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Abstract

G protein-coupled receptors mediate cell signaling and regulate the majority of sensory and 

physiological processes in the human body. Recent breakthroughs in cryo-electron microscopy and 

X-ray free electron lasers have accelerated structural studies of difficult-to-crystallize receptors 

and their signaling complexes, and have opened up new opportunities in understanding 

conformational dynamics and visualizing the process of receptor activation with unprecedented 

spatial and temporal resolution. Here, we summarize major milestones and challenges associated 

with the application of these techniques and outline future directions in their development with a 

focus on membrane protein structural biology.

Introduction

G protein-coupled receptors (GPCRs) are ubiquitous cellular gatekeepers that share the 

characteristic architecture of a seven-transmembrane alpha-helical bundle (7TM) and are 

involved in the regulation of virtually every physiological process in the human body. Due to 

their biomedical relevance, GPCRs are targeted by a major share of therapeutic drugs and 

pose as attractive targets for structure-based drug design. In humans, there are over 800 

receptors that belong to 5 classes: A, B, C, Frizzled, and Adhesion. Structural studies of 

GPCRs have been enabled about a decade ago by multiple breakthroughs in protein 

engineering [1-3], high-throughput nanovolume crystallization in a native-like lipidic cubic 

phase (LCP) matrix [4-6], and micro-crystallography [7,8]. Despite the enormous progress 

achieved in structural biology of GPCRs, obtaining structures of new receptors still 

represents a challenging task. Since GPCRs have evolved to be highly dynamic to perform 
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their respective functions, their crystallization requires the stabilization in a specific 

conformational state. Moreover, GPCR crystals that grow in LCP are often too small for 

high-resolution structure determination even at modern microfocus synchrotron beamlines. 

Finally, our understanding of signal transduction mechanisms is incomplete without detailed 

knowledge about the structural dynamics of GPCRs and without structures of receptors in 

complex with their signaling partners, which typically are even less stable and more difficult 

to crystallize. These challenges of GPCR structural biology call for new tools and 

approaches. The recently emerged techniques of serial femtosecond crystallography (SFX) 

using X-ray free-electron lasers (XFELs) and high-resolution cryoelectron microscopy 

(cryoEM) are starting to tackle some of the most difficult problems (Figure 1).

XFELs generate extremely intense X-ray pulses of tens of femtoseconds duration with nine-

to-ten orders of magnitude higher peak brilliance than third-generation synchrotrons. Such 

unique characteristics of XFELs prompted a new approach for crystallographic data 

collection called serial femtosecond crystallography (SFX) [9]. Unlike traditional 

crystallography, where a complete dataset is collected from a single large (or a few small) 

crystals, SFX data are acquired from tens to hundreds of thousands of crystals intersecting 

the XFEL beam in random orientations. Although each crystal is destroyed by the beam, the 

short pulse duration allows outrunning radiation damage and obtaining structural 

information from intact molecules at room temperature without the necessity of cryocooling 

[10]. The extremely high brightness of each XFEL pulse provides sufficient signal for the 

detection of high-resolution diffraction patterns from micrometer- [11] and even 

submicrometer-sized crystals [12]. Lastly, but arguably most importantly, the femtosecond 

pulse duration makes time-resolved crystallography a reality, illuminating proteins in action 

rather than producing static “snapshots” [13-16]. Even though time-resolved crystallography 

is being successfully conducted at synchrotron sources, it is mostly limited to light-induced 

reversible reactions at time scales longer than 100 ps, whereas femtosecond XFEL pulses 

provide access to irreversible transitions and fundamental chemical processes like 

isomerization and electron transfer [17].

In parallel to these ground-breaking XFEL developments, cryoEM of biological 

macromolecules has undergone a ‘resolution revolution’ [18]. The advent of direct-electron 

detectors with improved quantum efficiencies allowed for the correction of beam-induced 

motions of the specimen in vitrified ice [19]. This advancement resulted in overcoming 

previously perceived resolution barriers of 5-6 Å in single molecule density reconstructions. 

