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Abstract
Since the world consists of objects that stimulate multiple senses, it is advantageous for a vertebrate to integrate all the

sensory information available. However, the precise mechanisms governing the temporal dynamics of multisensory pro-

cessing are not well understood. We develop a computational modeling approach to investigate these mechanisms. We

present an oscillatory neural network model for multisensory learning based on sparse spatio-temporal encoding. Recently

published results in cognitive science show that multisensory integration produces greater and more efficient learning. We

apply our computational model to qualitatively replicate these results. We vary learning protocols and system dynamics,

and measure the rate at which our model learns to distinguish superposed presentations of multisensory objects. We show

that the use of multiple channels accelerates learning and recall by up to 80%. When a sensory channel becomes disabled,

the performance degradation is less than that experienced during the presentation of non-congruent stimuli. This research

furthers our understanding of fundamental brain processes, paving the way for multiple advances including the building of

machines with more human-like capabilities.

Keywords Oscillatory neural networks � Synchronization � Binding � Multisensory processing � Learning �
Audio–visual processing

Introduction

There has been a surge of interest recently in the area of

artificial intelligence, driven by dramatic improvements in

machines and achievements such as self-driving cars,

speech and object recognition. This is accompanied by

research in allied areas such as cognitive science, psy-

chology and neuroscience. Gershman et al. (2015) observe

that ‘‘After growing up together, and mostly growing apart

in the second half of the 20th century, the fields of artificial

intelligence (AI), cognitive science, and neuroscience are

reconverging on a shared view of the computational

foundations of intelligence that promotes valuable cross-

disciplinary exchanges on questions, methods, and

results’’. Advances in neuroscience can help us better

understand human brain function, and this knowledge in

turn can help build better machines. As pointed by Ger-

shman et al. (2015), it is essential to adopt a computational

approach, and specifically deploy optimization-based

techniques. It is in this spirit that we have conducted the

research presented in the current paper, where we combine

the insights provided by the fields of AI, cognitive science

and neuroscience to further our understanding of brain

function. Since this is a very broad topic, we focus our

attention on developing a computationally-grounded

understanding of brain mechanisms that surround percep-

tion, specifically the phenomenon of multisensory

integration.

A significant portion of the research in neuroscience and

computer-based neural network models is devoted to ana-

lyzing one sensory modality at a time, such as vision or

audio or touch. However, the vertebrate brain has evolved

in a world where stimuli from objects stimulate multiple

senses simultaneously. These are then processed to produce

an integrated percept. There is a growing body of work in

the fields of neuroscience and cognitive science devoted to

multimodal sensory integration (Driver and Noesselt 2008;
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Shams and Seitz 2008). However, there are relatively few

computational models developed by researchers in the

modeling community that take into account the recent

advances made in neuroscience. In a recent review, Van

Rullen (2017) emphasizes this point as quoted below.

Furthermore, there are crucial aspects of biological

neural networks that are plainly disregarded in the

major deep learning approaches. In particular, most

state-of-the art deep neural networks do not use

spikes, and thus have no real temporal dynamics to

speak of (just arbitrary, discrete time steps). This

simplification implies that such networks cannot help

us in understanding dynamic aspects of brain func-

tion, such as neural synchronization and oscillatory

communication.

This current paper addresses this gap, and presents a

computational model for multisensory integration that

involves real temporal dynamics.

The recent review article in 2016 by Murray et al.

(2016) examines several advances made in the area of

multisensory processing. Though significant progress has

occurred over the past decade, Murray et al. acknowledge

that several outstanding questions remain unanswered

including the following.

What are the neural network mechanisms that support

the binding of information across the senses? Is there

a universal code or mechanism that underlies the

binding across levels?

Murray et al. (2016) also observe that surprisingly little

work has focused on the interplay between lower and

higher-level factors influencing multisensory processing.

The research presented in our current paper is aimed

squarely at developing a computational understanding of

the mechanisms that may govern multisensory processing,

including binding of information and the interplay between

higher and lower-level representations.

One of the important problems in the field of neuro-

science is to understand how the brain integrates repre-

sentations of objects that may be scattered in different brain

regions. As an example, consider the representation of

visual objects in the brain. It is well known that orientation

and color information is processed in separate pathways.

How are these distributed representations related to each

other to create a unified percept of an object? This is known

as the binding problem (Von der Malsburg 1999), and

computational approaches have been proposed to tackle

this. A popular approach is to use synchrony to achieve

binding (Gray et al. 1989; van der Velde and Kamps 2002),

and this has been explored through oscillatory neural net-

works (Rao et al. 2008).

In the past, oscillatory neural networks have been used

to model either auditory (Wang and Brown 1999) or visual

phenomena (Rao et al. 2008). There is little work on using

a single model to incorporate both auditory and visual

processing. The current paper aims to address this defi-

ciency, and develops an integrated model for audio–visual

processing.

By using a computational model, we aim to replicate in

a qualitative fashion the following two specific findings in

the field of cognitive science related to multisensory pro-

cessing. The first finding concerns the concept of semantic

congruency, which refers to the degree to which pairs of

auditory and visual stimuli are matched (or mis-matched).

Molholm et al. (2002) examined the interaction between

the visual and auditory stimuli arising from specific ani-

mals when presented to a human subject. As an example, a

picture of a cow is shown paired with a ‘‘lowing’’ sound or

a picture of a dog is shown accompanied by a barking

sound. The reaction times and accuracy in identification by

human subjects improve when the visual and auditory

stimuli are paired correctly, rather than when presented

individually. Molholm et al. (2002) showed that the reac-

tion times and identification of the correct objects are

consistent with a theory where there is neural interaction

between visual and auditory streams of information.

According to a competing theory, the race model, each

constituent of a bi-sensory stimulus independently com-

petes for response initiation. We view this as a reference

experiment for which we wish to construct an appropriate

computational model. We conduct simulations that mimic

the experimental design used by Molholm et al. for mul-

tisensory integration.

The second finding we wish to replicate is that of Seitz

et al. (2006), who conducted experiments on human sub-

jects to compare multisensory audio–visual learning with

uni-sensory visual learning. He showed that using multi-

sensory audio–visual training results in significantly faster

learning than unisensory visual training, as depicted in

Fig. 1. There has been a significant amount of research

dedicated to understanding crossmodal or multisensory

interactions, and their underlying mechanisms. The bulk of

this research is being carried out in the fields of psychol-

ogy, cognitive science and neuroscience. However, there is

relatively little research devoted to developing computa-

tional models of multisensory interactions. We present a

computational model that qualitatively reproduces the

result shown in Fig. 1. We emphasize that our aim is to

create a single computational model that can explain both

these findings.

