Prevalence of Homologous Recombination–Related Gene Mutations Across Multiple Cancer Types

Purpose The prevalence of homologous recombination DNA damage repair (HR-DDR) deficiencies among all tumor lineages is not well characterized. Therapy directed toward homologous recombination DDR deficiency (HRD) is now approved in ovarian and breast cancer, and there may be additional opportunities for benefit for patients with other cancers. Comprehensive evaluations for HRD are limited in part by the lack of a uniform, cost-effective method for testing and defining HRD.

Methods Molecular profiles of 52,426 tumors were reviewed to identify pathogenic mutations in the HR-DDR genes ARID1A, ATM, ATRX, BAP1, BARD1, BLM, BRCA1/2, BRIP1, CHEK1/2, FANCA/C/D2/E/F/G/L, MRE11A, NBN, PALB2, RAD50, RAD51, RAD51B, or WRN. From solid tumors submitted to Caris Life Sciences, molecular profiles were generated using next-generation sequencing (NGS; average read depth, 500x). A total of 17,566 tumors were sequenced with NGS600 (n = 592 genes), and 34,860 tumors underwent hotspot Illumina MiSeq platform testing (n = 47 genes).

Results Of the tumors that underwent NGS600 testing, the overall frequency of HR-DDR mutations detected was 17.4%, and the most commonly mutated lineages were endometrial (34.4%; n = 1,475), biliary tract (28.9%; n = 343), bladder (23.9%; n = 201), hepatocellular (20.9%; n = 115), gastroesophageal (20.8%; n = 619), and ovarian (20.0%; n = 2,489). Least commonly mutated lineages included GI stromal (3.7%; n = 108), head and neck (6.8%; n = 206), and sarcoma (9.3%; n = 592). *ARID1A* was the most commonly mutated gene (7.2%), followed by *BRCA2* (3.0%), *BRCA1* (2.8%), *ATM* (1.3%), *ATRX* (1.3%), and *CHEK2* (1.3%).

Conclusions HR-DDR mutations were seen in 17.4% of tumors across 21 cancer lineages, providing a path to explore the role of HRD-directed therapies, including poly-ADP ribose polymerase inhibitors, DNA-damaging chemotherapies, and newer agents such as ATR inhibitors.

JCO Precis Oncol. © 2018 by American Society of Clinical Oncology

INTRODUCTION

In the 1990s, *BRCA1* and *BRCA2* were demonstrated to encode genes that play a key role in homologous recombination DNA damage repair (HR-DDR) and together are considered the gatekeepers of genomic integrity. Germline mutations in one or both of these genes place patients at heightened risk for development of breast,¹⁻⁶ ovarian,¹⁻⁶ prostate,⁷⁻⁹ melanoma,^{7,10} and pancreatic cancers^{7,10-12} during their lifetime. It has become apparent that BRCA interacts with a number of other DNA repair proteins to form a complex system for DDR, including ATM, RAD51, PALB2, MRE11, RAD50, NBN, and the Fanconi anemia proteins.^{13,14} Recent evidence suggests mutations in *PALB2, ATM*, and the genes responsible for the MRN complex, *RAD50, MRE11*, and *NBN*, play a role in hereditary cancers.^{15,16} For example, *PALB2* mutation carriers have a lifetime risk of breast cancer development of approximately 50%,^{17,18} and *ATM* mutation carriers are at higher risk for development of breast,^{19,20} pancreatic,^{21,22} and prostate cancers.^{23,24}

Arielle L. Heeke Michael J. Pishvaian Filipa Lynce Joanne Xiu Jonathan R. Brody Wang-Juh Chen Tabari M. Baker John L. Marshall Claudine Isaacs

Author affiliations and support information (if applicable) appear at the end of this article.

Corresponding author: Arielle L. Heeke, MD, 3800 Reservoir Rd NW, Washington, DC 20007; e-mail: arielle.l.heeke@ gunet.georgetown.edu. Homologous recombination (HR) pathway mutations can also predict response to anticancer therapies. In germline BRCA1/2 mutation carriers, exposure to platinum chemotherapy led to improved objective response rates in advanced triple-negative breast cancer versus taxanes (68% v 33%)²⁵ and overall survival in pancreatic cancer versus other nonplatinum chemotherapy (22 months v 9 months).²⁶ MyChoice HR-DDR deficiency (HRD) score-high triple-negative breast cancer responded better to platinum-based neoadjuvant therapy, with pathologic complete response (CR) rates of 27.5% versus 0% in the HR-DDR-proficient cohort.27 The MyChoice HRD score is frequently used to identify patients with HRD. It is a proprietary diagnostic test to assess a HRD phenotype, including an evaluation of loss of heterozygosity, telomeric allelic imbalance, and large-scale state transitions.

On exposure to another class of DNA-damaging agents, poly-ADP ribose polymerase (PARP) inhibitors, patients with germline or somatic deleterious mutations in the HR-DDR pathway have also achieved favorable responses. Olaparib is now approved by the US Food and Drug Administration (FDA) for patients with ovarian cancer with germline BRCA1 or BRCA2 mutations in the advanced setting, after the results of a phase II clinical trial demonstrated a response rate of 34% with a median duration of response of 7.9 months,²⁸ as well as for recurrent ovarian cancer as maintenance therapy, on the basis of the results of the SOLO-2 and Study 19 trials demonstrating an improvement in progression-free survival (PFS) of 19.1 months in patients with germline mutated BRCA versus 5.5 months with placebo,²⁹ and 8.4 months versus 4.8 months regardless of BRCA mutation status.30 In advanced breast cancer, patients with germline BRCA mutations were recently found to achieve superior PFS when treated with olaparib versus standard of care therapy (7.0 months v 4.2 months) in the phase III Olympiad (Assessment of the Efficacy and Safety of Olaparib Monotherapy Versus Physicians Choice Chemotherapy in the Treatment of Metastatic Breast Cancer Patients With Germline BRCA1/2 Mutations) trial, leading to FDA approval of olaparib for this indication in January 2018.³¹ Rucaparib, another PARP inhibitor, has also been approved for treatment of patients with advanced ovarian cancer with germline or somatic BRCA1/2 mutations, on the basis of the

combined analysis of the Study 10 and ARIEL2 phase II trials that showed an objective response rate of 54% and a median duration of response of 9.2 months with monotherapy.^{32,33} In addition, in patients with recurrent ovarian cancer treated with maintenance niraparib, prolonged PFS was seen not only in the germline *BRCA1/2* mutation cohort (21.0 months v 5.5 months) but also in the nongermline *BRCA1/2* mutation cohort with high MyChoice HRD scores (12.9 months v 3.8 months),³⁴ leading to FDA approval of niraparib as maintenance treatment.

