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Abstract

Evaluating potential adverse effects of complex chemical mixtures in the environment is 

challenging. One way to address that challenge is through more integrated analysis of chemical 

monitoring and biological effects data. In the present study, water samples from five locations near 

two municipal wastewater treatment plants in the St. Croix River basin, on the border of MN and 

WI, USA, were analyzed for 127 organic contaminants. Known chemical-gene interactions were 

used to develop site-specific knowledge assembly models (KAMs) and formulate hypotheses 

concerning possible biological effects associated with chemicals detected in water samples from 

each location. Additionally, hepatic gene expression data were collected for fathead minnows 

(Pimephales promelas) exposed in situ, for 12 d, at each location. Expression data from 

oligonucleotide microarrays were analyzed to identify functional annotation terms enriched among 

the differentially-expressed probes. The general nature of many of the terms made hypothesis 

formulation on the basis of the transcriptome-level response alone difficult. However, integrated 
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analysis of the transcriptome data in the context of the site-specific KAMs allowed for evaluation 

of the likelihood of specific chemicals contributing to observed biological responses. Thirteen 

chemicals (atrazine, carbamazepine, metformin, thiabendazole, diazepam, cholesterol, p-cresol, 

phenytoin, omeprazole, ethyromycin, 17β-estradiol, cimetidine, and estrone), for which there was 

statistically significant concordance between occurrence at a site and expected biological response 

as represented in the KAM, were identified. While not definitive, the approach provides a line of 

evidence for evaluating potential cause-effect relationships between components of a complex 

mixture of contaminants and biological effects data, which can inform subsequent monitoring and 

investigation.

Capsule:

Reverse causal reasoning and a knowledge assembly model were used to infer potential biological 

effects and chemicals driving those effects at 5 locations in the St. Croix River basin, USA.
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1. Introduction

Evaluating the potential human health and ecological risks associated with exposure to 

complex chemical mixtures in the ambient environment is one of the central challenges of 

chemical safety assessment and environmental protection. To assess these risks and take 

appropriate management actions, there are a number of important questions that need to be 

addressed through research and/or monitoring efforts. These include: (1) what contaminants 

are present at a site and what is the potential for exposure to those contaminants; (2) what 

hazards may be associated with exposure to those contaminants; (3) what evidence exists 

that these hazards are occurring in exposed populations; (4) which contaminant(s) are most 

likely causing the effects observed; and (5) what is(are) their source(s).

Environmental monitoring has historically relied heavily upon targeted instrumental analysis 

for chemicals of known or potential concern. While chemical monitoring is well suited to 

identify and characterize targeted chemicals, it provides little or no information about 
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potential biological effects. Chemical monitoring can be effective as a basis for 

environmental risk assessment when the hazards associated with detected chemicals are well 

characterized in terms of potency, effect concentration(s), and/or mode(s) of action, as is the 

case for many “legacy contaminants” such as PCBs and organochlorine pesticides. However, 

there are tens of thousands of chemicals for which little or no relevant toxicology data are 

available (Judson et al., 2009). In the case of these “contaminants of emerging concern” 

(CECs), chemical monitoring data alone are generally insufficient to support site-specific 

risk assessment and management.

Effects-based monitoring approaches can provide a useful complement to chemical 

monitoring. They allow for a direct measurement of biological effects which, if properly 

anchored to adverse outcomes, can be used to address hazards that may be associated with 

exposure of extant organisms (Altenburger et al., 2015; Brack et al., 2015; Ekman et al., 

2013; Schroeder et al., 2016). Because effects-based monitoring tools measure the integrated 

biological activity of an entire mixture, they are capable of detecting exposure to chemicals, 

which investigators may not know to measure, or may not have the analytical methods to 

detect (Connon et al., 2012; Ekman et al., 2013). While many effects-based monitoring 

approaches provide a relatively narrow scope of characterization (Altenburger et al., 2015), 

more open-ended or unsupervised approaches can be employed to cover and evaluate a 

broader spectrum of biological effects. These include, for example, omics measurements 

performed on exposed organisms (Berninger et al., 2014; Garcia-Reyero et al., 2008, 2009, 

2011; Martinović -Weigelt et al., 2014; Skelton et al., 2014), as well as batteries of pathway-

based in vitro assays (Escher et al., 2014; Schroeder et al., 2016).

