one or more coded columns, is related many-to-one
to multiple Dimension (class) tables. Each class table
stores information on entities in a single axis. This de-
sign has proved valuable for such tasks as analyzing
pharmacy prescription data by generic drug name,
class of drug, physician, specialty, and so on.® How-
ever, in a scientific database, the implementation of
star-schema principles needs considerable modifica-
tion, for several reasons.

®m The nature of axes varies with the nature of the fact,
necessitating multiple fact tables to hold different
kinds of facts when a conventional schema is used.
The actual number of axes applicable to a particular
fact also varies. Many attributes may be null, and
others may be irrelevant for certain instances of
data. In other words, the data are often sparse.

m Certain axes may have multiple object instances. In

Journal of the American Medical Informatics Association Volume 6 Number 6 Nov / Dec 1999 487

Newon_ID
Source_Location
Destination_Lo

kion

Electrophysiological _Function

i Neurotransmitter

Figure 3 A conventional schema to manage data described in the nigrostriatal neuron example. Even such a small
example requires the creation of numerous tables for satisfactory representation.

the example, nigrostriatal neurons both receive in-
puts and generate outputs for multiple neurons. For
nervous system data, in fact, most axes are likely to
be multivalued. (For example, a single neuron has
multiple kinds of receptors on its surface, and many
kinds of neurons are known to release more than
one neurochemical simultaneously.) In a normal-
ized relational database design, columns of a table
must be atomic and not multivalued, so multival-
ued data must be factored out into separate tables.

® Within a single axis, entities may be interrelated,
through recursive relationships of the parent-child
type. This complicates the process of query because
of the need to pre-explode an object instance spec-
ified in a query and retrieve all its children prior to
scanning of the association data. In the nigrostriatal
neuron example, the pars compacta is part of the
substantia nigra, which is part of the midbrain. To
process a query that asks for anatomic locations of
various receptors in the midbrain, all “child” ana-
tomic sites in the midbrain would first have to be
retrieved and then the association data searched
against this set of child sites. This exemplifies a re-
curring problem in scientific databases; that is, a
query specified at a coarser level of granularity must also
retrieve facts stored at a finer granularity level. The
standard algorithms for this purpose (which in-
volve determining transitive closure) have been
well researched for the “bill of materials prob-
lem.”* Limited transitive closure support is part of
the forthcoming SQL-3 standard.”

Hierarchic data occur whether the data are in con-
ventional or EAV form. However, we mention them
here because their existence necessarily slows down
guery speed in comparison with the simple, non-
hierarchic data typical of a business-warehouse star
schema. (On the other hand, the much smaller size
of many scientific databases, compared with busi-
ness data warehouses, means that speed degrada-
tion may not be great enough to affect user ergo-
nomics significantly.)

Handling the Nigrostriate Example with
Conventional and EAV/CR Schemas

The conventional relational schema for handling the
example data is shown in Figure 3. Seven tables are
involved (two of them being used more than once).
Three of these, indicated by a “Neuron_" prefix, are
bridge tables. These bridge tables are needed because,
for a given neuronal type, there can be more than one
afferent neuron, efferent neuron, neurotransmitter,
and receptor. Furthermore, it turns out that two Class
tables (Neurotransmitters and Receptors) are physi-
cally small (i.e., they have few records) and are likely
to remain so, because the numbers of neurotransmit-
ter and receptor molecules are modest. As we start
storing different kinds of data, it is not too hard to
visualize how the small class tables and bridge tables
will proliferate.