Looking more broadly at PARP inhibitor therapy responsiveness across multiple mutations within the HR-DDR pathway, in a study by Mateo et al,³⁵ patients with advanced prostate cancer with germline or somatic HRD have achieved an 88% response rate with olaparib monotherapy (HRD identified in 16 of 49 patients), compared with 33% in the overall cohort. In this study, three patients had germline *BRCA2* mutations, and the remaining responders had tumor expression of a deleterious mutation (including *PALB2*, *BRCA2*, *BRCA1*, *CHEK2*, *FANCA*, and *ATM*).³⁵ All germline mutation carriers except for one patient with *ATM* mutation responded to therapy.

Despite the exciting therapeutic potential of DNA-damaging agents in patients with broader evidence of HRD, the prevalence of HRD among all tumors is largely unknown. Comprehensive evaluations of solid tumors for HRD have been limited by the lack of a uniform method for testing and defining HRD. Furthermore, thorough testing with whole-exome sequencing is expensive, making large-scale evaluations impractical. The aim of our study was to determine the prevalence of HR-DDR pathogenic or presumed pathogenic mutations detected on tumor next-generation sequencing (NGS) testing across multiple cancer lineages, using commercially available DNA sequencing (NGS or Sanger sequencing panel testing, multiplatform profiling; Caris Life Sciences [Caris], Irving, TX) to better define the proportion of patients who may benefit from such therapy.

METHODS

Study Design

Approval for this study was obtained from the Georgetown University Institutional Review Board. In collaboration with Caris, we surveyed their entire DNA sequencing database for solid tumors that underwent extended NGS or Sanger sequencing panel testing between July 2013 and September 2017. Tumor biopsy specimens were submitted to Caris from across the world. We defined HRD on tumor NGS testing as a mutation in the following genes, each of which has some activity within the HR-DDR pathway36-45 and has been included previously in HR-DDR biomarker clinical trials: ARID1A, ATM, ATRX, BAP1, BARD1, BLM, BRCA1/2, BRIP1, CHEK1/2, FANCA/C/D2/E/F/G/L,MRE11A,NBN,PALB2, RAD50, RAD51, RAD51B, or WRN. Each of these genes is evaluated as part of the targeted NGS platform offered by Caris. Only tumor tissue was sequenced and was not supplemented by germline testing. Frequencies of each mutation were determined for the total cohort, as well as for each cancer lineage (biliary tract, bladder, breast, cervix, colorectal [CRC], endometrial, gastroesophageal [GE], gastrointestinal stromal [GIST], glioma, head and neck, hepatocellular [HCC], melanoma, neuroendocrine/small cell lung, non-small-cell lung [NSCLC], ovarian, pancreas, prostate, renal, sarcoma, thyroid, and unknown primary).

NGS Testing Platforms

HR-DDR mutation analysis from solid tumor biopsy specimens was determined by NGS at Caris, a Clinical Laboratory Improvement Amendments-certified laboratory. DNA was extracted, purified, and quantified from formalinfixed, paraffin-embedded solid tumor specimens according to regulated processes at Caris. For NGS600, a custom-designed SureSelect XT assay was used to enrich 592 whole-gene targets (Agilent Technologies, Santa Clara, CA). While 17,566 tumors were sequenced with NGS600, 34,860 tumors underwent hotspot Illumina MiSeq platform testing (Illumina TruSeq Amplicon Cancer Hotspot panel, evaluating 47 genes including the HR-DDR genes ATM, BRCA1, and BRCA2; Illumina, San Diego, CA). All

Table 1. Next-Generation Sequencing Testing by Lineage

	Total No.			No. (NGS600 only)				
Cancer Types	All	Primary	Metastatic	Unknown	All	Primary	Metastatic	Unknown
Ovarian	9,630	3,459	5,033	1,138	2,489	989	1,500	0
NSCLC	8,119	4,375	3,032	712	3,245	1,855	1,390	0
CRC	6,650	3,328	2,737	585	2,454	1,296	1,158	0
Breast	5,910	2,525	2,709	676	1,625	703	921	1
Endometrial	5,540	3,101	1,895	544	1,475	877	598	0
Pancreas	2,162	901	1,038	223	833	378	455	0
Melanoma	1,889	596	1,029	264	670	203	467	0
Glioma	1,830	1,670	12	148	854	850	4	0
Sarcoma	1,778	1,044	527	207	592	420	167	5
Gastroesophageal	1,532	1,007	461	64	619	421	198	0
Unknown primary	1,531	313	1,012	206	488	158	327	3
Neuroendocrine/SCLC	1,498	568	723	207	449	186	262	1
Biliary tract cancer	870	507	298	65	343	218	125	0
Cervix	824	392	344	88	227	125	102	0
Prostate	687	279	362	46	312	133	179	0
Head and neck	684	322	266	96	206	102	104	0
Hepatocellular carcinoma	328	194	99	35	115	71	44	0
Bladder	283	172	111	0	201	115	86	0
Renal	251	136	115	0	199	112	87	0
GIST	226	122	68	36	108	76	31	1
Thyroid	204	91	85	28	62	32	30	0
Total		5	2,426			17	,566	

Abbreviations: CRC, colorectal cancer; GIST, GI stromal; NSCLC, non-small-cell lung cancer; SCLC, small-cell lung cancer.