Over the last few years, near-atomic resolution maps, with which the conformations of 

individual amino acids could be assigned, were routinely achieved, allowing the 

investigation of biomolecules without the need for crystallization. In combination with the 

development of the Volta phase-plate, resulting in a significantly improved contrast of weak-

phase objects, ever smaller molecules can be studied by cryoEM [20], immensely expanding 

the general scope of the technique.

In this review, we describe the progress in structural biology of GPCRs during the last 4-5 

years brought about by the advancements in SFX and cryoEM (Figure 2), as well as discuss 

challenges associated with current applications and new opportunities related to future 

developments of these techniques.
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Major milestones of GPCR structural studies at XFELs

Structure determination of GPCRs at XFELs has been realized by the development of 

special viscous media injectors [21] and new sample preparation protocols [22,23]. Such 

injectors allowed streaming microcrystals grown in LCP across an XFEL beam for SFX data 

collection. Notably, the viscous media injector greatly reduced sample consumption 

compared with commonly used liquid media injectors and has been shown to be suitable for 

the delivery of crystals of soluble proteins embedded in LCP [24] or other viscous matrices 

[25-27].

The LCP-SFX approach (Figure 1) was first introduced in 2013 with the high-resolution 

room temperature structure determination of the human serotonin 2B (5-HT2B) receptor in 

complex with the anti-migraine medication ergotamine [11]. Compared with the structure 

solved by traditional cryocrystallography [28] the room temperature XFEL structure 

displayed a distinct distribution of thermal motions and conformations of residues that likely 

more accurately represent the receptor structure and dynamics in native cellular 

environments. LCP-SFX was subsequently applied to solve structures of the human 

smoothened receptor in complex with the teratogen cyclopamine [21] and of the human δ-

opioid receptor bound to a bifunctional peptidic painkiller [29]. In both cases, microcrystals 

have shown substantially better diffraction at XFELs than their larger cryocooled 

counterparts at synchrotrons, enabling unambiguous placement of the corresponding ligands 

into the electron density.

The next important milestone was reached in 2015 (Figure 2), when the first novel GPCR 

structure of the human angiotensin II receptor type 1 was determined by LCP-SFX [30]. 

Angiotensin II is a peptide hormone that plays a major role in the renin–angiotensin-

aldosterone system, and is involved in the regulation of the plasma sodium concentration and 

arterial blood pressure. Signaling responses to angiotensin II are mediated by type 1 and 2 

angiotensin receptors (AT1R and AT2R). While AT1R is primarily involved in blood pressure 

regulation, the function of AT2R is much less understood, although with increasing evidence 

that this receptor may serve as a potential target for non-opioid treatment of neuropathic pain 

[31]. The 2.9 Å resolution AT1R structure in complex with an angiotensin receptor blocker 

was followed by the 2.8 Å AT2R structure bound to an AT2R-selective ligand [32]. The 

structures uncovered new insights into the distinct functions of the two angiotensin receptors 

and provided reliable templates to facilitate structure-based drug design with improved 

selectivity.

One of the most dramatic examples demonstrating the advantage of XFELs was the structure 

determination of a major signaling complex between visual rhodopsin and arrestin (Figure 

3), which, at the time, was intractable by means of traditional crystallography [33] and 

cryoEM [34]. Arrestin binds to activated and phosphorylated receptors, blocking G protein 

interaction and redirecting signaling to numerous G protein-independent pathways. It has 

been shown that biased ligands that direct signaling through either predominately G proteins 

or arrestins may have pharmacological benefits compared to balanced ligands [35]. The 

crystals of the rhodopsin-arrestin complex, which could not be optimized to grow beyond 

~20 μm, diffracted to 7-8 Å resolution at a synchrotron, while yielding a 3.3 Å (anisotropic) 
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structure by LCP-SFX. The structure revealed conformational re-arrangements in arrestin 

and rhodopsin and the details of their interactions. Recently, re-processed data improved 

resolution and, in combination with extensive biochemical data, revealed combinations of 

phosphorylation codes for arrestin recruitment by GPCRs and possibly other proteins [36].

Another example of a macromolecular complex structure determination, which has been 

enabled by LCP-SFX, is the 5-HT2B receptor with a selective Fab antibody fragment bound 

to its extracellular loops (ECLs) [37]. Monoclonal antibodies (mAbs) provide an attractive 

alternative to small molecules therapies [38], however, the generation of mAbs against the 

extracellular side of class A GPCRs is challenging due to a small area of solvent-exposed 

epitopes. The structure of the 5-HT2B/Fab complex sheds light on the mechanisms of 

extracellular recognition of GPCRs by antibodies.