Though brain signals are time-varying, there are few

computational models in the literature that directly address

multisensory learning, while accommodating temporal

aspects such as synchrony. The fundamental contribution
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of the current paper is to present an oscillatory neural

network model that utilizes multisensory inputs to replicate

semantic congruency effects and achieve faster learning.

We present a principled, optimization-based approach to

multisensory learning, based on sparse spatio-temporal

encoding. The model derived from this approach produces

experimental results that are consistent with observations

in neuroscience and cognitive science, specifically those

presented in Molholm et al. (2002) and Seitz et al. (2006).

Such a development of computational models contributes

to our understanding of fundamental brain processes. This

paves the way for multiple advances including the building

of machines with more human-like capabilities.

Background

Shams and Seitz (2008) propose that multisensory learning

can be advantageous as objects in our world are simulta-

neously experienced through multiple senses. We expect

that our brain has evolved to optimize this simultaneous

processing, and this led Shams and Seitz (2008) to

hypothesize that multisensory training protocols produce

greater and more efficient learning. Due to the temporal

nature of objects in the real world and their corresponding

brain signals, we need to model multisensory training by

paying attention to temporal synchrony in the presentation

of different sensory streams originating from a single

object.

Singer, Gray et al. (1989) discusses the potential role of

synchrony in tagging the relatedness of events. Synchro-

nization may serve as a computational substrate for

encoding elementary Gestalt rules of grouping.

Van Rullen (2017) presents an interesting perspective

regarding the state of current research in the field of

perception science. Deep neural networks are very popular

and have been applied widely (Schmidhuber 2015). How-

ever, there are many fundamental problems in perceptual

processing such as color constancy, multisensory integra-

tion, and attention, which remain to be explored through

deep networks. Furthermore there are several phenomena

involving brain dynamics, such as oscillations, synchro-

nization, and perceptual grouping which have not been

explored by deep networks.

Yamashita et al. (2013) present a model that performs

multisensory integration using a Bayesian approach.

However, their model does not contain any temporal

dynamics. Similarly, Rohde et al. (2016) and Fetsch et al.

(2013) have developed statistical approaches to cue inte-

gration from multisensory signals, but do not address the

aspect of temporal dynamics. van Atteveldt et al. (2014)

review the recent neuroscientific findings in the area of

multisensory integration. They emphasize the role of tim-

ing information such as oscillatory phase resetting in the

processes involved in multisensory integration. However,

they did not present specific computational models that

embody this timing information.

Kopell et al. (2014) have proposed the concept of a

‘‘dynome’’, which combines anatomical connectivity of the

connectome with brain dynamics occurring over this

anatomical substrate. They recognize the importance of

temporal phenomena such as rhythms and its role in

cognition.

In our current paper, we build a computational model

using oscillatory elements. Networks using oscillatory

elements have been investigated for nearly three decades,

and form a viable platform to implement theories of syn-

chronization (Grossberg and Somers 1991; Sompolinsky

et al. 1990). However, controlling the dynamics of these

oscillatory models has proven to be a challenge (Wang

1996). Hence, it is typical for oscillatory models to be

tested on surrogated inputs, as for instance in the very

recent papers Kazanovich and Borisyuk (2017) and

Garagnani et al. (2017). Other efforts including Qu et al.

(2014) and Balasubramaniam and Banu (2014) do not use

specific sensory inputs, but rather investigate properties of

the network connecting individual oscillators.

Jamone et al. (2016) review the concept of affordance

arising from the psychology literature which is related to

sensorimotor patterns created by a perceptual stimulus.

Inherent in the notion of an affordance is the idea that

action and perception are intertwined, and that action can

influence perception. In this context, visuo-motor maps

become important, and our framework could serve as a

foundation for the integration of visual and motor

representations.

Noda et al. (2014) present a computational model for

multisensory integration. They use a deep auto-encoder to

Fig. 1 This figure, from Seitz et al. (2006) [Fig 3] shows the

improvement in learning when multisensory learning (darker curve) is

used instead of uni-sensory learning (lighter curve)

Cognitive Neurodynamics (2018) 12:481–499 483

123



compress the data from multiple modalities, and a deep

learning network to recognize higher-level multi-modal

features.

The synchronization between multi-modal representa-

tions need not be confined to a single organism, but can

extend across multiple organisms. Coco et al. (2016)

review the role of sensory-motor matching mechanisms

when two humans are involved in a joint co-operative task.

A body of research in the computational domain exists

under the area of sensor fusion or data fusion, and has been

reviewed by Khaleghi et al. (2013). The thrust of this work

revolves mostly around understanding correlations and

inconsistencies in data gathered from multiple channels

with the goal of reducing uncertainty. Though there have

been successful applications of this work in areas such as

robotics, the focus is not on developing plausible models of

brain function. Specifically, models of sensor fusion do not

contain temporal dynamics such as synchronization, which

are very relevant to understanding neural mechanisms that

lead to perception. The computational model presented in

the current paper explicitly deals with the phenomenon of

neural synchronization, which contributes to a richer

understanding of perceptual dynamics.

Methods

Our earlier research investigated a model based on the

principle of sparse spatio-temporal encoding for processing

sensory information (Rao et al. 2008; Rao and Cecchi

2010). The model was extended to two sensory pathways in

Rao and Cecchi (2013).

We review the model from Rao and Cecchi (2013)

briefly. Figure 2, shows a two layer system with two input

streams, a simulated audio and a simulated visual stream.

Though these streams are termed ‘audio’ and ‘visual’, this

is done for sake of concreteness, and our method should

work with other combinations of sensing modalities such as

tactile and visual for example.

Let x denote units in the lower layer visual cortex, u

denote units in the lower layer auditory cortex, and y

denote units in the upper layer association cortex. We use a

weight matrixW to map the visual cortex to the association

cortex. and a weight matrix V to map the auditory cortex to

the association cortex.

Computationally, each unit is modeled as an oscillator

with an amplitude, frequency and phase of oscillation. If

we assume that the units possess similar nominal fre-

quencies, their behavior can be described by phasors of the

form xne
i/n for the visual cortex, une

inn for the auditory

cortex and yne
ihn for the association cortex. Here, xn and un

represent the amplitudes of units in the visual and auditory

cortices and yn represents amplitudes of units in the asso-

ciation cortex. Similarly, /n and nn are the phases of the

nth unit in the visual and auditory cortices, and hn repre-

sents phases of units in the association cortex. Note that

frequency is equal to the rate of change of phase, so we do

not explicitly represent frequency of oscillation in the

following equations.