Fig 1. Total HR-DDR mutation frequency by lineage, NGS600 testing platform only (N = 17,566). Bars represent the upper and lower 95% CIs. CRC, colorectal cancer; GIST, GI stromal; HR-DDR, homologous recombination DNA damage repair; NSCLC, non–small-cell lung cancer; SCLC, small-cell lung cancer.

variants were detected with > 99% confidence on the basis of allele frequency and amplicon coverage, with an average sequencing depth of coverage of > 500 and with an analytic sensitivity of 5%. Tumor enrichment was achieved by harvesting targeted tissue by manual microdissection performed on all cases before molecular testing.

The pathogenicity of gene variants identified were interpreted by board-certified molecular geneticists and categorized as pathogenic, presumed pathogenic, variant of unknown significance, presumed benign, or benign, according to American College of Medical Genetics and Genomics standards on the basis of the level of evidence of published studies on the identified variants.46,47 Only pathogenic or presumed pathogenic mutations were considered deleterious; variants of unknown significance and variants that have not been previously reported in individuals affected by cancer in the literature were excluded. Variants that have not been interpreted by a molecular geneticist were excluded. Deleterious mutations reported included frameshift mutations, premature stop codons, mutations shown to disrupt natural splicing, as well as point mutations; deleterious mutations included those that have and have not been reported as causal for hereditary cancers.

Statistical Analysis

The proportion of pathogenic or presumed pathogenic mutations identified from all tumor specimens tested for each specific mutation were calculated for the total cohort and for each cancer lineage investigated. Sequencing tests with indeterminate results due to low depth of coverage were excluded from the total number for percentage calculation. The total frequency of HR-DDR mutations in the complete cohort and per cancer lineage was calculated by dividing the number of tumors carrying at least one mutation by the total number of tumors tested, to avoid counting tumors carrying more than one HR-DDR mutation multiple times. The 95% CIs were computed using the Pearson-Klopper exact method using R (https://www.r-project. org/), and the graphics were generated by SPSS Statistics, version 24 (IBM, Armonk, NY).

RESULTS

We evaluated 52,426 solid tumor pathologic specimens that underwent extended NGS for HRD. The most common malignancies tested were ovarian (n = 9,630), NSCLC (n = 8,119), and CRC (n = 6,650), but substantial numbers of less common malignancies were also tested

Table 2. Home	ologous Recombination	n DNA Damage Repair	Mutation Lands	scape by Lineage,	NGS600 Testing	Platform Only	(N = 17,566):
HRD Frequenc	$y \ge 15\%$						

HRD			Cancer Type								
Frequency ≥ 15%, Gene	Endometrial	Biliary Tract	Bladder	HCC	GE	Ovarian	Melanoma	Unknown Primary	Breast	Pancreas	CRC
Overall HRD, % (95% CI)	34.4 (31.9 to 36.9	28.9 (24.1 to 34.0)	23.9 (18.2 to 30.4)	20.9 (13.9 to 29.4)	20.8 (17.7 to 24.3)	20.0 (18.5 to 21.6)	18.1 (15.2 to 21.2)	17.8 (14.5 to 21.5)	15.6 13.9 to 17.5)	15.4 (13.0 to 18.0)	15.0 (13.6 to 16.4)
ARID1A	27.45	14.33	12.44	11.3	13.43	6.40	1.65	7.80	3.70	5.54	6.69
ATM	4.61	4.08	3.98	0.87	3.23	1.53	3.74	3.48	2.09	3.60	4.57
ATRX	3.13	0.29	0	0	0.32	0.16	1.80	0.82	0.49	0	0.73
BAP1	0.47	7.58	0.50	3.48	1.45	0.20	7.76	3.28	1.05	0.48	0.33
BLM	0.20	0	0	0	0.16	0	0.30	0.21	0.12	0	0.37
BRCA1	1.29	0.29	2.99	0	0.48	7.70	0.75	0.82	3.06	1.41	1.06
BRCA2	3.05	2.33	4.48	0	2.91	5.88	1.20	1.64	3.72	3.33	2.20
BRIP1	0.14	0	0.50	0	0.32	0.28	0.30	0	0.19	0.48	0.16
CHEK2	2.24	2.33	1.49	4.35	0.97	0.64	1.34	0.61	1.60	0.60	1.30
FANCC	0.07	0.29	0	0.87	0	0.12	0	0	0.12	0	0.12
MRE11A	0.34	0	0	0	0.16	0	0	0.21	0	0	0.29
NBN	0.75	0.29	0	0	1.13	0.28	0	0.21	0.06	0.12	0.69
PALB2	0.41	1.17	1.49	0	0.81	0.16	0.30	1.03	1.05	1.20	0.69
RAD50	0.27	0.29	0.50	0.87	0.16	0.12	0	0	0	0	0.20
WRN	0.34	0.29	0	0	0.16	0.16	0.15	0.21	0.12	0.12	0.29

NOTE. Data given as % unless otherwise indicated.

Abbreviations: CRC, colorectal cancer; GE, gastroesophageal; HCC, hepatocellular carcinoma.

including melanoma (n = 1,889), sarcoma (n = 1,778), and glioma (n = 1,830; Table 1). Molecular profiling was performed on the primary tumor in 47.9% of cases (n = 25,102), and on a metastatic site of disease in 41.9% (n = 21,956). In 10.2% (n = 5,368), the tissue source was unknown. Of the tumors that underwent NGS600 testing, the most common malignancies tested were NSCLC (n = 3,245), ovarian (n = 2,489), and CRC (n = 2,454; Table 1).