One attempt to reduce the number of bridge tables is
by using NF2 in a database engine (such as Oracle 8)
that permits it. Specifically, each bridge table can be

488 NADKARNI ET AL., EAV/CR Storage for Scientific Data

Table 1 m

Metadata for the Neuronal_Info Association Class
Attributes

Attribute Name

Datatype

Class, Neuron

Class, Anatomical_Location

Class, Anatomical_Location

Class, Neurotransmitter, multi-
instance

Class, Receptor, multi-instance

Integer (member of a Choice Set)

Class, Anatomical_Location

Class, Neuron, multi-instance

Class, Neuron, multi-instance

Primary_Neuron
Soma_location
Axon_Terminus_Location
Neurotransmitter_released

Receptor_Type
Electrophysiological _Effect
Receptor_Type
Efferent_Neuron
Afferent_Neuron

NoTe: This table and Table 2 represent the nigrostriatal data
example in an EAV/CR framework. This table describes rele-
vant metadata, and Table 2 shows the data. For simplicity, the
names of objects and classes are shown instead of their class or
object identification.

Table 2 m

EAV Data for the Nigrostriatal Neuron

Entity
ID Attribute Value

100 (Primary_Neuron)

100 (Soma_location) (ParsCompacta, S.Nigra)

100 (Axon_Terminus_Location) (Corpus Striatum)

100 (Neurotransmitter_Released) (Dopamine)

100 (Receptor_Type) (D2)

100 (Efferent_Neuron) (Striato-pallidaly

100 (Efferent_Neuron) (Striato-striatal)

100 (Afferent_Neuron) (Striato-nigral)

100 (Afferent_Neuron) (Pars Reticulata,
S.Nigra)

(Nigrostriate cell)

100 (Electrophys_effect) (2 = Inhibition)

NoTe: This table and Table 1 represent the nigrostriatal data
example in an EAV/CR framework. Table 1 describes relevant
metadata, and this table shows the data. For simplicity, the
names of objects and classes are shown instead of their class or
object identification.

replaced with a corresponding array field in the Neu-
rons table, resulting in four arrays—afferents, effer-
ents, transmitters, and receptors. In NF2 database im-
plementations, an array holds an implicitly ordered,
fixed number of values. A serial number does not
need to be stored with each element (as in conven-
tional systems), resulting in space savings that are es-
pecially significant for signal data, such as electrocar-
diographic and electroencephalographic data.

However, true NF2 arrays have the drawback that ar-
ray elements can neither be individually indexed nor
searched as autonomous entities across rows. There-
fore, their use is inappropriate when such capability
is required. In the present example, the query focus

might very well be shifted, for example, to “List all
afferents to the striatopallidal neurons.” An NF2-
array-based table cannot answer such a question ef-
ficiently, because the entire table needs to be scanned
linearly. (If an index could be used, it would return
results in logarithmic instead of linear time.)

The EAV/CR representation (using the schema shown
in Figures 1 and 2) is shown in Tables 1 and 2. Table
1 shows the metadata for this association class,
“Neuronal_Info.” (For brevity, it is assumed that clas-
ses such as Neurons, Receptors, and Anatomic Loca-
tions, have been previously defined.) The attributes
Neurotransmitter_Released, Receptor_Type, Afferent_
Neuron and Efferent_Neuron are permitted to be
multi-instance. The attribute Electrophysiological _Ef-
fect is defined as an integer, whose values are derived
from a choice set (e.g., 1 = Excitatory, 2 = Inhibitory, 3
= Modulates Excitation, and 4 = Modulates Inhibition).

The actual data for *“Nigrostriate_Neuron_Info” is
shown in Table 2. For clarity, we have used the attri-
bute name in the attribute column, rather than the ID
that is actually stored. One row (electrophysiologic ef-
fect) is stored in the EAV_Int table, while the rest of
the rows are stored in the EAV_Objects table. Simi-
larly, we use the names of each object instead of its
object ID. (We assume that the data for the D2 recep-
tor, the dopamine molecule, and such have already
been created.) While it definitely takes more space
than NF2, the EAV/CR representation has the advan-
tage of allowing indexing on the value column.

Names for Entities versus Names for Associations

As stated earlier, in the description of the Objects ta-
ble, every object has a (preferred) name and descrip-
tion. For objects that are entities, such as “acetylcho-
line,” the name is meaningful. For objects that are
associations, however, names are often not very use-
ful. While “Nigrostriate_Neuron_Info”” may be mean-
ingful, one is hard-pressed to devise a name for an
association with the semantics “benzaldehyde (an
odor molecule) increases cyclic AMP (a second mes-
senger molecule) in catfish (a species) melanophores
(a tissue).” For such associations, such names as are
assigned are necessarily artificial (they may even be
machine-generated). It is the description field that is
all-important, because the semantics of the association
can always be described in narrative form.