In our earlier work (Rao et al. 2008; Rao and Cecchi

2010), we formulated an objective function that achieves

sparse spatio-temporal encoding of visual inputs. This

work is based on a system of interconnected oscillators,

and utilizes the amplitude and phases of the oscillators to

achieve a stable network state where the upper layer units

encode inputs conveyed at the lower layer. The detailed

derivation of this model is outside the scope of this paper.

Instead, we briefly review the essential dynamical update

(A)

(B)

(C)

Fig. 2 A hierarchical organization of simulated cortical interactions.

At the lower level, we have simulated visual and auditory cortices.

These are mapped to a higher level area, termed the association

cortex. a Depicts feed-forward connections, b depicts lateral

connections and c depicts feedback connections
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rules. Given a set of initial conditions, the system evolves

dynamically as described by Eqs. 1–3.

Dyn /
X

j

Wnjxj½1þ cosð/j � hnÞ�

þ
X

j

Vnjuj½1þ cosðnj � hnÞ� � ayn

� c
X

k

yk½1þ cosðhk � hnÞ�

ð1Þ

Dhn /
X

j

Wnjxj sinð/j � hnÞ

þ
X

j

Vnjuj sinðnj � hnÞ

� c
X

k

yk sinðhk � hnÞ

ð2Þ

D/n /
X

j

Wjnyj sinðhj � /nÞ ð3Þ

Dnn /
X

j

Vjnyj sinðhj � nnÞ ð4Þ

Here, c and a are constants that are proportional to the

desired sparsity of the values yn, as described in Rao et al.

(2008). The parameter values are summarized in Table 1.

The time step used to perform the updates in 1 and is

Dt ¼ 0:05 ms. This is standard practice in the literature on

Kuramoto oscillators, which serve as a model for syn-

chronization phenomena (Acebrón et al. 2005).

Figure 3 depicts the time-varying behavior of the

oscillatory elements used in our model. This behavior is

contrasted with other models of neural elements used in the

literature.

When Eqs. 1–3 are applied to the different units in the

system, we observe that there are transients initially, such

as in the amplitudes of the units as shown in Fig. 4. These

settle down after approximately 200 iterations. The

synaptic weightsW are updated after this settling period by

using the equation:

DWij / yixj½1þ cosð/j � hiÞ� ð5Þ

A similar update is applied to V.

DVij / yiuj½1þ cosðnj � hiÞ� ð6Þ

Note that the phase of units in the system are a function of

their natural frequency and the result of interactions with

other units.

Interpretation of network dynamics

Let us consider a single channel, say the visual channel,

denote by lower layer units xn connected to upper layer

units yn via weights Wn. As discussed in Rao et al. (2008),

the application of Eqs. 1–3 result in a winner-take-all

dynamics amongst yn for a single input stimulus, where a

Table 1 Table describing the

parameters used in Eqs. 1–3
Parameter Description Value

c Sparsity parameter controlling the influence of other units on a given unit 0.25

a Sparsity parameter controlling the influence of a unit on itself 0.5
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Fig. 3 The behavior of an oscillatory element contrasted with other

types of elements. The x axis depicts time, and the y axis represents

the amplitude of the neural units as a function of time. a Shows the

input signal. b Depicts the output of an integrate-and-fire element. c
Depicts the output of a typical sigmoidal neural element. d Depicts

the real-valued output of the oscillatory element. e Depicts the

amplitude of the oscillatory element. f Shows the phase of the

oscillatory element in ‘o’ and the phase of the input element in ‘þ’.

The oscillatory plot is created from Eq. 1

Fig. 4 The evolution of amplitudes yn in the upper layer units is

shown. In the steady state, a single winner emerges upon the

presentation of a stimulus

Cognitive Neurodynamics (2018) 12:481–499 485

123



single winner emerges amongst the upper layer units. This

is illustrated in Fig. 4.

When two inputs are superimposed, two winners

emerge, as shown in Figs. 4 and 5. To understand this,

consider the following equation _yn ¼ In � yn � k
P

m 6¼n ym,

where In ¼ Wn � x is the input to unit n. During steady-

state, _yn ¼ 08n. Let the Mth input cause yM to attain its

maximum value, yM � IM , and hence yn � 08n 6¼ M. Here,

the condition for stability implies xn � kxM\08n 6¼ M, or

equivalently IM [ xN=k8n 6¼ M. We can achieve this

condition through proper alignment of the weight vectors

Wn after learning takes place.

When two vectors are presented to the network after

learning, we can conduct a similar analysis to show that a

stable solution with two winners is possible when ðIð1ÞM1
þ

I
ð1Þ
M2
Þ=ð1þ kÞ þ ðIð2ÞM1

þ I
ð2Þ
M2
Þ=ð1þ kÞ[ I

ð1Þ
n =kþ I

ð2Þ
n =k. We

note that when two winners are present, their phases are in

opposition, ie approximately p radians apart, as shown later

in Fig. 10.

Each of the Eqs. 1–3 can be understood in more detail as

follows. In Eq. 1, the cosine term involving phase differ-

ences ensures that synchronized units, i.e. units with

smaller phase differences have a stronger feed-forward

effect on the amplitude. The excitatory feed-forward and

feedback connections are such that units that are simulta-

neously active tend towards phase synchrony. The inhibi-

tory connections tend to produce de-synchronization. At

the same time, they also have a stronger suppressing effect

on the amplitude of synchronized units, and correspond-

ingly a weaker effect on the amplitude of de-synchronized

units.

The equations for synaptic learning, Eqs. 5 and 6 con-

sist of a simple extension of Hebbian learning, where

simultaneous activity between two units is rewarded, with

an additional cosine term that rewards the degree of syn-

chronization between these two units. With this scheme, it

is possible to admit two winners in the upper layer if their

phases are p radians apart, in which case the cosine term

becomes zero.

Audio–visual stimulus presentation

Let us assume that the lower layer is initialized to contain

pixel values of a 2-D visual image representing a visual

stimulus and a 2-D audio image representing a simultane-

ously presented auditory stimulus. Since the audio and

visual stimulus occur simultaneously in the real world, they

are presented as a congruent pair. As noted earlier, we can

combine any two sensory stimuli from different sensing

modalities this way, which is consistent with an interpre-

tation offered by Ghazanfar and Schroeder (2006). The

upper layer, y is initialized to zero. and all phase values are

randomized.