HRD Frequency by Lineage

Evaluating results from the NGS600 platform alone, the cancer lineages with the highest frequencies of mutations in HR-DDR genes were endometrial (34.4%; 95% CI, 31.9 to 36.9; n = 1,475), biliary tract (28.9%; 95% CI, 24.1, 34.0; n = 343), bladder (23.9%; 95% CI, 18.2, 30.4; n = 201), hepatocellular (20.9%; 95% CI, 18.2, 30.4; n = 201), hepatocellular (20.9%; 95% CI, 13.9, 29.4; n = 115), GE (20.8%; 95% CI, 17.7, 24.3; n = 619), and ovarian (20.0%; 95% CI, 18.5, 21.6; n = 2,489). Notable additional lineages with a significant proportion of tumors that tested positive for HR-DDR deficiency by NGS included melanoma (18.1%; 95% CI, 15.2, 21.2; n = 670), breast (15.6%; 95% CI, 13.9, 17.5; n = 1,625), pancreatic (15.4%; 95% CI, 13.0, 18.0; n = 833), and CRC (15.0%; 95% CI, 13.6, 16.4; n = 2,454). Least commonly mutated lineages included GIST (3.7%; 95% CI, 1.0, 9.2; n = 108), head and neck (6.8%; 95% CI, 3.8, 11.1; n = 206), and sarcoma (9.3%; 95% CI, 7.1, 11.9; n = 592; Fig 1). Within the tumor lineages, the frequencies of mutations varied (Tables 2 and 3; Fig 2).

HR Gene Mutation Frequency

Overall, pathogenic mutations within the homologous recombination pathway were seen in 17.4% of the 17,566 tumors tested with NGS600, and 8.3% of the 52,426 solid tumors overall (including 34,860 tumors that were evaluated for *ATM*, *BRCA1*, and *BRCA2* mutations only on the Hotspot panel). *ARID1A* was the most commonly mutated gene at 7.2%, followed by

Table 3. Homologous Recombination DNA Damage Repair Mutation Landscape by Lineage, NGS600 Testing Platform Only (N = 17,566):HRD Frequency < 15%</td>

HRD	Cancer Type										
Frequency < 15%, Gene	Glioma	NSCLC	Prostate	Cervix	Renal	Thyroid	Neuroendo/ SCLC	Sarcoma	Head/ Neck	GIST	
Overall HRD, % (95% CI)	14.4 (12.1 to 16.9)	14.2 (13.0 to 15.5)	14.1 (10.4 to 18.5)	13.2 (9.1 to 18.3)	13.1 (8.7 to 18.6)	12.9 (5.7 to 23.9)	10.0 (7.4 to 13.2)	9.3 (7.1 to 11.9)	6.8 (3.8 to 11.1)	3.7 (1.0 to 9.2)	
ARID1A	1.52	4.61	0	4.85	4.52	0	4.04	1.01	2.43	0	
ATM	1.76	3.48	4.50	1.32	1.51	3.23	1.34	1.35	0	0	
ATRX	9.02	0.71	0	1.76	0	0	2.02	3.72	0	0.93	
BAP1	0	0.77	0.32	2.64	7.04	0	0	0.51	0.49	0	
BLM	0	0.15	0	0.44	0	0	0	0	0	0	
BRCA1	0.35	0.83	1.42	0.44	0	1.61	0.67	1.18	2.43	0	
BRCA2	0.23	2.03	6.76	2.64	0.50	3.23	0.89	0.68	0.97	0.93	
BRIP1	0.47	0.19	0	0.44	0	0	0	0	0	0	
CHEK2	1.17	1.23	1.92	1.32	0	3.23	1.11	1.18	0.49	1.85	
FANCC	0	0.12	0.32	0	0.50	0	0.45	0.17	0	0	
MRE11A	0	0.06	0	0	0	0	0	0	0	0	
NBN	0.23	0.28	0.32	0	0	1.61	0	0	0	0	
PALB2	0.23	0.65	0	0.44	0	0	0.22	0.17	0	0	
RAD50	0	0	0.32	0	0	0	0.22	0	0	0	
WRN	0.12	0.09	0	0	0	0	0	0	0	0	

NOTE. Data given as % unless otherwise indicated.

Abbreviations: GIST, GI stromal; NSCLC, non-small-cell lung cancer; SCLC, small-cell lung cancer.

BRCA2 and *BRCA1*, which were mutated in 3.0% and 2.8% of tumors tested, respectively. *BRCA1/2* mutations were seen predominately in ovarian and breast cancers, though pathogenic *BRCA2* mutations were seen in high frequencies among GI and nonovarian genitourinary malignancies, as well. Although *PALB2* mutations were less common overall and appreciated in only 0.6% of tumors tested, a significant proportion of *PALB2* mutations was found in bladder, breast, and GI malignancies. *ATM*, *ATRX*, and *CHEK2* mutations were each identified in 1.3% of the tumors tested. No pathogenic mutations were identified in *BARD1*, *CHEK1*, *FANCA/D2/E/F/G/L*, *RAD51*, or *RAD51B* (Table 4).

HR-DDR gene mutations were appreciated in both primary and metastatic lesions, though with different patterns. When the primary tumor was evaluated, *ARID1A* (7.7% of primary tumors tested [n = 9,305] v 6.6% of metastatic tumors tested [n = 8,208]), *ATM* (1.5% [n = 25,050] v 1.3% [n = 21,902]), and *ATRX* (1.7% [n = 9,304] v 0.9% [n =8,204]) mutations were seen in higher frequencies than when a metastatic lesion was evaluated. Conversely, *BRCA1* (3.3% of metastatic tumors tested [n = 15,636] v 2.4% of primary tumors tested [n = 17,638]), *BRCA2* (3.4% [n = 15,636] v 2.7% [n = 17,638]), and *BAP1* (1.4% [n = 8,234] v 0.9% [n = 9,320]) mutations were more common in metastatic lesions. The remaining mutated HR-DDR genes (*BLM*, *BRIP1*, *CHEK2*, *FANCC*, *MRE11A*, *NBN*, *PALB2*, *RAD50*, and *WRN*) had similar frequencies among primary and metastatic tissue evaluations.