Despite their strengths, effects-based methods have important limitations. Notably, they 

rarely provide insights into which chemicals are causing the observed biological responses 

unless coupled with detailed and often costly and time-consuming bioassay-directed 

fractionation. Without the ability to connect specific chemicals, or at least chemical classes, 

to a particular effect, it is difficult to determine appropriate management actions. 

Consequently, approaches that integrate chemical monitoring with biological effects data 

may be useful to address the questions outlined above and to evaluate risks associated with 

specific chemicals present in the environment.

Combination of statistical and knowledge-based approaches to data integration can offer 

efficient means to generate additional lines of evidence that can inform subsequent research, 

monitoring, or decision-making as appropriate. Existing computational approaches can be 

used to build network models based on a priori knowledge about chemical exposures and 

biological effects which can allow for integration of these two types of monitoring data 

(Chindelevitch et al., 2012; Hoeng et al., 2012). For example, Reverse Causal Reasoning, a 

reverse engineering algorithm, has been used to identify chemicals that provide statistically 

significant explanations for differential measurements in a molecular profiling data set 

(Catlett et al., 2013). For this approach, a priori knowledge is first used to generate a large 

network of potential cause and effect relationships, i.e., a Knowledge Assembly Model 

(KAM). Smaller networks, termed hypotheses (HYPs), are derived from the KAM. For each 

HYP, the upstream node represents an experimental perturbation such as exposure to a 

chemical and the downstream nodes represent biological effects, such as a change in mRNA 
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abundance. The edges in the networks specify an “increased”, “decreased”, or “ambiguous” 

relationship between chemicals and biological effects. These networks can then be evaluated 

for richness, which refers to the number of significantly increased or decreased downstream 

nodes relative to the entire population of nodes, and concordance, which refers to the 

consistency of the observed state, such as an increase or decrease in mRNA abundance, with 

the direction of change expected in response to the upstream node (Martin et al., 2012; 

Laifenfeld et al., 2014).

A KAM can be derived from a knowledge base that provides the cause and effect 

relationships necessary to develop the network. A number of publically available online 

resources have assembled, curated, and organized information about chemical-gene and 

chemical-protein interactions into computationally-accessible databases (Schroeder et al., 

2016). For example, both the Search Tool for Interactions of Chemicals (STITCH; Kuhn et 

al., 2012) and the Comparative Toxicogenomics Database (CTD; Davis et al., 2013) provide 

information about the impacts of chemicals on biological responses utilizing experimental 

data from controlled laboratory studies.

Despite unavoidable limitations in terms of chemical and taxonomic coverage (e.g., heavy 

mammalian bias) and general lack of data for dose-, time-, target-dependency, and route of 

exposure for many of the chemicals, these sources nonetheless provide a knowledge base 

suitable for building qualitative KAMs that can be used as a tool for integrated analysis of 

chemical monitoring and biological effects data. For example, when only chemical 

monitoring data are available, the KAMs could be a useful first step for identifying 

contaminants of concern and hypothesizing the potential downstream biological impacts 

(i.e., perturbed genes or pathways; Schroeder et al., 2016). When both chemical and 

biological data are available for a site, HYPs derived from KAMs can support statistically 

guided inference concerning which chemicals are potentially associated with the observed 

biological responses (Martin et al., 2012). For example, studies utilizing this approach have 

identified biological effect signatures due to 2-butoxyethanol exposure (Laifenfeld et al., 

2010) and drug-induced damage in the liver (Laifenfeld et al., 2014). Thus, KAMs have the 

potential to identify possible biological effects associated with a particular chemical 

exposure or, conversely, potential chemical causes associated with a given biological effect.