The Need to Manage Inverse Semantics

In a database, an association between N objects is sim-
ilar to a miniature semantic network.” A semantic net-
work is defined as a directed graph data structure
where a set of nodes (vertices)—in this case, the ob-

Journal of the American Medical Informatics Association Volume 6 Number 6 Nov / Dec 1999 489

jects—are connected by edges that are assigned se-
mantic labels. “Directed” means that an edge from
node A to node B is not equivalent to an edge from
node B to node A. In the case of a semantic net, the
former edge is the semantic inverse (or reciprocal) of
the latter. For example, the statement “Iron absorption
is increased by vitamin C” can also be stated as “Vi-
tamin C increases the absorption of iron.” The semantic
inverses (indicated by italics) result in the subject and
object of the statement being reversed. Some concepts
are their own semantic inverse, as when two drugs
mutually reduce the absorption of each other.

Controlled-vocabulary semantic tags are extensively
used in scientific databases (e.g., the Human Genome
Database). Their use is orthogonal to EAV/CR per se.
When the only kinds of interobject associations are
binary, the same fact can be stored twice (with subject
and object reversed). Redundant storage results in fas-
ter search speed (this is a well-known example of a
“space-for-time’’ tradeoff), and therefore several pro-
duction databases use it. For example, if a fact were
stored only once, both “subject”” and *“object” columns
would need to be scanned to locate all information on
iron. This is because it would not be known, a priori,
whether “iron” was the subject or the object of any
given fact. If however, we stored the fact twice, we
would need to inspect only one of the two columns.

For N-ary associations, however, the number of ways
to represent the same fact can increase nonlinearly
with N. For example, consider the different ways the
fact “Chemical X augments the transformation of sub-
strate Y by enzyme Z” could be expressed. In such
circumstances, it becomes necessary to represent se-
mantic inverses explicitly. Therefore, the EAV/CR me-
tadata have a table (Reciprocal_Choice_Sets) for this
purpose. (Several well-known systems in medical in-
formatics, such as the MED—the Columbia Presby-
terian Medical Center Medical Entities Dictionary®—
also manage semantic inverses.)

In addition to inverse semantic tags, one can also con-
ceive of inverse attributes, especially when objects in
an association come from the same class. (This is an
artifact of the way databases are designed, with some
facts being represented explicitly as semantic tag, and
others implicitly and space-efficiently through col-
umn/attribute definitions.) In the nigrostriatal neuron
example, stating that the nigrostriatal neurons send
their output to the (efferent) striatopallidal neurons is
the same as stating that the striatopallidal neurons re-
ceive their input from the (afferent) nigrostriatal neu-
rons. By explicitly managing definitions of inverse at-
tributes, a query such as “List the afferents to the
striatopallidal neurons” would correctly translate

facts from the nigrostriatal neuron data even though
neither striatopallidal nor nigrostriatal neurons are
described under the tag “afferent.”

To summarize, inverse semantic concepts allow asso-
ciations to be stored just once and permit automatic
broadening of queries that are partially based on se-
mantic tags as query criteria.

N-ary Associations as Inverted-file Indexes

While semantic labels impose a rigor on the definition
of a given association, the number of possible labels
becomes very large in a large and complex domain
(such as the nervous system). In many cases, more-
over, many semantic edges that connect objects, while
necessary for completeness, unnecessarily recapitulate
facts of basic biology already known to the database’s
users. In the previously described benzaldehyde ex-
ample, the semantic links “catfish has-a-tissue mela-
nophores” and ‘“melanophores contain-a-messenger
cAMP”’ are uninteresting to a biologist; the only link
of interest is that between odor molecule and messen-
ger (“increases’). In such cases, the narrative prose in
the association description is more concise than any
graphic representation of a semantic net, because un-
interesting links can be left unrepresented.