Tumors With Multiple HR Gene Mutations

Of the 17,566 tumors that underwent extended molecular profiling with the NGS600 platform, 362 were found to carry more than one HR-DDR pathway mutation, including 112 endometrial (7.6%; n = 1,475), 75 CRC (3.1%; n = 2,454), 34 ovarian (1.4%; n = 2,489), 29 NSCLC (0.9%; n = 3,245), 23 GE (3.7%; n = 619), 20 breast (1.2%; n = 1,625), and 15 biliary tract (4.4%; n = 343) tumors. Most lineages had

Fig 2. HR-DDR mutation landscape by lineage, NGS600 testing platform only (N = 17,566). Total bar height represents the overall frequency of HR-DDRdeficient tumors within each lineage; colored bar length represents the relative mutation frequency of individual genes in each cancer type. CRC, colorectal cancer; GIST, GI stromal; HR-DDR, homologous recombination DNA damage repair; NSCLC, non-smallcell lung cancer; SCLC, small-cell lung cancer.

at least one tumor with two or more HR-DDR pathway mutations, sparing GIST, head and neck, and thyroid cancers that did not have tumors with multiple HR gene mutations.

Hotspot, %

N/A

3.3

3.7

0.4

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

NGS600, %

7.2

2.7

2.0

3.0

1.3

1.3

1.1

0.6

0.3

0.2

0.2

0.1

0.1

Table 4. Summary of Homologous Recombination DNA Damage Repair Mutations

Overall, %

7.2

3.0

2.8

1.3

1.3

1.3

1.1

0.6

0.3

0.2

0.2

0.1

0.1

0.1

0.1

DISCUSSION

In this large-scale study of NGS molecular profiling of solid tumor samples across multiple cancer lineages, we confirmed HRD is common and was observed in 17.4% of the solid tumors evaluated by the NGS600 platform (spanning 21 cancer lineages). The most commonly mutated lineages included endometrial (34.4%), biliary tract (28.9%), bladder (23.9%), hepatocellular (20.9%), GE (20.8%), and ovarian (20.0%). Notable additional lineages with a significant proportion of tumors that tested positive for HRD by NGS included melanoma (18.1%), breast (15.6%), pancreatic (15.4%), and CRC (15.0%). The most commonly mutated HR-DDR genes included ARID1A (7.2%), BRCA2 (3.0%), BRCA1 (2.8%), ATM (1.3%), ATRX (1.3%), and CHEK2 (1.3%). Additionally, 362 tumors of the 17,566 sequenced with the NGS600 platform harbored at least two HR-DDR pathway mutations. The clinical significance of multiple mutations is unknown.

Our study was a large assessment of HRD prevalence. It is also one of the few studies to assess HRD across multiple tumor types. Furthermore, we applied commercially available technology

Abbreviation: N/A, not applicable.

Identified*

Mutation

ARID1A

BRCA2

BRCA1

ATM

ATRX

CHEK2

BAP1

PALB2

NBN

BRIP1

WRN

BLM

FANCC

RAD50

MRE11A

*No mutations identified: BARD1, CHEK1, FANCA/D2/E/F/G/L, RAD51, RAD51B.

Tumor Type	Testing Method	HR Mutations Evaluated	No.; Frequency, %		
Pancreas ⁴⁹	Whole-exome sequencing, somatic	DNA repair genes including Fanconi anemia genes, <i>ATM</i> , <i>CHEK2</i> , <i>BRCA1/2</i>	109; > 35.0		
Bladder ⁵⁰	Whole-exome and targeted sequencing, somatic	DNA repair genes including (in targeted sequencing): <i>ATM</i> , <i>FANCD2</i> , <i>PALB2</i> , <i>BRCA1/2</i>	81; 34.4		
Prostate ³⁵	Whole-exome and targeted sequencing, somatic and germline	DNA repair genes including: <i>BRCA1/2</i> , <i>ATM</i> , <i>FANCA</i> , <i>CHEK2</i> , <i>PALB2</i> , <i>RAD51</i> , <i>MRE11</i> , <i>NBN</i>	49; 33.0		
Ovarian ⁵¹	Whole-exome sequencing, somatic	BRCA1/2, CDK12, RAD51C, Fanconi anemia genes, RAD50, PTEN, ATM, ATR, CHEK1, CHEK2	316; 23.5		
Multiple cancer types ⁵²	NGS600, Hotspot Illumina MiSeq, somatic	ARID1A, ATM, ATRX, BAP1, BARD1, BLM, BRCA1/2, BRIP1, FANCA/C/D2/E/F/G/L, MRE11A, NBN, PALB2, RAD50, RAD51, RAD51B, WRN	52,426; 17.4		
Breast (triple-negative breast cancer) ⁵³	NGS Illumina MiSeq/ NextSeq, germline and somatic	BRCA1/2, Fanconi anemia genes, BML, BARD1, BRIP1, CHEK2, FAM175A, NBN, PALB2, PTEN, RAD51D, TP53	32; 15.6		
Pancreas ⁵⁴	HRD score (LOH, TAI, LST) and targeted NGS, somatic	BRCA1/2, ATM, ATR, BRIP1, Fanconi anemia genes	78; 15.4		
Gastric ⁵⁵	IHC, somatic	ATM (expression)	123; 14.0		
Ovarian ⁴²	Hotspot BROCA panel, somatic and germline	BRCA1/2, ATM, BARD1, BRIP1, CHEK1, CHEK2, FAM175A, MRE11A, NBN, PALB2, RAD51C, RAD51D	367; 7.6 (somatic), 22.6 (germline), 1.1 (both)		
Breast ⁵⁶	Hotspot panel, somatic	PTEN, ATM, CDKN2A, NPM1	400; 2.0		

Table 5. Published HRD Frequencies

Abbreviations: HR, homologous recombination; IHC, immunohistochemistry; LOH, loss of heterozygosity; LST, large-scale state transitions; NGS, next-generation sequencing; TAI, telomeric allelic imbalance.

to identify a substantial subset of patients who might benefit from specific therapies, including PARP inhibitors and platinum chemotherapy, though it is not fully defined which HR-DDR pathway mutations confer the greatest therapeutic impact, akin to patients with BRCA1/2 mutations. In a recent evaluation of BRCA1/2 mutational patterns, for example, a model to detect BRCA1/2 deficiency failed to correlate BRCA1/2 mutational patterns with pathogenic mutations in several additional HR-DDR pathway genes, including ATM, ATR, CHEK2, the EANC group of genes, PALB2, PTEN RAD50, and RAD51C.48 The unique genetic signatures across the breadth of HR-DDR pathway genes are not well characterized, and, as such, it is unknown if the lack of a BRCA-like mutational pattern is associated with altered responses to PARP inhibitors and DNA-damaging chemotherapy.