Recently, we used a KAM based on information in the CTD to predict the biological impacts 

of chemicals on field-exposed fish when chemical and biological data were not obtained 

simultaneously (Martinović-Weigelt et al., 2014). The objective of the present study was to 

further demonstrate the potential utility of knowledge-based approaches. Specifically, we 

used knowledge from the CTD to develop chemical-gene interaction network models (i.e., 

KAMs) and applied them, not only to predict potential biological effects of chemicals but 

also to identify the chemicals in environmental samples that may be associated with 

observed biological responses (Figure 1). To achieve this we first measured contaminant 

concentrations in water collected at five locations associated with two wastewater treatment 

plants (WWTPs) as well as relative hepatic mRNA transcript abundance in fish exposed in 
situ at each location. The CTD was used to identify genes whose expression had been 

previously reported to be affected by one or more of the detected chemicals. A KAM was 

developed for each location to generate location-specific hypotheses about the potential 
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impacts of the chemicals detected in the environmental samples on gene expression. Reverse 

Causal Reasoning and the KAMs were then used to statistically evaluate HYPs as a means to 

identify which chemicals in the environmental samples were potentially contributing to the 

gene expression responses observed in the fish. The present study illustrates how KAMs can 

be used to integrate exposure and effects data and provide a line of evidence that can help 

address key questions important to environmental assessments concerning complex mixtures 

of emerging contaminants.

2. Materials and Methods

2.1. Site Characterization and Targeted Chemical Analyses

The present study focused on two sites near WWTPs in the St. Croix River basin in 

Minnesota and Wisconsin (Supplementary Figure S1). Both WWTPs treat influent that is 90 

to 100 percent domestic, have biological phosphorus removal and ammonia reduction, and 

are located in mixed land use areas (Supplementary Table S1). The WWTP near North 

Branch, MN serves a population of 10,000 people and discharges an average of 0.62 million 

gallons of treated effluent daily into the North Branch of the Sunrise River (stream N). The 

WWTP near Chisago, MN serves a population of 11,000 and discharges every 2.5 h (1.1 

million gallons per day) into a small stream (stream C) with no flow upstream of the WWTP. 

Upstream (US), effluent (EFF), and downstream (DS) locations were established at stream 

N. At stream C, only EFF and DS locations were sampled, as there was no flow upstream of 

the WWTP during the study period. Downstream sampling locations were assigned to areas 

where effluent was completely mixed with stream water as indicated by a return to uniform 

specific conductance across the stream channel.

Water samples were collected during the summer of 2012. Effluent samples were collected 

in 1L solvent-rinsed glass amber bottles by multiple vertical dips using a weighted sampler. 

In-stream samples were collected using Teflon bottles with a depth-integrating sampler at 5 

to 10 equally spaced points across the channel to ensure samples were representative of the 

entire stream cross-section. All samples from each location were composited before 

dispensing into sample bottles and shipping for analysis. Water samples were analyzed at the 

U.S. Geological Survey National Water Quality Laboratory for 137 analytes including 69 

wastewater-indicator compounds, 48 pharmaceuticals, and 20 natural or synthetic steroid 

hormones (for analytical methods and complete analyte list see Supplementary text and 

Table S2).

To visualize chemical occurrence patterns, hierarchical clustering was conducted (Pearson 

correlation with average linkage clustering) using Multi Experiment Viewer (MeV v 4.8; 

Saeed et al., 2003). Chemicals with concentrations below the method detection limit were 

considered to not be present and those chemical concentrations that were above the detection 

limit were considered detected analytes. For KAM development and analyses, only chemical 

“presence” or “absence” was considered; concentrations were not.