This pairing of the auditory and visual sensory infor-

mation is consistent with the state-of-the-art in multisen-

sory processing as reviewed by Murray et al. (2016). They

stress that physical stimulus characteristics play a central

role in influencing multisensory interactions at different

abstraction levels, including neural, perceptual and

behavioral levels. Key stimulus characteristics include

spatial and temporal relationships between signals in dif-

ferent senses that emanate from physical objects.

The lower layer visual cortex consists of 8� 8 units,

each of which receives a visual intensity value as input.

Similarly, the lower layer auditory cortex consists of 8� 8

units receiving auditory intensity values as input.

The upper layer y consists of 16 units. We utilize all-to-

all connections between units x and y, and between u and

y. Units in y are interconnected by all-to-all lateral con-

nections, and there are all-to-all feedback connections from

y to x and from y to u. When learning is completed, the

units in the upper layer demonstrate a winner-take-all

dynamics when an input is presented at the lower layer. In

order to clarify the winner-take-all dynamics, we show the

Fig. 5 This figure illustrates the evolution of amplitudes yn in the

upper layer units when a superposition of two inputs is presented. In

the steady state, two winners emerge, each representing one of the

inputs

Fig. 6 We plot the evolution of amplitudes in the and upper fyg layer

when two superposed inputs are presented. Each sinusoidal pattern

shows the real-valued amplitude of a unit plotted on the vertical axis

against time in iteration steps along the horizontal axis. There are two

upper fyg layer units that respond to the superposition. Note that these
responses are out of phase with each other (180� apart)
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time-varying output of the winners in the upper layer in

Fig. 6.

The representation in the time domain as shown in

Fig. 6 can get cluttered for a large number of units, and it is

difficult to convey spatial relationships in the same plot.

Hence we use a phasor representation in subsequent plots,

where the amplitude of the oscillation is represented by the

length of a vector and the phase of the oscillation is rep-

resented by the angle of the vector. The time domain and

phasor representations are equivalent.

In order to illustrate our model, we use an input set

shown in Fig. 7 consisting of the following 4 simple visual

objects: triangle, square, cross, and circle. These visual

objects are associated with corresponding audio objects, as

shown in Fig. 8. Thus, each real-world object generates a

paired visual and auditory input pattern, known as a con-

gruent pairing. The auditory objects are idealized

representations of tonotopic maps consisting of frequencies

arranged spatially (Formisano et al. 2003). As observed in

the Background section, it is common in the literature on

oscillatory neural networks to use such surrogated inputs,

for instance as done recently by Kazanovich and Borisyuk

(2017) and Garagnani et al. (2017).

To create an object stimulation, we pair the auditory and

visual representations, and present them jointly at the lower

layer, as in Fig. 9.

The network operates in two sequential stages, denoted

by learning and performance. During the learning stage, a

single randomly selected object is presented and the net-

work activity settles down. The Hebbian learning rules

from Eqs. 5 and 6 are applied, which represents unsuper-

vised learning. This process is repeated over 1000 trials or

presentations. The upper layer units in the association

cortex, y, exhibit a winner-take-all behavior such that each

input produces a unique winner.

During the performance phase, we present superposi-

tions of two objects at a time. When two inputs are

superposed and presented to the lower layer x, two winners

emerge in the upper layer y. These units correspond to the

two units with the two largest amplitudes. The phases of

the winners in layer y are synchronized with the phases of

units in the lower layers x and u that correspond to the two

individual inputs. Hence, different units in the upper layer y

can be simultaneously active while possessing phases that

are maximally apart from each other, ideally p radians

apart. This facilitates an efficient separation of mixtures of

objects based on their phase representations.

We quantify the network behavior through two mea-

sures, the separation accuracy and segmentation accuracy.

The separation accuracy measures the ability of the net-

work to correctly identify superposed inputs. Suppose unit i

in the upper layer is the winner for an input x1, and unit j is

the winner for input x2. If units i and j in the upper layer are

also winners when the input presented is the mixture

x1 þ x2, then the separation is deemed to be correct. The

separation accuracy is defined to be the ratio of the total

number of correctly separated cases to the total number of

cases.

The segmentation accuracy computes the degree to

which the phases of unique distinct objects in the network

are distinguishable from each other. We determine the

fraction of the units of the lower layer that correspond to a

given object and are within a given tolerance limit of the

phase of the upper layer unit corresponding to the same

object. This measure is termed the segmentation accuracy.

Audio Obj. #1 Audio Obj. #2 Audio Obj. #3 Audio Obj. #4

Fig. 8 A simulated representation of objects in the auditory cortex.

The 2-d maps represent idealized tonotopic maps corresponding to the

visual objects shown in Fig. 7

Object # 1 Object # 2 Object # 3 Object # 4

Fig. 7 A simulated representation of four objects in the visual cortex

Fig. 9 We simulate an audio–visual object presentation by initializing

the lower layers separately to the visual and auditory components of

an object. This figure uses the visual and auditory representations of

object #3 shown in Figs. 7 and 8 respectively
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Results

Figures 10 and 11 show the system response when objects

4 and 3 are presented simultaneously. In Fig. 10 we show

the result of superposing visual information arising from

these two objects, while Fig. 11 shows the result of

superposing auditory information.

The third row of Fig. 10 shows that the two winners in

the upper layer are approximately p radians out of phase

with each other. The phasors representing the winners are

colored blue and red to help the reader compare them

against the phasors in the lower layer. We can readily see

that in the lower layer, phasors in blue are representative of

visual object #4, and are synchronized with the blue phasor
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Fig. 10 The auditory stream is depicted. We begin with the

superposition of objects 4 and 3, and their corresponding visual

maps. We normalize the grayscale image of the superposed objects

before display. The phase of the first winner (in blue) corresponding

to object 4 in the upper layer y is 0.588 radians. The phase of the

second winner in y (in red) corresponding to object 3 is 3.767. We use

a vector field to display the activity in the lower layers. The

magnitude of a vector reflects the amount of activity in a unit, and its

direction encodes the phase of the unit. (Color figure online)
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Fig. 11 The visual stream is examined. We show the superposition of

objects 4 and 3 occurring in the auditory maps. In the upper layer y,

the phase of the first winner (in blue), corresponding to object 4 is

0.588 radians. The phase of the second winner in y (in red),

corresponding to object 3, is 3.767. The bottom row depicts the

phases of the lower layer in the auditory maps. (Color figure online)
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in the upper layer winner that denotes a higher-level rep-

resentation of object #4. Similarly, the red-colored phasors

in the lower and upper layers indicates a consistent repre-

sentation of object #3 across these layers.