For most database purposes, therefore, the full rigor
of semantic nets is generally not required, because we
are not performing inferences on the association data.
However, retrieval of associations containing one or
more objects of interest must be rapid. It is here that
the EAV_Objects table is useful. To borrow an analogy
from text information retrieval (IR), the EAV_Objects
table can be regarded as an inverted-file index® to the
narrative prose. The difference between IR indexes
and the object IDs that are the values in EAV_Objects
are that the latter represent a somewhat more rigorous
controlled vocabulary (because each object belongs to
a specific class).

Implementation Overview

This section gives a brief overview of how the EAV/
CR implementation operates. (We will shortly docu-
ment our code library in detail and put in on the sen-
seLAB Web site, whose URL is given later.)

The generated code (including Web forms) operates at
two levels—the Web server and the Web browser. The
Web server component is Active Server Pages (ASP)
scripts (generated in the Visual Basic scripting lan-
guage), which are specific to Microsoft Internet Infor-
mation Server 4.0 and Windows NT. While CGI (com-
mon gateway interface) scripts are the older,
“universal” technology for server-side programming,
we have found ourselves considerably more produc-

490 NADKARNI ET AL., EAV/CR Storage for Scientific Data

tive with ASP. Also, because ASP files are simply stan-
dard HTML files with embedded scripting code, the
generated forms can be partly edited and visually en-
hanced through Web-page design programs, if desired.

Currently, the user interface relies on the latest ver-
sions (version 4 and greater) of both Netscape and
Microsoft browsers. It makes extensive use of dy-
namic HTML (through client-side Javascript) to per-
form tasks such as simple data validation or to allow
or deny edits to some fields on the basis of the con-
tents of others. However, in the future, as we add
more powerful features, we may be forced to decide
how much cross-platform support we are prepared to
do. Netscape’s implementation of dynamic HTML
lags greatly behind Microsoft’s, and the two use
vastly different (largely incompatible) underlying
models, so writing common-denominator client-side
code is very difficult, and not always possible. In the
ongoing ACT/DB project, from which some of the
code was borrowed, we were servicing a restricted set
of users and so had mandated a Microsoft browser
platform. This was because we needed certain fea-
tures of Internet Explorer that Netscape Navigator
lacked, such as the ability to add or delete rows from
HTML tables (which simulate subforms) without
making a round trip to the server.

The database engines used are Microsoft Access 97
(for prototyping) and Oracle 7.3 (for SENSELAB pro-
duction) and Microsoft SQL Server (for the prototype
pharmacogenetics system). We have, however, tried to
use ANSI-standard SQL rather than vendor-specific
syntax to make the code as portable as possible.
Where this has not been possible (e.g., Oracle handles
dates idiosyncratically), we use ODBC *“escape se-
guences” within the SQL. (ODBC, for open database
connectivity, is a Microsoft standard for vendor-in-
dependent database access.) The ODBC driver that
mediates communication between the application and
the database automatically translates the escaped
strings into vendor-specific code.

Status Report

The senseLAB unified database is publicly accessible
through the Web via the URL http://fondue.med.
yale.edu/senselab/. It is focused on various aspects
of the olfactory system (a major research focus of Dr.
Shepherd’s laboratory). The four categories of SENSE-
LAB data correspond to the databases that the system
originally comprised.

® NeuronDB? stores data on various neuronal cells—
receptors, neuronal currents and neurotransmitters
—and interneuron connectivity.

® ModelDB” stores computational models of neuronal
function.

m ORDB (olfactory receptor database)”® holds amino
acids and nucleotide sequences, researcher and lab-
oratory information, and hyperlinks to other Web-
related data.

® OdorDB (odors database) stores chemical, biologi-
cal, and experimental data on odor molecules, neu-
rotransmitters, second messenger molecules, elec-
trophysiologic behavior, and cell types.