Schroeder et al. Page 5

Environ Pollut. Author manuscript; available in PMC 2018 September 17.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



2.2. Development of Chemical-gene Interaction Knowledge Assembly Model (KAM)

A KAM focused on chemical-gene interactions was developed from information available in 

the CTD (http://ctdbase.org; Davis et al., 2013). The CTD was queried in June 2014 to 

identify genes whose expression was reported to be affected by the chemicals detected in 

water monitoring (Supplementary Table S2). A batch query was performed using Chemical 

Abstract Service (CAS) numbers for each chemical detected at a location. For the current 

analysis, gene transcripts whose expression was affected in any manner (i.e., reported as 

effects, up, or down regulated) by chemical exposure were included in the KAM. The 

chemical, gene symbol, species the interaction was reported in, and the literature reference 

were downloaded and compiled. Any transcript whose expression was reported to be 

affected due to co-treatment with another chemical not detected in the samples was removed 

(i.e., mixture data were not used). Because the CTD can report the same chemical-gene 

interactions, but from different species, redundant interactions were identified and removed 

to prevent over-representation of a single chemical-gene interaction within the KAM.

A location-specific sub-network was developed from the KAM to extract chemical-gene 

interaction information specific to each location. The KAM and location-specific chemical-

gene interaction model was visualized using Cytoscape v2.8.3 (Smoot et al.,2011). The gene 

symbol, degree number for each gene, chemical(s) interacting with the gene, and the 

directionality of the gene expression was extracted for all of the genes present in the sub-

network. Each KAM-derived gene list represents a set of testable hypotheses concerning 

which sites or locations would have the greatest biological effects and which genes and 

pathways are likely to be altered following in situ exposure at a given location.

2.3. In Situ Fish Exposure

Fish exposures were conducted concurrently in summer of 2012. Sexually mature, 7-month 

old, laboratory-reared fathead minnows were transported to the field sites in identical, 

aerated containers holding well-water from the Saint Cloud State University’s Aquatic 

Facility. Once at the assigned exposure site, 20 randomly selected male fish (two replicates 

of 10 males per treatment) were moved into mini-mobile environmental monitoring units 

(MMUs; Kolok et al.,2012). The MMUs were continually supplied with a flow of water 

from: 1) a well (Control treatment), 2) stream C-EFF, 3) stream C-DS, 4) stream N-US, 5) 

stream N-EFF or 6) stream N-DS. Flow rates were approximately 200 mL/min per chamber 

with additional water being directed into a jacket surrounding the fish exposure chambers to 

buffer against water temperature changes associated with fluctuations in air temperature. As 

a result, water temperature in the MMUs closely mimicked the stream conditions of 23.4 

(mean) ± 2.1 (SD) °C during the time of exposure with variations in water temperature 

reflecting diurnal temperature cycling (measured by automated temperature loggers). Water 

was continually aerated, and fish were fed daily with frozen brine shrimp. After 12 d of 

exposure, fish were transported (3 h transit) to the University of St. Thomas (UST) in 

identical, aerated containers containing site-specific water. Tissue collection started 

immediately upon arrival at UST. Fish were anesthetized using buffered MS-222, and 

morphometric measurements (mass, length, secondary sex characteristics assessment) were 

conducted. Liver and testes were excised, weighed, and stored appropriately (see below) for 

either microarray or histopathology analyses. All procedures involving live fish were 
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reviewed and approved by the SCSU and UST Institutional Animal Care and Use 

Committees.

2.4 Plasma vitellogenin analysis

Circulating plasma vitellogenin was measured following previously published protocols 

(Dammann et al., 2011); competitive ELISA method that incorporates a species-specific 

polyclonal anti-vitellogenin antibody and purified vitellogenin standard was used.