Finally, LCP-SFX has accelerated the structure determination of full-length receptors from 

non-class-A GPCRs. These receptors contain large extracellular domains (ECDs) crucial for 

ligand recognition and signal transduction. While initial efforts were focused on the 

structure determination of individual domains, the structure of the full-length receptors 

remained elusive due to difficulties in crystallization. Recently, extensive efforts aimed at 

stabilization of multidomain receptors by antibodies and designed ligands have culminated 

in the high-resolution structure determination of the full-length class B glucagon receptor 

(GCGR) and the class Frizzled smoothened receptor (Smo) at XFEL and synchrotron 

sources [39,40]. As in the previous examples, the room temperature XFEL structures were 

of higher resolution and had overall superior quality with respect to their electron density 

maps. While most GPCR structures were solved by molecular replacement, the recent 

demonstration of de novo phasing of a GPCR structure using the anomalous signal from 

sulfur atoms present in most proteins [41] opened up opportunities for structural studies of 

novel membrane protein families at XFELs.

First high-resolution cryoEM structures of GPCRs

The first application of direct-electron detectors combined with motion correction in 

cryoEM to a membrane protein was the structure elucidation of the TRPV1 channel at 3.4 Å 

resolution [42]. This work demonstrated that cryoEM is able to overcome difficulties 

traditionally associated with structural studies of membrane proteins, such as low expression 

yields and limited stability in detergent micelles, the reasons why many membrane proteins 

are often not suitable for crystallization.

Another major breakthrough in cryoEM of membrane proteins was the 3.4 Å resolution 

structure of γ-secretase (~170 kDa) [43], a medically important protease being the source of 

abnormally folded amyloid-beta fibers in Alzheimer’s disease. It was the first study showing 

that a sub-200 kDa membrane protein with no symmetry applied in the reconstruction could 

be resolved to near-atomic resolution. Over the last 5 years, approximately 16% of all < 4 Å 

structures submitted to the Electron Microscopy Data Bank (EMDB) were derived from 

membrane proteins, including a variety of ion channels, transporters, enzymes, and 

receptors. These stats highlight a higher success rate of cryoEM for membrane proteins 
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compared to crystallography, in which membrane proteins contribute less than 2% of all 

entries.

Due to the relatively small size of GPCRs and their inherent dynamic nature, their structure 

determination by cryoEM has been extremely challenging. At last, in 2017, structures of two 

class B receptors, the calcitonin receptor (CTR) [44] and the glucagon-like peptide-1 

receptor (GLP-1R) [45] in complex with their cognate G proteins have been published 

(Figure 3). While structures of GPCRs in complex with downstream partners are highly 

sought after, they are particularly difficult to solve by crystallography. In contrast, cryoEM 

was able to readily overcome this hurdle. Both structures were obtained in complex with 

their native peptide agonist, Gs protein, and a stabilizing nanobody. Using such ~150 kDa 

complexes did not only help with the orientation determination by increasing the molecular 

weight (and therefore improving the contrast), but also conformationally locked the receptor 

in the active state to minimize structural heterogeneity. Additionally, a Volta phase-plate was 

instrumental for the structure determination of the CTR/Gs complex [44].

In summary, these structures highlight the potential of cryoEM to observe relatively small 

isolated GPCR complexes in detergent micelles at nearly-atomic resolution. One of the most 

remarkable features of both studies is the use of full-length, wild-type GPCRs, which has 

not been possible with crystallography with an exception of the visual rhodopsin. 

Furthermore, both studies provided important insights into the activation mechanism of class 

B receptors, expanding our understanding of GPCR signaling.