From Fig. 11 we observe that the correspondence

between the phase information across hierarchical layers

also holds true for the auditory representations of the same

two objects. Thus, phase synchronization exists between

the units in the lower layer for both auditory and visual

maps corresponding to a given object and also the upper

layer winner that represents the composite audio–visual

object.

The mechanisms to attain the amplitudes and phases in

Figs. 10 and 11 were reviewed in ‘‘Interpretation of net-

work dynamics’’ section. Essentially, the amplitudes of the

units in the upper layer are governed by a winner-take-all

behavior, whereas the phases in the upper and lower layers

co-evolve over each successive iteration. This co-evolution

converges to a local minimum of an objective function

representing a sparse spatio-temporal encoding of the

input, as described in Rao et al. (2008) and Rao and Cecchi

(2010). The net result is that a winner in the upper layer

receives a phase that is close to the phases of the input

layer units representing a single object. Furthermore, we

showed in ‘‘Interpretation of network dynamics’’ section

that two winners can exist in the upper layer provided their

phases are approximately p radians apart. Due to the phase

synchronization of a winner in the upper layer with the

input that it represents, it follows that there will be two sets

of phases in the lower layer units, one for each winner, and

that the phase separation between these sets is also

approximately p radians.

Figures 12 and 13 show a similar behavior for a mixture

of objects 1 and 4. The network is able to separate both the

audio and visual representations of these objects.

We gathered statistics about the performance of the

network via the following procedure. Let an epoch consist

of:

1. A training phase, where the network learns its weights

over 1000 presentations of the objects in random order

and

2. A recall phase, which occurs after the weights are

learned. During recall, we present combinations of a

pair of objects and calculate the network response. We

use the separation and segmentation accuracy to

measure the system performance. We present 100

different pairwise combinations of objects, selected at

random in order to compute the separation and

segmentation accuracy.

We obtained estimates of the separation and segmentation

accuracy of the network over 60 epochs. We also varied the

sensory pathways utilized according to the following four

regimens.

1. Regimen 1: Both the audio and visual pathways were

used in training and recall.
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Fig. 12 We examine the visual stream. Consider the superposition of

objects 1 and 4, and their corresponding visual maps. We normalize

the grayscale image of the superposed objects before display. The

phase of the first winner corresponding to object 1 in the upper layer

y (in blue) is 5.49 radians. The phase of the second winner in y (in

red) corresponding to object 4)is 1.96 radians. We use a vector field to

display the activity in the lower layers. The magnitude of the vector

represents the amount of activity in the unit, and the direction of the

vector encodes the phase of the unit. (Color figure online)

Cognitive Neurodynamics (2018) 12:481–499 489

123



2. Regimen 2: Both the audio and visual pathways were

used in training but only the visual pathway was used

during recall.

3. Regimen 3: Only the visual pathway was used for

training and recall.
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Fig. 13 We examine the auditory stream by showing the superposi-

tion of objects 1 and 4, and the corresponding auditory maps. We

normalize the grayscale image of the superposed objects before

display. The phase of the first winner corresponding to object 1 in the

upper layer y (in blue) is 5.49 radians. The phase of the second winner

in y (in red) corresponding to object 4 is 1.96 radians. The phases of

the lower layer in the auditory maps are displayed in the bottom row.

(Color figure online)
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Fig. 14 We compare the network performance across the following

four regimens: Regimen 1: Both the audio and visual pathways were

used in training and during recall. Regimen 2: Both the audio and

visual pathways were used in training but only the visual pathway is

used during recall. Regimen 3: Only the visual pathway is used during

training and recall. Regimen 4: Both the audio and visual pathways

are used in training. During the recall phase, we alter the congruency

between the audio and visual signals. This means that a visual object

is paired with a different auditory stimulus than the one the network

was trained with. We plot the mean value of the separation accuracy

for each regimen. The standard deviation is plotted in the form of red

error bars
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Fig. 15 We compare the network performance across the different

regimens as follows. The mean value of the segmentation accuracy is

plotted along the y axis for each regimen. The standard deviation is

plotted in the form of error bars, shown in red. Regimen 1: Both the

audio and visual pathways were used in training as well as during

recall. Regimen 2: Both the audio and visual pathways were used in

training but only the visual pathway is used during recall. Regimen 3:

Only the visual pathway is used during training and recall. We ignore

Regimen 4, where non-congruent audio and visual signals are used

during recall. This is because the separation accuracy is very low, and

subsequently the results for the segmentation accuracy are not

meaningful
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4. Regimen 4: Both the audio and visual pathways were

used in training. However, during the recall phase, we

modified the congruency between the audio and visual

signals such that a visual object was paired with a

different auditory stimulus than the one the network

was trained with.

For each of the regimens, we calculated network perfor-

mance measures averaged over 60 epochs. These values are

analyzed as follows. First, we display the network perfor-

mance measured by the separation accuracy in Fig. 14 and

segmentation accuracy in Fig. 15. Second, we examine the

statistical distributions formed by these performance

statistics, e.g. a distribution of separation accuracies for

each regimen. We utilize the two-sample Kolmogorov–

Smirnov test to determine whether samples from two reg-

imens arise from the same continuous distribution. This

calculation is performed by using the function kstest2 in

Matlab. The null hypothesis is that data in two vectors are

from the same continuous distribution, in which case the

function kstest2 returns a 0. If the null hypothesis is

rejected at a 5% significance level, the function kstest2

returns a 1. Table 2 shows the results of comparing the

distributions for separation accuracy under the above four

regimens.

Interestingly, the two-sample Kolmogorov–Smirnov test

shows that all distributions of separation accuracy arising

from the different regimens are dissimilar except in the

following case. When the network is trained with audio–

visual stimuli and only the visual pathway is used for

recall, then the performance is statistically similar to the

regimen where only the visual pathway is used for both

training and recall. Figure 14 shows that superior network

performance as measured by separation accuracy is

achieved when audio–visual pathways are utilized during

both the training and recall phases.

We investigate the strength and efficiency of multisen-

sory learning through results depicted in Figs. 16, 17, 18

and 19. These results form the basis of a comparison of the

computational results from our model against the results

from human subjects obtained by Seitz et al. (2006) as

shown in Fig. 1.