2.5 Morphological endpoints

Whole body weights were measured for each fish (0.01g precision, Acculab Vicon, 

Edgewood, NY). Gonads and livers from each fish were excised and immediately weighed 

(0.001g precision, Mettler Toledo AG245, Columbus, OH). Liver and whole body weights 

were used to calculate the hepatosomatic index (HSI = liver weight/whole body weight × 

100). Gonad and whole body weights were used to calculate the gonadosomatic index (GSI 

= gonad weight/whole body weight × 100). Body weight and total length was used to 

calculate the body condition factor (BCF = body weight/total length3), a measure of the 

overall metabolic condition of the fish (Fulton, 1904). Development of male-specific 

secondary sex characteristics (tubercles and dorsal pad) was scored using a qualitative scale 

0 (no pad; no tubercles) to 3 (sharp, prominent tubercles; dorsal pad wide and thick forming 

a sharp nape behind head); this approach has been widely published/deployed by others 

(e.g., Danylchuk and Tonn, 2001).

2.6 Histopathology

After a 1-week fixation period in 10% neutral buffered formalin, tissue samples were 

dehydrated through a series of ethanol and xylene baths in a Leica automated tissue 

processor TP 050 (Leica, Wetzlar, Germany) and embedded in paraffin using a Thermo 

Scientific Microm EC 350–1 embedding station (Waltham, MA). Embedded tissues were 

sectioned at approximately 1/3 and 2/3 of the depth of the gonads (resulting in tissue slices ~ 

100 μm apart) using a Reichert-Jung cassette microtome (Leica, Wetzlar, Germany; 4 μm 

sections). At least 6 sections from each organ (gonad, liver) were stained using standard 

hematoxylin and eosin techniques (Carson, 1997) in a Leica Autostainer XL similar to 

methods used in other histopathological studies (Kidd et al., 2007; Barber et al., 2011). 

Histological sections were assessed by an experienced histologist (HLS) and ranked on a 

semi-quantitative scale (0–4) for vacuolization of the liver (0 no vacuoles visible; 1 <5% of 

total area; 2 vacuoles small but throughout image <25% of area; 3 broad presence of large 

vacuoles 25%−50% of area; 4 >50% of area vacuolated) and the presence or absence of 

eosinic staining proteinaceous fluid. The developmental stage of the testis was also ranked 

on a semi-quantitative scale (0–4; Writer et al., 2010). Randomly selected slides were ranked 

for a second time to determine between analysis variance, which was found to be less than 

1%.

2.7 Statistical analyses vitellogenin, morphological, histological endpoints

Effects of the exposure on plasma vitellogenin, and morphological and histopathological 

endpoints were evaluated using Kruskal-Wallis ANOVA; STATISTICA 10 (StatSoft Inc., 
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Tulsa, OK, USA). If results were significant (p < 0.05) post hoc comparison of mean ranks 

as implemented in STATISTICA (Siegel and Castellan, 1988) was conducted.

2.8. RNA Extraction and Microarray Analysis

Total RNA was isolated from male liver samples (n = 6–7) using commercial extraction kits 

(RNeasy, Qiagen, Valencia, CA, USA). Microfluidic gel electrophoresis was used to assess 

RNA quality (Agilent 2100 Bioanalyzer, Agilent, Wilmington, DE, USA). Quantity was 

determined using a Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, 

Wilmington, DE, USA). Total RNA was stored at −80°C until analyzed.

A custom fathead minnow 60,000 gene array (GPL15775; Garcia-Reyero et al.,2014) was 

purchased from Agilent Technologies (Palo Alto, CA, USA). One μg of total RNA was used 

for all hybridizations. Probe labeling, amplification, and hybridization were performed using 

kits following the manufacturer’s protocols (Quick Amp Labeling Kit and One-Color 

Microarray Hybridization Protocol, version 6.5; Agilent) and scanned with a high-resolution 

microarray scanner (Agilent). Data were resolved from microarray images using Agilent 

Feature Extraction software version 10.7 (Agilent). Raw microarray data were deposited at 

the Gene Expression Omnibus Web site (GSE81263; http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE81263).