Our reported frequencies of HRD are similar to previously published work, though a range of frequencies is appreciated (Table 5). Because there is not yet an established way to measure HRD, and previous studies have measured HRD by an HRD assay assessing large-scale transition scores and telomere allelic imbalances, germline mutations, somatic mutations, BRCA-like genetic signatures, or a combination of these methods, the differences in HRD prevalence may be related to nonuniformity of assessment. In addition, significant variation will occur between whole-exome sequencing versus use of hotspot panels, with the identification of HRD more common among studies that used whole-exome sequencing. Within our study, 17,566 tumors (33.5% of the total 52,426 tumors tested) underwent sequencing with the targeted whole-exome sequencing platform NGS600, which evaluated tumors for 592 genes, assuming DNA was sufficient. We also excluded an evaluation for tumor expression of deleterious PTEN mutations; PTEN is commonly mutated in malignant tumors. Consequently, studies including an evaluation for PTEN mutations are expected to report higher frequencies of HRD.

It is also possible frequencies of HRD may differ across studies as a result of differences in patient population. In our study, of the 52,426 tumors evaluated, 25,102 were sequenced from the primary tumor and 21,956 were sequenced from a metastatic site of disease (tumor site was unknown for 5,368 cases; Table 1). Patients with tumors harboring HR-DDR pathway mutations may be more sensitive to DNA-damaging chemotherapy and therefore less likely to recur after initial treatment of localized disease. Although the clinical stage of patients included in our analysis at the time of tissue acquisition (and if tissue was obtained at presentation) was unknown, it is possible our population was enriched with patients with metastatic disease without HRD who were less likely to respond favorably to frontline treatment and, therefore, recurred.

Looking forward, classifying tumors as HR-DDR deficient will likely become increasingly important, as we now appreciate that HRD is common and has been associated with improved outcomes in some patients treated with DNA-damaging therapies. Several clinical trials are assessing in part the role of HRD in response to anticancer therapies and outcomes, including treatment with PARP inhibitor therapy alone, but also in combinations with chemotherapy, radiation therapy, or immunotherapy to enhance antitumor efficacy. In tandem, it will be important to generate a consensus regarding uniform testing to identify appropriate patients for these tailored therapies.

There are some limitations of this study to note. Given the nature of the study, we evaluated patients' tumor tissue for the presence of HR-DDR mutations and thus are unable to distinguish whether a given mutation was a somatic or germline mutation. We were also unable to

AUTHOR CONTRIBUTIONS

Conception and design: Arielle L. Heeke, Michael J. Pishvaian, John L. Marshall, Claudine Isaacs Collection and assembly of data: Arielle L. Heeke, Michael J. Pishvaian, Joanne Xiu, Wang-Juh Chen, Tabari M. Baker, John L. Marshall

Data analysis and interpretation: Arielle L. Heeke, Michael J. Pishvaian, Filipa Lynce, Joanne Xiu, Jonathan R. Brody, Tabari M. Baker, John L. Marshall, Claudine Isaacs Manuscript writing: All authors

Final approval of manuscript: All authors

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/po/author-center.

assess tumors for epigenetic modifications such as DNA methylation, which could also lead to significant and clinically relevant alterations in gene expression affecting functions of the HR pathway.^{57,58} In addition, HRD is defined by currently available literature regarding the suspected pathogenicity of each mutation. It is certainly possible that mutations labeled as a variant of unknown significance may prove important in the future, although the majority are reclassified as benign polymorphisms.⁵⁹⁻⁶¹ We also recognize our results are influenced by the overrepresentation of certain cancer lineages, including ovarian (n = 9,630), NSCLC (n = 8,119), CRC (n = 6,650), breast (n = 5,910), and endometrial (n = 5,540) cancers in the Caris database. And finally, although additional genes were of interest to evaluate (including EMSY and RAD51C), they either were not included in the Caris targeted NGS600 platform or variants have not been interpreted by a Caris geneticist and, as such, were excluded from this analysis.

Nevertheless, this study reveals that HRD is common in solid tumors and as our understanding of homologous recombination evolves and we further define the scope of clinical impact of mutations beyond *BRCA*, we may see an increase in the benefits gained from a wider range of HRD-directed therapies.

DOI: https://doi.org/10.1200/PO.17.00286 Published online on ascopubs.org/journal/po on July 23, 2018.

Arielle L. Heeke No relationship to disclose

Michael J. Pishvaian Stock and Other Ownership Interests: Perthera

Honoraria: Caris Life Sciences, Celgene, Sirtex Medical, Merrimack

Consulting or Advisory Role: Caris Life Sciences, Perthera, Celgene, Sirtex Medical, AstraZeneca/ MedImmune, RenovoRx

Research Funding: Genentech (Inst), Celldex (Inst), Merck (Inst), GlaxoSmithKline (Inst), MedImmune (Inst), Pfizer (Inst), Gilead Sciences (Inst), Regeneron (Inst), Novartis (Inst), Karyopharm Therapeutics (Inst), Pharmacyclics (Inst), Bristol-Myers Squibb (Inst), Bayer (Inst), Curegenix (Inst), Calithera Biosciences (Inst), Tesaro (Inst), Bavarian Nordic (Inst), Halozyme (Inst), ARMO BioSciences (Inst), FibroGen (Inst), Celgene (Inst)

Travel, Accommodations, Expenses: Caris Life Sciences, Sirtex Medical, Perthera, AstraZeneca/MedImmune

Filipa Lynce Research Funding: Pfizer, Bristol-Myers Squibb

Joanne Xiu Employment: Caris Life Sciences

Jonathan R. Brody Consulting or Advisory Role: Perthera Travel, Accommodations, Expenses: Perthera