In addition, we expect to incorporate neural circuitry
data and three-dimensional functional magnetic res-
onance images of the olfactory cortex. The three-di-
mensional data in particular will provide a serious
test of whether the EAV/CR framework is truly gen-
eral (or if not, what work needs to be done).

Porting of the contents of these databases was
straightforward, although somewhat tedious. (These
databases resided within various engines, such as Sy-
base, Illustra, and Microsoft Access.) We describe the
process below.

m We first exported the table and column definitions
in the individual database schemas into tabular
text, which was then imported into the Classes and
Attributes tables of Microsoft Access database that
contained the EAV/CR schema. Some fields, nota-
bly foreign-key fields that referenced other tables,
were then manually edited. Duplicate definitions of
classes (e.g., the neuron class was defined in more
than one database) were manually removed.

® Once the metadata were defined, the contents of
individual tables in the original databases were
then imported into corresponding tables in the Mi-
crosoft Access database. At the end of this step, we
had a conventional unified schema coexisting with
an EAV/CR schema whose EAV data tables were
empty.

m We then wrote a series of short conversion scripts
(incorporating SQL) that reformatted the data into
EAV form table by table. Data export was phased.
“Primitive” classes (which did not contain other
classes) were exported first. Unique IDs were as-
signed to the objects created after loading into the
Objects table. These IDs were then referenced,
where appropriate, in the next phase, which con-
sisted of importing objects that referred to objects
from other classes.

® The database was stripped of conventional tables
and eventually upsized to Oracle.

Journal of the American Medical Informatics Association Volume 6 Number 6 Nov / Dec 1999 491

The prototype pharmacogenetics database contains a
very modest set of test data. One reason for exploring
pharmacogenetics concurrently with neurobiology
was to identify potential problem areas in EAV/CR
that implementation for a single domain might not
have revealed. (Also, by using an alternative database
engine, we were able to consider ways of making da-
tabase-access code generation vendor-independent.)

Discussion

From a historical perspective, EAV/CR is the inverse
of Jeffrey Ullman’s universal database (UDB) con-
cept.”® UDB aims to create the illusion of a single table
in a database, thus sparing the user from having to
specify intertable joins during ad hoc query. In other
words, UDB simulates a simple logical schema in the pres-
ence of a complex physical schema. (UDB is somewhat
limited, because certain queries, such as those using
self-joins, are ambiguous unless explicit joins and ali-
ases are specified.*”) EAV/CR representation, on the other
hand, simulates a complex logical schema by using a simple
physical schema.

The EAV/CR schema overlays a formal object-ori-
ented framework on the basic EAV model, through
the definition of classes and the permissible attributes
that each class may contain. Scientific databases differ
widely in purpose and scope, however, and EAV/CR
design is not presented as a panacea. It is necessary
to define the kinds of scientific databases for which it
appears suited.

® EAV/CR design is not currently intended to sup-
port temporal logic. While time-based signal data
are very common in experimental science, their
processing is independent of the EAV/CR
schema. Relational database management systems
(RDBMSs) are not intended to store each point in a
signal tracing as an individual record in any case.
Most RDBMSs currently treat a signal data file as a
binary large object. In other words, the file can be
stored and retrieved as a whole, but analysis of its
contents is the responsibility of special routines.
(Electronic patient record systems, in contrast, must
support temporal logic directly or indirectly. Every
parameter recorded for a patient is time-stamped.
Medical logic modules®™** often require data on the
temporal course of clinical parameters.)

m EAV/CR design is not intended to directly support
the specialized experiments of a particular labora-
tory that use a specific methodology. While nothing
prohibits its use for this purpose, the EAV model
offers no special advantages for a logical schema
that may not be particularly complex, especially if

the application can be built using conventional
user-interface technologies with little or no pro-
gramming. If, however, a laboratory needs to inte-
grate diverse data into a single database, EAV/CR
will be useful.