Microarray data were imported into GeneSpring GX 12.6. (SAS Institute Inc., Cary, NC, 

USA). Data for all treatments and control were subjected to the default normalization 

procedure for Agilent one-color microarray data (Agilent). GeneSpring’s Guided Workflow 
default quality control settings (e.g., expression values, flags, filter parameters) were used. 

Genes that were differentially expressed (DEGs) between controls and treated fish were 

identified by one-way ANOVA (p < 0.05) followed by post-hoc comparisons of each 

treatment to control (Tukey’s test, p < 0.05).

2.9. Functional Analysis

Biological pathways statistically enriched in gene lists derived from microarray DEGs or 

genes represented in the location-specific KAM were identified using GeneCodis3 (Tabas-

Madrid et al., 2012). Pathway identifications were based on Gene Ontogeny (GO) Slim 

biological process annotations and pathways in the Kyoto Encyclopedia of Genes and 

Genomes (KEGG). Zebrafish-specific processes and pathways were used for these analyses.

In calculating test statistics and enrichment significance, all unique genes present in the CTD 

were included in the analyses. Gene symbols from all genes represented on the microarray 

were used as input for the MyVenn function in the CTD to identify genes present in the 

CTD. There were 23,887 non-redundant and annotated genes present on the microarray and 

14,375 (60%) of the microarray genes were represented in the CTD. These 14,375 genes 

were used as the reference gene list for calculating enrichment. Enrichment was determined 

using a hypergeometric test with p-value correction with a false discovery rate. Pathway 

enrichment was considered significant following the software default parameters of at least 

three genes associated with a pathway and p < 0.05.

Schroeder et al. Page 8

Environ Pollut. Author manuscript; available in PMC 2018 September 17.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81263
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81263


2.10 Statistical Analyses for Inferring Chemicals Associated with Biological Responses

Because the contaminants in environmental water samples occur as complex mixtures and 

multiple chemicals are capable of influencing the expression of a single gene transcript, 

statistical analyses were used to evaluate each HYP to identify the chemical(s) possibly 

contributing to the observed mRNA state changes. For each HYP, two independent scores 

were calculated, an enrichment score (also referred to as richness) and an activation score 

(also referred to as concordance; Catlett et al., 2013; Pollard et al., 2005; Krämer et al., 

2014). The null hypothesis tested for each HYP is that globally observed biological 

responses cannot be explained by chemical(s) present in a complex environmental mixture, 

while the alternative hypothesis is that observed biological responses can be explained by 

chemical(s) present. Richness is the probability that the number of observed state changes 

downstream of a HYP could have occurred by chance alone and was calculated using a 

hypergeometric probability distribution. Richness does not account for the direction of 

change in the mRNA expression, so ambiguous (e.g., “affects”, as opposed to “up-regulates” 

or “down-regulates” expression) state changes are included in the calculation. Richness was 

calculated using the phyper function in R (R Core Team, 2014).

Concordance uses the mechanistic information about the gene regulation (up-regulation 

versus down-regulation) to calculate which chemicals are likely contributing to a particular 

biological response. Concordance was calculated using a binomial z-score to determine the 

accuracy of KAM-derived HYPs in predicting gene expression changes observed in field-

exposed fish. The z-score is based on a probability of occurrence of 0.5, because the gene 

expression state change can only be up-regulated or down-regulated. Ambiguous state 

changes were not included in the calculation. The cumulative binomial probability was 

calculated using the pbinom function in R (R Core Team, 2014). A HYP was considered 

statistically (although not necessarily biologically) significant if both richness and 

concordance met the probability cutoff of less than 0.1 (Catlett et al., 2013).