Wang-Juh Chen Employment: Caris Life Sciences

Tabari M. Baker Employment: Caris Life Sciences, Roche Travel, Accommodations, Expenses: Caris Life Sciences, Roche John L. Marshall Employment: Caris Life Sciences Honoraria: Roche, Amgen, Bayer/Onyx, Taiho Pharmaceutical, Caris Life Sciences, Celgene Consulting or Advisory Role: Roche, Amgen, Bayer/Onyx, Taiho Pharmaceutical, Caris Life Sciences, Celgene Speakers' Bureau: Roche, Amgen, Bayer/Onyx, Celgene, Taiho Pharmaceutical Research Funding: Bayer/Onyx (Inst), Roche (Inst), Pfizer (Inst), Amgen (Inst), Boehringer Ingelheim (Inst), MedImmune (Inst)

Claudine Isaacs Honoraria: Roche, AstraZeneca, Pfizer, Novartis, Syndax, NanoString Technologies Consulting or Advisory Role: Pfizer, Roche, Novartis, AstraZeneca, Medivation, NanoString Technologies, Syndax Speakers' Bureau: Genentech, Pfizer, AstraZeneca Research Funding: Novartis (Inst), Pfizer (Inst), Genentech (Inst), Tesaro Patents, Royalties, Other Intellectual Property: UpToDate, McGraw Hill Publishing

Affiliations

Arielle L. Heeke, Michael J. Pishvaian, Filipa Lynce, John L. Marshall, and Claudine Isaacs, Georgetown University, Washington, DC; Joanne Xiu, Wang-Juh Chen, and Tabari M. Baker, Caris Life Sciences, Inc., Phoenix, AZ; and Jonathan R. Brody, Thomas Jefferson University, Philadelphia, PA.

Support

Supported by Caris Life Sciences. Funding received from Georgetown TD Bank (A.H.). Partial funding received from 2015 Pancreatic Cancer Action Network American Association for Cancer Research Acceleration Network Grant No. 15-90-25-BROD, National Cancer Institute, National Institutes of Health Grant No. 1R01CA212600-01, and a Sidney Kimmel Cancer Center Core Grant No. P30 CA056036 to Thomas Jefferson University (N.A., M.J.P., J.R.B.).

Prior Presentation

Presented at the 2017 American Society of Clinical Oncology Annual Meeting, Chicago, IL, June 2-6, 2017.

REFERENCES

- 1. Kuchenbaecker KB, Hopper JL, Barnes DR, et al: Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 317:2402-2416, 2017
- Antoniou A, Pharoah PD, Narod S, et al: Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: A combined analysis of 22 studies. Am J Hum Genet 72:1117-1130, 2003
- 3. Mavaddat N, Peock S, Frost D, et al: Cancer risks for BRCA1 and BRCA2 mutation carriers: Results from prospective analysis of EMBRACE. J Natl Cancer Inst 105:812-822, 2013
- 4. Ford D, Easton DF, Stratton M, et al: Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Hum Genet 62:676-689, 1998
- van der Kolk DM, de Bock GH, Leegte BK, et al: Penetrance of breast cancer, ovarian cancer and contralateral breast cancer in BRCA1 and BRCA2 families: High cancer incidence at older age. Breast Cancer Res Treat 124:643-651, 2010
- Chen S, Parmigiani G: Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25:1329-1333, 2007
- Breast Cancer Linkage Consortium: Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 91:1310-1316, 1999

- Kote-Jarai Z, Leongamornlert D, Saunders E, et al: BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: Implications for genetic testing in prostate cancer patients. Br J Cancer 105:1230-1234, 2011
- 9. Leongamornlert D, Mahmud N, Tymrakiewicz M, et al: Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer 106:1697-1701, 2012
- 10. Ferrone CR, Levine DA, Tang LH, et al: BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma. J Clin Oncol 27:433-438, 2009
- 11. Iqbal J, Ragone A, Lubinski J, et al: The incidence of pancreatic cancer in BRCA1 and BRCA2 mutation carriers. Br J Cancer 107:2005-2009, 2012
- 12. Kim DH, Crawford B, Ziegler J, et al: Prevalence and characteristics of pancreatic cancer in families with BRCA1 and BRCA2 mutations. Fam Cancer 8:153-158, 2009
- 13. Moschetta M, George A, Kaye SB, et al: BRCA somatic mutations and epigenetic BRCA modifications in serous ovarian cancer. Ann Oncol 27:1449-1455, 2016
- Lupo B, Trusolino L: Inhibition of poly(ADP-ribosyl)ation in cancer: Old and new paradigms revisited. Biochim Biophys Acta 1846:201-215, 2014
- 15. Frimer M, Levano KS, Rodriguez-Gabin A, et al: Germline mutations of the DNA repair pathways in uterine serous carcinoma. Gynecol Oncol 141:101-107, 2016
- Lin PH, Kuo WH, Huang AC, et al: Multiple gene sequencing for risk assessment in patients with early-onset or familial breast cancer. Oncotarget 7:8310-8320, 2016
- 17. Antoniou AC, Casadei S, Heikkinen T, et al: Breast-cancer risk in families with mutations in PALB2. N Engl J Med 371:497-506, 2014
- Casadei S, Norquist BM., Walsh T, et al: Contribution to familial breast cancer of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res 71:2222-2229, 2011
- Antoniou AC, Easton DF: Models of genetic susceptibility to breast cancer. Oncogene 25:5898-5905, 2006
- Cavaciuti E, Laugé A, Janin N, et al: Cancer risk according to type and location of ATM mutation in ataxia-telangiectasia families. Genes Chromosomes Cancer 42:1-9, 2005
- Roberts NJ, Jiao Y, Yu J, et al: ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov 2:41-46, 2012
- 22. Grant RC, Al-Sukhni W, Borgida AE, et al: Exome sequencing identifies nonsegregating nonsense ATM and PALB2 variants in familial pancreatic cancer. Hum Genomics 7:11, 2013
- 23. Pritchard CC, Mateo J, Walsh MF, et al: Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 375:443-453, 2016
- Angèle S, Falconer A, Edwards SM, et al: ATM polymorphisms as risk factors for prostate cancer development. Br J Cancer 91:783-787, 2004
- Tutt A, Ellis P, Kilburn L, et al: The TNT trial. 2014 San Antonio Breast Cancer Symposium, San Antonio, TX, December 11, 2014 (abstr S3-01)
- Golan T, Kanji ZS, Epelbaum R, et al: Overall survival and clinical characteristics of pancreatic cancer in BRCA mutation carriers. Br J Cancer 111:1132-1138, 2014
- Telli ML, Timms KM, Reid J, et al: Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res 22:3764-3773, 2016
- Kaufman B, Shapira-Frommer R, Schmutzler RK, et al: Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 33:244-250, 2015
- 29. Pujade-Lauraine E, Ledermann JA, Selle F, et al: Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/