We use the metrics of separation accuracy and seg-

mentation accuracy to measure how well our model can

distinguish audio–visual objects.

The following variables are of interest in exploring the

performance of our computational model: the number of

settling iterations, the number of samples over which

training is performed, the separation accuracy and the

segmentation accuracy. We use the following values for the

number of settling iterations: 50, 100, 150, 200. Recall that

the oscillatory networks take time to settle, and learning

takes place only after the number of settling iterations has

been reached. We use the following values for the number

of training samples: 5, 100, 200, 300, 400, 500. Each

training sample consists of a presentation of a paired

audio–visual stimulus when multisensory training is being

investigated and an individual visual stimulus for the case

of uni-sensory training. We visualize the relationships

between these variables in a series of 2-D plots.

Figures 16 and 17 show that for a given number of

training samples, both the separation accuracy and seg-

mentation accuracy increase as the number of settling

iterations increase. Furthermore, the multisensory audio–

visual regimen shows greater accuracy than the uni-sensory

visual-only regimen. The best performance is obtained for

500 training presentations or samples, and 200 settling

iterations, though the improvements tend to flatten out.

Similarly, Figs. 18 and 19 show that for a given number of

settling iterations, both the separation accuracy and seg-

mentation accuracy increase as the number of training

samples increase. Furthermore, the multisensory audio–

visual regimen shows greater accuracy than the uni-sensory

visual-only regimen.

Table 2 Results of using the two-sample Kolmogorov–Smirnov test. This test determines the similarity of distributions of separation accuracies

over multiple trials in each regimen

Both visual and audio for

training and recall

Train with audiovisual,

recall with visual only

Train with visual and

recall with visual

Train with audiovisual, recall

with non- congruency

Both visual and audio for

training and recall

Dissimilar Dissimilar Dissimilar

Train with audiovisual, recall

with visual only

Similar Dissimilar

Train with visual and recall

with visual

Dissimilar

Train with audiovisual, recall

with non-congruency
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Discussion

The results shown in Figs. 10, 11, 12 and 13 are significant

as there are very few instances in the literature of suc-

cessful separation of superposed audio–visual inputs, such

as the work of Darrell et al. (2000). Earlier efforts towards

separation of superposed signals were mainly applied to

auditory signals involved in the ‘‘cocktail party’’ effect

(Haykin and Chen 2005).

As stated in the Introduction, our goal was to develop

computational models to explain two findings in the field of

cognitive science concerning the effect of congruency of

audio–visual stimuli and the efficiency of multisensory

learning. We examine our results towards achieving these

goals in the following subsections.

Interpretation of network dynamics
among the different regimes

As explained in ‘‘Interpretation of network dynamics’’

section, the amplitudes in the upper layer exhibit a winner-

take-all behavior with a single winner for a single input,

and two winners for a superposition of inputs. Due to

simultaneous presentation of the audio and visual signals

for a single coherent object, the co-occurrence of these

signals is learnt and results in a single winner in the upper

layer. Since the presentation of combined signals in the

audio and visual channels causes faster activation of the

upper layer units as opposed to the presentation of a single

channel, a steady state is achieved more quickly, leading to

faster learning. When superpositions of audio–visual sig-

nals are created for two objects, the corresponding winners

for these objects are activated in the upper layer. The use of

two channels provides more pathways to activate the

higher layer units as compared to a single channel, which

leads to more accurate learning. Hence the network per-

formance with two channels used for training and recall

will be superior to the case when only a single channel is

used. Ultimately, the associations between the different

features in the audio–visual channels that represent distinct

objects is captured in the pattern of synaptic weights that

are learnt.

If both the audio and visual channels are used for

learning, and only one is used for recall, the learned

synaptic weights are still representative of the original

object features. This results in pathways that stimulate

partial recall, which may still produce the correct answers,

bFig. 16 The variation of the separation accuracy as a function of the

number of settling iterations. a–e show separate graphs for specific

numbers of training samples used, ranging from 100 samples to 500

samples
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depending on the specific inputs presented to the system.

Accordingly, the separation and segmentation accuracy

produced by this regime is not as high as the first regime

where both channels are used for learning and recall.

If the auditory and visual channels are made incongru-

ent, then the previously learned object feature associations

are no longer preserved, causing erroneous upper layer

units to respond. This adversely affects the network per-

formance, as shown in Fig. 14.

Congruent processing of audio–visual stimuli

We first examine our findings related to the congruent

processing of audio–visual information. Figure 14 shows

that superior network performance as measured by sepa-

ration accuracy is achieved when audio–visual pathways

are utilized during both training and recall. Hence we offer

the interpretation that it is advantageous to use multiple

sensory pathways for both training and recall.

Experiments using congruent and non-congruent stimuli

in the psychology literature (Thelen et al. 2015) demon-

strate that the presence of congruent visual and audio

stimuli enhances perception and recall. Furthermore, Davis

et al. (1999) show that auditory information is able

enhance human performance in virtual environments. The

implication of these results can be summed up in the phrase

‘‘use it or lose it’’. If a multisensory pathway is available, it

is best to use it, as it enhances performance.

There was a possibility that using audio–visual signals

instead of only-visual signals for training would confer an

advantage in the formation of percepts related to different

objects, whereby information in both channels could

potentially sculpt boundaries for these objects in a high-

dimensional feature space. Then, these boundaries could

help in object discrimination when only one pathway (e.g.

only the visual pathway) is used for recall. Our results

suggest that this is unlikely for the following reason. Let us

compare Regimen 2 (where both the audio and visual

pathways were used in training and only the visual pathway

is used during recall) to Regimen 3 (only the visual path-

way is used during training and recall), using Fig. 14 and

Table 2. We observe that there is no statistically significant

difference between these Regimens in terms of the sepa-

ration accuracy.

bFig. 17 The variation of the segmentation accuracy as a function of

the number of settling iterations. a–e show separate graphs for

specific numbers of training samples used, ranging from 100 samples

to 500 samples
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A multisensory protocol achieves greater
and more efficient learning

Our second goal was to computationally model the effi-

ciency of learning using different combinations of multi-

sensory stimuli. By comparing Figs. 16, 17, 18 and 19 with

Fig. 1, we see that there is a qualitative similarity between

our model and human performance. Specifically, we can

see from Fig. 16a that the largest performance gain occurs

at a settling iteration of 150, and at this value, the sepa-

ration accuracy for audio–visual stimuli is about 80%

higher than the separation accuracy for only-visual stimuli.