® EAV/CR design is especially appropriate for re-
cording summaries of experiments, and is advan-
tageous when experiments involving a variety of
different methodologies (in a research consortium,
for example) must be summarized. EAV/CR design
can similarly be used to record archival or historical
data covering various aspects of a particular sci-
entific domain. In all these situations, the “good-
ness of fit"” of an EAV/CR solution increases with
the number of classes and the interclass or intra-
class relationships. With a smaller number of clas-
ses (e.g., ten or less) in a schema that is not likely
to evolve greatly, EAV/CR design would be over-
kill, and a conventional design should be used.

The scientific contribution of this paper is the dem-
onstration that, with sufficiently rich metadata, an
EAV system is a viable alternative in the planning of
certain types of scientific databases. The importance
of metadata in various branches of informatics has
been progressively growing over the years. RDBMSs
record a database’s structure (in addition to stored
procedure code) in “system’” metadata tables. These
tables perform tasks such as type checking, referential
integrity across tables, and field level validation con-
straints. They are consulted whenever an SQL com-
mand is checked for semantic correctness or ambi-
guity. However, RBDMS system metadata have
several limitations.

®m The structure varies greatly across vendors, because
standardization efforts have lagged. (This is one
area where vendors compete). Several DBMSs do
not even permit adding descriptive comments to
the definition of a table or field.

m Client-server RDBMSs have traditionally been con-
cerned only with data management and not with
the user interface (a task relegated to client soft-
ware). Consequently, they do not store enough me-
tadata for a complete working application. Further-
more, their system tables are not extensible, and so
client-development packages (e.g., PowerBuilder)
have had to define their own tables for this pur-
pose. (PowerBuilder pioneered the concept of “ex-
tended attributes,” such as the visual formatting
desired for individual fields.)

Microcomputer DBMSs such as Microsoft Access do
store much richer metadata, but thus far the metadata

492 NADKARNI ET AL., EAV/CR Storage for Scientific Data

are oriented toward generation of vendor-specific cli-
ent interfaces rather than Web interfaces. (While Ac-
cess can generate Web forms, these forms currently
make extensive use of client-side ActiveX controls,
which can run only on Wintel platforms. Furthermore,
the security model of ActiveX is very limited. While
client-side ActiveX controls make sense in an intranet
setting, many users and system administrators are
wary of downloading such controls from a less trust-
worthy or unknown site across the Internet.)

In any case, for an EAV architecture, system metadata
are completely uninformative, since the semantics of
the system lie in the contents of the data rather than
the structure of the tables and fields. Therefore, any
EAV system needs to provide its own metadata. To
some extent, creating an EAV framework to do many
tasks that a conventional architecture would do au-
tomatically—such as type checking and referential in-
tegrity—represents wheel reinvention. In circum-
stances where direct data entry and editing must be
supported, however, this is unavoidable and repre-
sents part of the price one pays for EAV. (Many EPRSs
are able to bypass this issue completely, because their
data is bulk-imported from several conventionally
structured systems and then changed to EAV form.
The imported data have presumably passed the
checks that were built into their parent systems.) One
of the motivations behind the creation of EAV/CR
was that, if generic code could be written for such
tasks, one would be saved the trouble of writing te-
dious and ad hoc code on a case-by-case basis.

Future Directions and Conclusions

The EAV/CR schema is a work in progress. While
EAV/CR design incorporates the basic functionality
necessary to the creation of a Web-based interface,
much remains to be done. Future research will take
several directions.

m Database developers are increasingly considering
standardization of approaches to modeling schemas
and metadata. Support appears to be converging on
Rational Software’s Unified Modeling Language
(UML).** The specifications for UML are freely
available, and it subsumes older methodologies
such as entity-relationship modeling.*® The devel-
oper expresses the metadata through diagrams that
have a textual equivalent. Computer-assisted de-
sign packages such as Visio work with UML dia-
grams, and several vendors (including Rational
Software) sell programs that will convert a UML
specification into a database schema. UML is also
supported by Microsoft and is used in the Microsoft
Repository.

Given that UML may well become a de facto
metadata standard, we are actively exploring the
possibility of using a UML specification to populate
most of the metadata in an EAV/CR database. This
would greatly facilitate the automated conversion
of existing conventional schemas into EAV/CR
equivalents.