3. Results and Discussion

3.1. Chemical Characterization of Sites

There were significant differences in the number of chemicals detected in water samples 

collected from each stream and among locations along a stream (Figure 2; Supplementary 

Table S2). For example, 46 analytes were detected in stream N among all three locations; 

four in water from the N-US location, 45 in the N-EFF, and 11 in water from the N-DS 

location. Chemicals detected at the N-US location and N-EFF appear to be contributing to 

the overall chemical composition downstream, although with significant in-stream dilution 

or degradation, as only 25% of the chemicals detected in the effluent were detected 

downstream. The agricultural pesticide metolachlor was the only chemical that was detected 

at N-US and N-DS but not in N-EFF.

Greater numbers of chemicals were detected in stream C than stream N, with 85 and 79 

chemicals measured in water from the C-EFF and C-DS locations, respectively (Figure 2; 

Supplementary Table S2). Seventy chemicals were detected at both locations, indicating the 

effluent is a major contributor to the chemicals detected downstream (as one might expect 
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given that C-EFF constituted the headwater of stream C). Among the 46 analytes detected in 

water from stream N, there were only three which were not detected in water collected from 

either C-EFF or C-DS: phenanthrene, methotrexate, and bis(2-ethylhexyl) phthalate.

3.2. Bio-Effects Prediction using Knowledge Assembly Models

One of the main challenges associated with analytical monitoring of contaminants of 

emerging concern is inferring the types(s) of hazards that may be associated with chemical 

exposure at a site. Effects-based monitoring approaches can complement chemical 

monitoring, but there remains a question about what endpoint(s), biological pathway(s), 

taxa, etc. those effects-based approaches should focus on. Knowledge in the literature, 

summarized in a computationally accessible manner in on-line sources of chemical-gene 

interaction data, represents one potential source that can be mined to develop hypotheses to 

help focus subsequent effects-based monitoring (Schroeder et al., 2016).

In the present study, chemical-gene interaction networks developed from the KAM were 

used to hypothesize the types of biological responses (i.e., genes and pathways) that may 

occur in fish exposed at each location (i.e., addressing question 2 – what hazards may be 

associated with exposure to those contaminants). Note, these hypotheses were based only on 

consideration of the presence or absence of a given chemical, not consideration of its 

concentration relative to biological potency. Thus, this analysis should be considered a worst 

case hazard prediction, not a risk-based prediction. Further, the HYPs were neither species 

nor target tissue-specific. They considered all effects (chemical-gene interactions) reported 

in the CTD without regard to the species or target organ those effects were measured in. 

Consequently, the approach is meant to prioritize effects for further hypothesis-based 

testing, not for definitive prediction of outcomes nor predictive risk assessment.

Genes that could potentially be affected based on chemical-gene interactions from the CTD 

and the chemicals detected at the three stream N locations (Supplementary Table S3) were 

subjected to functional enrichment analyses (Supplementary Table S4). Considering 

enriched biological process gene ontology (GO) terms, there were six that were commonly 

enriched at all three stream N locations: translation, response to stress, transport, lipid 

metabolic process, carbohydrate metabolic process, and embryo development. Five of the 

terms do not directly translate into a well-defined endpoint for effects-based monitoring. 

However, embryo development does. Based on the results, one recommendation for follow-

up investigation may be to test water samples or extracts in a fish embryo development 

assay, to evaluate whether environmentally-relevant concentrations of the mixture of 

chemicals found at the stream N sites may adversely affect fish development. “Growth” was 

the only GO term common to N-EFF and N-DS. Consequently, another endpoint to target 

for follow-up investigation might be to compare growth of larval fish held in water from N-

US versus N-DS.

Considering the enriched KEGG pathways, there were 10 terms common to all N stream 

sites. Among those, steroid hormone biosynthesis, p53 signaling pathway, and glutathione 

metabolism suggest endpoints for future effects-based monitoring work. Measures of plasma 

steroid concentrations or ex vivo steroid production could be recommended as endpoints for 

future in situ exposures with fish, along with glutathione-related biomarkers. While p53 
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regulates cell cycle and is widely recognized for its function as a tumor suppressor, cancer is 

generally not a major endpoint of concern from an ecological risk assessment standpoint. 