Current challenges, limitations and future perspectives

As outlined above, recent breakthroughs in SFX and cryoEM have greatly advanced our 

structural understanding of GPCRs and other membrane proteins. While both techniques 

produce structural models, they have different requirements and limitations (Table 1). One of 

the most important advantages of cryoEM is its ability to obtain structural information from 

single molecules, while SFX still requires crystals, albeit much smaller than traditional 

crystallography. The downside of cryoEM, however, is the requirement of cryocooling the 

sample, which helps to reduce but does not completely overcome radiation damage. XFELs, 

on the other hand, can reveal structures at room temperature without detectable radiation 

damage effects [12]. Another important limitation for cryoEM is the minimal particle size. 

Although a near-atomic resolution structure of 64 kDa hemoglobin has recently been 

reported [20], the structure determination of < 100 kDa molecules has not yet been routinely 

achieved. Both cryoEM and SFX methods rely on collecting large amounts of data with 

typical data acquisition times of a few hours for SFX vs. a few days for cryoEM. The 

available SFX beamtime is, however, severely limited by the extreme cost and scarcity of 

large-scale XFEL facilities. In contrast, cryoEM instruments, while not inexpensive, are 

nonetheless affordable to major universities, research institutes, and core facilities, 

contributing to a much broader accessibility of this method to the structural biology 

community worldwide.

For structural studies, resolution is the single most important parameter that defines the 

amount and accuracy of information, which can be deduced for a given structure. Most 
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recent cryoEM structures have been determined at 3–5 Å resolution (best resolution 1.8 Å 

[46]), while most SFX structures are in the 1.5-3.0 Å resolution range (best resolution 1.2 Å 

[47]). Of the 5,908 single particle structures deposited in EMDB by March 2018, only 1% 

(total of 62) contain structural information beyond 3 Å. The majority (82%) of these 62 

maps are virus(-like) molecules, MDa-sized complexes or other high symmetry assemblies. 

The remaining entries consist of 11 maps, of which 10 reconstructions applied symmetry, 

only 6 maps are derived from proteins smaller than 400 kDa and 3 represent structures of 

membrane proteins. Of the above 11, the latter 3 membrane proteins are also the only ones 

that have not previously been solved by X-ray crystallography. These statistics illustrate the 

need for further technological developments before the accuracy of cryoEM maps will 

become on par with crystallography and can be routinely used for applications, such as 

structure-based drug design.

The success of both cryoEM and SFX experiments strongly depends on sample quality, 

although sample requirements for these techniques are quite different. CryoEM requires 

single particles embedded in thin vitrified ice in random orientations and at a high 

concentration. The preferred orientation of molecules in ice and the degradation of delicate 

protein complexes during the grid preparation process pose bottlenecks in cryoEM. Typical 

sample preparation starts with a few microliters of purified monodisperse protein solution at 

0.5-5 mg/mL concentration (Figure 1). The quality of vitrified sample depends on many 

factors and typically involves extensive screening of several parameters such as the grid 

type, buffer composition, and protein concentration. The molecule itself has to be 

sufficiently large and rigid to allow for orientation determination. In contrast, an ideal 

sample for LCP-SFX contains highly ordered micrometer-sized crystals grown in LCP at a 

high density. The starting point is a few dozen microliters of purified monodisperse protein 

solution at 10-50 mg/mL concentration. Apart from the higher protein consumption, the 

protein for LCP-SFX has to be stabilized in a predominately single conformational state to 

support crystallization, which, in the case of GPCRs, typically requires extensive protein 

engineering.

Finally, apart from static structures both cryoEM and SFX methods can also provide 

information about conformational dynamics of macromolecules. CryoEM is capable of 

revealing multiple equilibrium conformational states in a population of single molecules 

[48]. XFELs, due to their femtosecond pulse duration, allow for recording molecular movies 

using a pump-probe technique [13,14,49], enabling the capturing of ultrafast conformational 

transitions and transient states.