® We will eventually need to create a query generator
for attribute-centric queries. In our experience, most
gueries to scientific databases are relatively
straightforward and are directed toward specific
objects of interest (i.e., they are “object-centric’).
The senseLAB Web site currently lacks attribute-cen-
tric query but still provides access to its information
quite intuitively.t However, as the scope and vol-
ume of data grow, attribute-centric query genera-
tion and processing will become important.

m As the system grows, it will eventually become nec-
essary to provide tools to search the metadata ro-
bustly. One means for doing this is to implement a
keywords and synonyms table that allows alterna-
tive descriptions or names for classes and attrib-
utes. It may also be necessary to provide more than
one caption for an attribute (e.g., a brief caption and
a long caption), so that one or the other could be
used appropriately.

® We will need to stress-test the ability of EAV/CR
design to deal with larger volumes of data. Our
work, as described here, should provide useful
guidelines to others who are designing scientific da-
tabases, and we invite scientific collaborations from
such researchers.

The authors thank Carol Friedman, PhD, of Columbia Presby-
terian Medical Center, for a discussion highlighting the differ-
ences between EAV/CR and the universal database concept.
Daniel Masys, MD, of the University of California—San Diego,
identified the importance of the disparity between the physical
and logical schemas in an EAV database.

References m

1. Winston PH. Artificial Intelligence. 2nd ed. Reading, Mass:
Addison-Wesley, 1984.

2. Dwight J, Erwin M (eds). Special Edition: Using CGI. Indi-
anapolis, Ind: Que Corporation, 1996.

3. Huff SM, Rocha RA, Solbrig HR, Barnes MW, Schrank SP,

TThe history of public genome-related databases also supports
our experience. Both NCBI’s Entrez and the Human Genome
Database provide object-at-a-time access through their Web
front ends, and their obvious success seems to imply that most
users don’t care about complex query. (On the other hand, for
the small minority of scientists doing hard research on large
subsets of the data, complex query is essential.)

Journal of the American Medical Informatics Association Volume 6 Number 6 Nov / Dec 1999

10.

11.

12.

13.

14.

15.

16.

17.

Smith M. Linking a medical vocabulary to a clinical data
model using Abstract Syntax Notation 1. 1998;37:440-52.

. Huff SM, Berthelsen CL, Pryor TA, Dudley AS. Evaluation

of a SQL model of the HELP patient database. Proc 15th
Annu Symp Comput Appl Med Care. 1991:386-90.

. Huff SM, Haug DJ, Stevens LE, Dupont CC, Pryor TA.

HELP the next generation: a new client—server architecture.
Proc 18th Annu Symp Comput Appl Med Care. 1994:271—-
5

. Johnson S, Cimino J, Friedman C, Hripcsak G, Clayton P.

Using metadata to integrate medical knowledge in a clinical
information system. Proc 14th Annu Symp Comput Appl
Med Care. 1990:340-4.

. Friedman C, Hripcsak G, Johnson S, Cimino J, Clayton P. A

generalized relational schema for an integrated clinical pa-
tient database. Proc 14th Annu Symp Comput Appl Med
Care. 1990:335-9.

. Shepherd GM, Healy MD, Singer MS, et al. SENSELAB: a

project in multidisciplinary, multilevel sensory integration.
In: Koslow SH, Huerta MF (eds). Neuroinformatics: An
Overview of the Human Brain Project. Mahwah, NJ:
Lawrence Erlbaum, 1997:21-56.

. Nadkarni PM, Brandt C, Frawley S, et al. Managing attrib-

ute-value clinical trials data using the ACT/DB client-server
database system. J Am Med Inform Assoc. 1998;5(2):139-51.
Slezak T, Wagner M, Yeh M, et al. A database system for
constructing, integrating, and displaying physical maps of
chromosome 19. In: Hunter L, Shriver BD (eds). Proceedings
of the 28th Hawaii International Conference on System Sci-
ences. Los Alamitos, Calif: IEEE Computer Society Press.
1995:14-23.