Other performance gains may not be as high and this gain

depends on the number of settling iterations used, and also

the number of training samples.

We show through computational modeling that a mul-

tisensory protocol indeed achieves greater and more effi-

cient learning. This achieves our objective to develop

computational models consistent with findings related to

multisensory integration in neuroscience and cognitive

psychology.

In order to place our research in the right context, we

briefly discuss the relevance of our results in relation to the

existing literature on multisensory processing.

Multisensory processing in the brain

Driver and Noesselt (2008) review several studies that

examine multisensory convergence zones in the brain. For

instance, it is well known that neurons in the superior

colliculus receive inputs from visual, auditory and

somatosensory areas. multisensory neurons are also found

in the superior temporal sulcus. Though there are higher

level convergence zones, the interplay between multiple

senses does not have to wait till these levels, and can occur

earlier, even at the level of primary cortices (Driver and

Noesselt 2008). There is evidence that multisensory inter-

play can occur at some traditional sensory-specific brain

regions. multisensory convergence zones may also provide

feedback to earlier sensory-specific cortical areas. Our

current model uses such a scheme, where a multisensory

convergence zone provides feedback to simulated visual

and auditory cortices, as shown in Fig. 2.

Invasive electrophysiology techniques were used ini-

tially to investigate multisensory processing. These tech-

niques are now being augmented by modalities such as

fMRI and MEG (Amedi et al. 2005) which have led to the

identification of areas involved in audio–visual integration

bFig. 18 The variation of the separation accuracy as a function of the

number of training samples. a–d show separate graphs for specific

numbers of training iterations used, ranging from 50 to 200 iterations
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including the superior temporal sulcus and superior tem-

poral gyrus.

Thelen et al. (2015) investigated the phenomenon of

incongruent pairings between auditory and visual stimuli.

For example, a congruent pairing would consist of a picture

of an owl being presented simultaneously with the sound it

emits. Multisensory interactions affect memory formation

and can subsequently influence unisensory processing.

Memory representations can span multiple senses and can

also be activated by input from a single sense. In the cur-

rent paper, we did not model memory representation within

each sense. This will require an extension of our model

shown in Fig. 2, and is a topic for future research

Bahrick and Lickliter (2012) highlight the importance of

temporal synchrony in the binding of multisensory stimu-

lation. In the current paper, we utilize temporal synchrony

in two ways. First, we use synchronized presentations of

paired audio and visual stimuli during the training phase.

Second, the individual neural units in the simulated audi-

tory and visual cortices and association area are able to

interact, leading to synchronized activity amongst these

units. In our model, temporal synchrony facilitates the

formation of multiple object representations that are con-

currently active. Such precise computational models are

lacking in the psychology literature in papers such as

Bahrick and Lickliter (2012). It is desirable to devise

computational models to explain experimental observa-

tions gathered from human subjects. The current paper

strives to bridge this gap between observations in psy-

chology and existing computational models.

Quak et al. (2015) examine the role of multisensory

information in memorization and working memory.

According to their view, working memory consists of

unified cross-modal representations as opposed to indi-

vidual unisensory representations. In our model, we use a

unified cross-modal representation in the form of an asso-

ciation layer, as shown in Fig. 2. This could serve as the

foundation of a working memory in a larger system, and a

more thorough investigation is a proposed for future

research.

According to Shams and Seitz (2008), multisensory

training protocols produce greater and more efficient

learning. Our experimental results, shown in Figs. 14

and 15 are in concurrence, as we demonstrate superior

performance when multisensory information is combined

rather than treated individually.

van Atteveldt et al. (2014) proposed different neuronal

mechanisms that may be employed in multisensory

bFig. 19 The variation of the segmentation accuracy as a function of

the number of training samples. a–d show separate graphs for specific

numbers of training iterations used, ranging from 50 to 200 iterations
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integration, which includes oscillatory phase resetting. This

is very relevant, as the our model specifically utilizes

oscillatory networks and phases, and hence dovetails well

with current neuroscientific theories.

Semantic congruency refers to the degree to which pairs

of auditory and visual stimuli are matched (or mis-mat-

ched). There has been a resurgence of interest in semantic

congruency, in the recent literature in multisensory inte-

gration (Spence 2011). Our simulations explored congru-

ency effects by deliberately scrambling the correspondence

between auditory and visual stimuli arising from a given

object. Our results show that system performance degrades

in the presence of incongruent stimuli and are in agreement

with experimental findings in attention perception (Spence

2011).

Visual perception can be influenced by sound and touch.

This effect can be seen at early stages of visual processing,

including the primary visual cortex, as observed by Shams

and Kim (2010). This indicates that a relevant computa-

tional model must allow the primary cortices to be influ-

enced by crossmodal signals. We satisfy this requirement

in our model, as we allow signals from the auditory stream

to influence activity in a simulated primary visual cortex,

and vice versa. This ability is enabled via feedback con-

nections from a higher-level associative cortex to each of

the primary cortices as shown in Fig. 2.

Bastiaansen and Hagoort (2006) review the EEG and

MEG literature to show that neural synchrony is a plausible

mechanism through which the brain integrates language

specific features such as phonological, semantic and syn-

tactic information that are represented in different brain

areas. Garagnani et al. (2017) present a computational

model that uses oscillatory elements and is sensitive to the

difference between input stimuli consisting of valid word

pattern and pseudo-word patterns. The valid word patterns

are familiar, learned word patterns whereas pseudo-word

patterns are created by randomly recombining sub-parts of

valid word patterns. Their model is able to bind phono-

logical patterns with semantic information through

synchronization.

Murray et al. (2016) observe that the traditional view is

that multisensory integration occurs at higher-level cortical

association areas. This is the view that we have incorpo-

rated into our computational model. However, recent

research is showing that sensory systems can affect each

other even at early stages. For instance, Falchier et al.

(2002) demonstrated anatomical connectivity from core

areas of the auditory cortex and the polysensory area of the

superior temporal plane (STP) to peripheral regions of area

17 in the primary visual cortex. We have not modeled this

connectivity explicitly in our current work. The effect of

direct auditory to visual cortex connectivity will be

explored in a future research effort.

The model presented in our paper is consistent with the

latest reviews of multisensory processing, as presented by

Murray et al. (2016). Specifically, we have modeled crucial

physical stimulus characteristics including spatial and

temporal relationships such as the simultaneity of auditory-

visual cues.