Conclusions

With recent breakthroughs in cryoEM and XFELs, the structural biology field is 

experiencing a resurgence. Most current limitations will soon be addressed if not completely 

resolved by the developments of instrumentation and data analysis, leading to faster data 

collection, higher resolution and lower molecular sizes accessible to cryoEM. At the same 

time, XFELs will continue tackling ever smaller crystals, which may eventually approach 

single molecules of a typical protein size [17].
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In the case of GPCRs, we would expect an increasing number of cryoEM structures of 

signaling complexes with different G protein types, arrestins, kinases and other partners, as 

well as structures of homo- and heterodimeric receptors and receptors with large ECDs. In 

fact, while this review was in preparation, two additional cryoEM structures of GPCR 

signaling complexes, obtained with a Volta phase-plate, have been published [50,51]. We 

anticipate that XFELs will further contribute to the high-resolution structural coverage of the 

whole GPCR superfamily, help with structure-based drug design efforts, and, most 

importantly, should produce detailed molecular movies of signal transduction by GPCRs.
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Highlights

• Recent advancements in cryoEM and XFELs accelerated structural studies of 

GPCRs

• XFELs enabled room-temperature damage-free structures from micrometer-

sized crystals

• CryoEM demonstrated its potential for elucidating GPCR signaling 

complexes

• Both cryoEM and XFELs promise to shed light on structural dynamics of 

GPCRs
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Figure 1. Schematic diagrams of cryoEM and LCP-SFX experiments
(a) For cryoEM, the purified monodisperse protein solution is deposited on EM grids, 

blotted and flash-frozen in liquid ethane. The grids are then cryo-transferred into the 

electron microscope and thousands of images are collected by a direct-electron detector. 

After performing motion correction, individual particles are picked and 2D classification and 

3D classification is applied. Finally, a 3D map is reconstructed, which is used to fit and 

refine a structure model. Images from Ref. 44 have been re-used in this illustration with 

permission from Macmillan Publishers Ltd. (b) For LCP-SFX, purified protein is 

reconstituted in LCP, and crystallization is set up in syringes. After microcrystals have 

grown, samples from several syringes are consolidated and transferred into a viscous media 

injector. Tens to hundreds of thousands of diffraction images are collected from 

microcrystals intersecting the XFEL beam in random orientations. After data processing 

with specialized software, the structure is solved and refined by standard crystallographic 

approaches.
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Figure 2. Timeline of major milestones (right) and published GPCR structures (left) achieved 
with XFELs and cryoEM
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Figure 3. Examples of GPCR structures determined by LCP-SFX and cryoEM
(a) Structure of the rhodopsin-arrestin complex (PDB ID 5W0P) solved using LCP-SFX at 

3.0 Å (anisotropic) resolution. (b) The 1.9 Å resolution structure of the adenosine A2A 

receptor (PDB ID 5K2C) solved by the sulfur single anomalous dispersion (S-SAD) method 

using data collected by LCP-SFX. (c) The 4.1 Å resolution structure of the GLP-1 receptor 

in complex with its native agonist peptide, Gs protein and a stabilizing nanobody (PDB ID 

5VAI) obtained by single-molecule cryoEM. All structures are shown in cartoon 

representation with fusion partners and the nanobody colored in gray. Transparent surface is 

shown for signaling partners, arrestin, and Gs protein. Ligands, lipids and ions are shown as 

van der Waals spheres, water molecules as small red spheres. The membrane boundaries are 

shown as red (extracellular) and blue (intracellular) lines. (d) – (f) Electron density of 

transmembrane helix III is shown as a blue mesh for corresponding structures in (a) – (c). In 

(d) and (e) 2Fo-Fc density is contoured at 1s level, in (f) the density is contoured at the 

authors’ recommended level of 0.055 [44].
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Table 1

Typical experimental conditions, challenges, and opportunities for cryoEM and SFX

cryoEM SFX

Temperature Cryogenic Room

Sample state Isolated molecules Crystals

Protein size, kDa > 100 (smallest 64) No limit

Radiation damage Yes No

Resolution, Å 3 – 5 (best 1.8) 1.5 – 3 (best 1.2)

Protein consumption, μg 1 – 10 100 – 500

Final protein concentration, mg/mL 0.5 – 5 10 – 50

Data collection time, hrs 24 – 96 2 – 6

Accessibility Core facilities, in-house instruments Large facilities: LCLS, SACLA, EuXFEL, PAL, 
SwissFEL

Protein dynamics Equilibrium states in a population Room temperature fluctuations, molecular 
movies, ultrafast dynamics, non-equilibrium 
states

Opportunities for GPCRs Signaling complexes, homo- and heterodimers, 
receptors with large ECDs

Small crystals, room temperature structures, 
SBDD, receptor activation movies
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