Fasman KH, Letovsky Sl, Cottingham RW, Kingsbury DT.
Improvements to the GDB human genome data base. Nucl
Acids Res. 1996;24(1):57-63.

Letovsky SI, Cottingham RW, Porter CJ, Li PWD. GDB: the
human genome database. Nucl Acids Res. 1998;26(1):94-9.
Nadkarni PM, Cheung K-H, Castiglione C, Miller PL, Kidd
KK. DNA workbench: a database package to manage re-
gional mapping. J Comput Biol. 1996;3(2):319-29.
Nadkarni PM, Cheung KH. sQLGEN: an environment for
rapid client-server database application development. Com-
put Biomed Res. 1995;28(12);479-99.

Nadkarni P, Brandt C. Data extraction and ad hoc query of
an entity-attribute-value database. J Am Med Inform Assoc.
1998;5(6):511-27.

Bancilhon F, Delobel C, Kanellakis P. Building an object-
oriented database system: the story of O2. San Mateo, Calif:
Morgan Kaufmann, 1992.

Date CJ. An Introduction to Database Systems. 7th ed.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

493

Reading, Mass: Addison-Wesley, 1991.

Kimball R. The Data Warehousing Toolkit. New York: John
Wiley, 1997.

Inmon WH. Building the Data Warehouse. New York: John
Wiley, 1996.

Kimball R. Help for Dimensional Modeling. DBMS Mag.
1998;11(9):14-7.

Goodman N. Bill of Materials
InfoDB. 1990;5(1):2-13.

Melton J (ed). ISO-ANSI Working Draft Database Language
SQL (SQL3). ISO/IEC SQL Revision. New York: American
National Standards Institute, 1992.

Russell S, Norvig P. Artificial Intelligence: A Modern Ap-
proach. Englewood Cliffs, NJ: Prentice-Hall, 1995.

Cimino JJ, Hripcsak G, Johnson SB, Clayton PD. Designing
an introspective, multipurpose, controlled medical vocab-
ulary. Proc 13th Annu Symp Comput Appl Med Care. 1989:
513-8.

Salton G. Automatic Text Processing: The Transformation,
Analysis, and Retrieval of Information by Computer. Read-
ing, Mass: Addison-Wesley, 1989.

Mirsky JS, Nadkarni PM, Healy MD, Miller PL, Shepherd
GM. Database tools for integrating neuronal data to facili-
tate construction of neuronal models. J Neurosci Methods.
1998;82(1):105-21.

Peterson B, Healy M, Nadkarni P, Miller P, Shepherd G.
ModelDB: an environment for running and storing com-
putational models and their results applied to neuroscience.
J Am Med Inform Assoc. 1996;3(6):389—-98.

Healy MD, Smith JE, Singer MS, et al. Olfactory receptor
database (ORDB): a resource for sharing and analyzing pub-
lished and unpublished data. Chem Senses. 1997;22:321-6.
Ullman JD. Principles of database and knowledge-base sys-
tems. Rockville, MD: Computer Science Press, 1989.

Date CJ. Selected Database Readings, 1985-1989. 7th ed.
Reading, Mass: Addison-Wesley, 1990.

Hripcsak G. Writing Arden syntax medical logic modules.
Comput Biol Med. 1994;24(5):331-63.

Hripcsak G, Ludemann P, Pryor TA, Wigertz OB, Clayton
PD. Rationale for the Arden syntax. Comput Biomed Res.
1994;27(4):291-324.

Cheung K-H, Nadkarni P, Silverstein S, et al. PhenoDB: an
integrated client/server database for linkage and popula-
tion genetics. Comput Biomed Res. 1996;29:327-37.
Rumbaugh J, Jacobson I, Booth G. The unified modeling
language reference manual. Reading, Mass: Addison-Wes-
ley, 1999.

Gogolla M. An extended entity-relationship model: funda-
mentals and pragmatics. New York: Springer-Verlag, 1993.

in Relational Database.