As Murray et al. (2016) have observed, surprisingly

little work has focused on the interplay between lower and

higher-level factors influencing multisensory processing.

The research presented in our current paper offers a com-

putational model of such an interplay. Though enormous

strides have been made by researchers in deep learning, the

rich temporal dynamics observed in real brains has not

received commensurate attention as observed by Van

Rullen (2017). We expect that the research in the current

paper can be extended to deep neural networks, which

should be an interesting area for future research.

Socher et al. (2011) use the same deep neural network to

parse visual scenes and natural language words. Their

algorithm utilizes the recursive structure that is common to

both visual scenes and natural language constructs. Though

oscillatory models have been developed for visual (Rao

et al. 2008) and audio processing (Wang and Brown 1999),

their applications to language processing such as lexical

and semantic analysis appear to be less explored. Research

on this topic utilizing models of individual neural inter-

actions has begun to appear recently (Garagnani et al.

2017). Much of the earlier work in understanding oscilla-

tory behavior during language processing was at a higher

level, involving EEG and fMRI recordings (Bastiaansen

and Hagoort 2006), which do not analyze the explicit

behavior of individual neurons.

A multimodal representation is useful in many contexts

such as jointly searching for visual and textual information

in a corpus. Feng and Lapata (2010) have developed a

method that creates a bag-of-words representation for

textual information, and derives image features to create a

separate bag-of-words for visual information, called ‘‘vis-

iterms’’ (for visual terms). Such combined textual and

visual information is commonly found in news articles

containing pictures. A topic model is then learned which

concatenates the textual and visual bag-of-words. Though

our technique does not compute a bag-of-words, the asso-

ciation between paired audio and visual signals arising

from unique objects is represented as synaptic weights in

our model.

The work of Mudrik et al. (2010) shows that semantic

incongruency can occur through mismatches between two

senses and also through inconsistent information within a

single sensory modality. For instance, we do not expect to

see a visual scene where a woman puts a chess board into

an oven instead of a pie. Mudrik et al. (2010) measured the

ERP through EEG recordings and showed that scenes that
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contain consistent information are interpreted faster and

more accurately than scenes that contain inconsistent

information. This forms the basis of an interesting exper-

iment to conduct with the computational model we have

provided, and is a topic for future research.

Though the network dynamics we presented in Eqs. 1–3

are independent of the number of units in the different

layers of the network, we did not verify this experimen-

tally. As a future research topic, we will experimentally

examine the behavior of the network as the number of units

is increased.

The connectivity shown in Fig. 2 does not show direct

connections between the simulated primary visual and

auditory cortices. There is evidence in the literature to

support the existence of this type of connectivity. Bavelier

and Neville (2002) review studies that use tracers to

determine such connectivity, which is thought to affect

peripheral vision. It would be interesting in future research

to extend the model in Fig. 2 to include direct connections

between the u and x layers representing simulated auditory

and visual cortices. The specific connectivity can be

designed to simulate the stimulation of peripheral vision.

Wang et al. (2011) demonstrate that the transmission

delay between two units in a network can affect the

emergence of synchronous oscillations in scale-free net-

works. Guo et al. (2012) have also investigated the role of

fast spiking inhibitory interneurons in facilitating syn-

chrony. They varied the synaptic delays and also the reli-

ability of information transmitted across the synapse. In our

model, we have not taken variable transmission delays into

account. Future research needs to be performed to account

for variable delays depending on the the length of

anatomical connections between units in the different

layers. This will improve the anatomical fidelity of our

proposed model.

Yilmaz et al. (2013) show that stochastic resonance,

involving suitably small levels of noise can improve net-

work performance by amplifying weak signals. They also

investigated the role of different synapse types including

chemical and electrical. In contrast, our current model

utilizes a single synapse type, and we do not model noise

explicitly.

Guo et al. (2017) consider the behavior of a neural

system that responds to superposed signals of different

frequencies. In the current paper, we consider only a nar-

row range of frequencies. In the future, it would be inter-

esting to extend the modeling techniques of the current

paper to multiple frequency bands.

Relevance to other disciplines

Research in multisensory learning and perception can

influence many other fields including education. There is

growing interest in encouraging students to use better

strategies to improve their learning, and ultimately their

performance. Recent research highlights the importance of

note-taking (Lee et al. 2013). Studies have shown Kiewra

(2002) that handwritten notes are effective in improving

student performance. One possible explanation for this

phenomenon is that handwriting requires visuo-haptic and

visuo-motor skills and exercises several brain circuits

including the basal ganglia and cerebellum (Hikosaka et al.

2002). Though the computational results in the current

paper were aimed at demonstrating audio–visual sensory

integration, our approach is quite general, and could also

apply to a combination of sensory modalities such as visual

and haptic. Our results show that we can expect greater and

more efficient learning when multiple sensory modalities

are combined. Further computational modeling should help

determine the expected performance improvements as

shown in Figs. 16, 17, 18 and 19. For instance, our model

predicts that when two sensory modalities are combined,

there is an improvement of about 33% as measured by the

separation accuracy.

Conclusion

The computational modeling of brain function, including

simulation techniques has emerged as a powerful scientific

tool over the past decade. However, current computational

models are not able to satisfactorily explain recent findings

regarding multisensory learning in the fields of neuro-

science and cognitive science. A major challenge is to

build a single model that explains multiple observed neural

and cognitive phenomena such as temporal synchroniza-

tion, binding and multisensory integration. We addressed

this challenge by presenting a computational model for

multisensory integration based on a theory of sparse spatio-

temporal encoding of input stimuli. We apply our model to

two input streams consisting of simulated auditory and

visual information.

Through this computational model, we mirror the

observations of researchers in psychology and neuro-

science that multisensory integration produces greater and

more efficient learning. By varying the learning protocol,

system dynamics and duration of learning, we demonstrate

that multisensory learning improves the system perfor-

mance by up to 80% for object separation tasks. Further-

more, we show that the use of non-congruent stimuli results

in significantly worse recall performance of the network.

When a sensory input channel becomes disabled, we show

that the network performance also degrades, but the

degradation is less than that experienced when non-con-

gruent stimuli are presented.
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Our computational model produces simulation results

that are consistent with observations regarding multisen-

sory learning in neuroscience and cognitive science. The

theoretical and experimental foundation we have provided

can be generalized to more complex network architectures

and the combination of additional sensory channels. This

research contributes to our understanding of fundamental

brain processes, and could facilitate multiple advances

including the building of machines with more human-like

capabilities.
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