ENGOT-Ov21): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 18:1274-1284, 2017

- 30. Ledermann J, Harter P, Gourley C, et al: Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med 366:1382-1392, 2012
- Robson M, Im SA, Senkus E, et al: Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 377:523-533, 2017
- Swisher EM, Lin KK, Oza AM, et al: Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): An international, multicentre, open-label, phase 2 trial. Lancet Oncol 18:75-87, 2017
- 33. Oza AM, Tinker AV, Oaknin A, et al: Antitumor activity and safety of the PARP inhibitor rucaparib in patients with high-grade ovarian carcinoma and a germline or somatic BRCA1 or BRCA2 mutation: Integrated analysis of data from Study 10 and ARIEL2. Gynecol Oncol 147:267-275, 2017
- 34. Mirza MR, Monk BJ, Herrstedt J, et al Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med 375:2154-2164, 2016
- Mateo J, Carreira S, Sandhu S, et al: DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373:1697-1708, 2015
- McCabe N, Turner NC, Lord CJ, et al: Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66:8109-8115, 2006
- 37. Shen J, Peng Y, Wei L, et al: ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors. Cancer Discov 5:752-767, 2015
- Yu H, Pak H, Hammond-Martel I, et al: Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci USA 111:285-290, 2014
- Sung P, Klein H: Mechanism of homologous recombination: Mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7:739-750, 2006
- 40. Zhao W, Steinfeld JB, Liang F, et al: BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing. Nature 550:360-365, 2017
- Aarts M, Bajrami I, Herrera-Abreu MT, et al: Functional genetic screen identifies increased sensitivity to WEE1 inhibition in cells with defects in Fanconi anemia and HR pathways. Mol Cancer Ther 14:865-876, 2015
- 42. Pennington KP, Walsh T, Harrell MI, et al: Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res 20:764-775, 2014
- 43. Gottipati P, Vischioni B, Schultz N, et al: Poly(ADP-ribose) polymerase is hyperactivated in homologous recombination-defective cells. Cancer Res 70:5389-5398, 2010
- 44. Hu Y, Raynard S, Sehorn MG, et al: RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev 21:3073-3084, 2007
- 45. Walsh CS: Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy. Gynecol Oncol 137:343-350, 2015
- 46. Li MM, Datto M, Duncavage EJ, et al: Standards and guidelines for the interpretation and reporting of sequence variants in cancer: A joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 19:4-23, 2017
- 47. Richards S, Aziz N, Bale S, et al: Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405-424, 2015

- 48. Davies H, Glodzik D, Morganella S, et al: HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med 23:517-525, 2017
- Witkiewicz AK, McMillan EA, Balaji U, et al: Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 6:6744, 2015
- 50. Yap KL, Kiyotani K, Tamura K, et al: Whole-exome sequencing of muscle-invasive bladder cancer identifies recurrent mutations of UNC5C and prognostic importance of DNA repair gene mutations on survival. Clin Cancer Res 20:6605-6617, 2014
- Cancer Genome Atlas Research Network: Integrated genomic analyses of ovarian carcinoma. Nature 474:609-615, 2011 [Erratum: Nature 490: 292, 2012]
- 52. Heeke AL, Lynce F, Baker T, et al: Prevalence of homologous recombination deficiency among all tumor types. J Clin Oncol 35:1502, 2017 (suppl 15)
- 53. Stjepanovic N, Kim RH, Wilson M, et al: Clinical outcome of patients with advanced triple negative breast cancer with germline and somatic variants in homologous recombination gene. 2016 San Antonio Breast Cancer Symposium, San Antonio, TX, December 6-10, 2016 (abstr P3-09-05)
- 54. Shahda S, Timms K, Ibrahim A, et al: Homologous recombination deficiency (HRD) in patients with pancreatic cancer (PS) and response to chemotherapy. 2016 American Society of Clinical Oncology Gastrointestinal Cancer Symposium, San Francisco, CA, January 21-23, 2016 (abstr 317)
- 55. Bang YJ, Im SA, Lee KW, et al: Randomized, double-blind phase II trial with prospective classification by ATM protein level to evaluate the efficacy and tolerability of olaparib plus paclitaxel in patients with recurrent or metastatic gastric cancer. J Clin Oncol 33:3858-3865, 2015
- Matsuda N, Lim B, Wang Y, et al: Identification of frequent somatic mutations in inflammatory breast cancer. Breast Cancer Res Treat 163:263-272, 2017
- 57. Jones PA, Baylin SB: The epigenomics of cancer. Cell 128:683-692, 2007
- Rossetto D, Truman AW, Kron SJ, et al: Epigenetic modifications in double-strand break DNA damage signaling and repair. Clin Cancer Res 16:4543-4552, 2010
- Easton DF, Deffenbaugh AM, Pruss D, et al: A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. Am J Hum Genet 81:873-883, 2007
- 60. Eggington JM, Bowles KR, Moyes K, et al: A comprehensive laboratory-based program for classification of variants of uncertain significance in hereditary cancer genes. Clin Genet 86:229-237, 2014
- Lynce F, Smith KL, Stein J, et al: Deleterious BRCA1/2 mutations in an urban population of Black women. Breast Cancer Res Treat 153:201-209, 2015