Investigation of a tumor promotion effect may be of lesser interest, unless there was other 

anecdotal evidence suggesting tumor occurrence in native fish. Finally, considering the 

KEGG pathways common to N-EFF and N-DS, two-PPAR (peroxisome proliferator-

activated receptors) signaling pathway and VEGF (vascular endothelial growth factor) 

signaling pathway-are specific enough to suggest potential endpoints of interest. 

Examination of embryo development and growth would be relevant relative to a potential 

VEGF signaling effect, while follow-up with an in vitro assay designed to characterize 

PPAR-mediated potency may be an effective first step for considering the potential for 

PPAR-related effects. For example, there are over 10 commercially-available in vitro assays 

for PPAR-mediated activity that are currently employed in US EPA’s ToxCast program 

(actor.epa.gov/dashboard) that could be used to screen water or extracts from the N-DS or 

N-EFF locations.

In the case of stream C, despite the overall detection of more chemicals and a corresponding 

increase in the number of chemical-gene interactions represented in the site-specific KAMs, 

the number of enriched functional annotation terms was not markedly higher than for stream 

N (Supplementary Table S5). Most of the enriched biological process GO terms relate to 

fundamental cellular processes such as cell cycle and cell division, synthesis, process and 

transport of various classes of biomolecules (Supplementary Table S6), and thus do not 

readily suggest specific endpoints for monitoring. However, enrichment of the embryo 

development term suggests, once again, that testing of water samples or extracts in a fish 

embryo assay may be worthwhile. Relative to KEGG pathways, there was a single enriched 

term associated with both the C-EFF and C-DS sites, nucleotide excision repair 

(Supplementary Table S6). Impairment of nucleotide excision repair can result in the 

formation of bulky DNA adducts and may lead to increased mutation rates (Memisoglu and 

Samson, 2000). Consequently, measures of DNA damage in fish or other organisms exposed 

at the site would be a reasonable follow-up. However, it should be noted that even if altered 

gene expression associated with this pathway were to occur, it may not manifest as 

impairment of DNA repair. Rather it may simply signal adaptive activation of such repair 

pathways as organisms deal with the additional DNA damage associated with exposure to 

some of the contaminants present at the site.

While high accuracy should not be expected, knowledge captured in the CTD provided a 

reasonable basis for formulating testable hypotheses that could be used to focus further 

investigation. As the case study illustrates, annotation at the level of pathways and biological 

processes often does not reveal highly specific biological interpretations. For example, it is 

unclear what apical outcomes may be related to predicted effects on the ribosome pathway. 

Nevertheless, some of the pathway annotations provide adequate specificity to hypothesize 

apical effects and target further analyses. For example, the suggestion that steroid hormone 

biosynthesis would be affected in fish exposed in stream N, could guide efforts to quantify 

circulating steroid concentrations in fish from those sites and assess reproductive toxicity. 

Similarly, embryo development signatures at each site in streams N and C suggest that 

embryo toxicity testing may be warranted. As more biological process or KEGG pathway 

terms are linked to specific adverse outcomes (i.e., through development of adverse outcome 
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pathways; Ankley et al., 2010; Schroeder et al., 2016), developing testable hypotheses based 

on prior knowledge found in sources like CTD should become increasingly useful for 

predicting biological effects.

3.3. Unsupervised Biological Effects Surveillance Using Microarray-Based Gene 
Expression Profiling

The biological effects prediction approach described above employs analytical 

characterization of the chemicals present at a site, along with prior knowledge concerning 

reported chemical-gene interactions as a basis for hypothesis formulation. Although useful if 

chemical monitoring data are the only source available for characterizing a site, there are 

numerous limitations. For example, one can only infer effects for chemicals detected at the 

site. However, it is widely recognized that analytical monitoring approaches only detect a 

small fraction of the overall exposome (Tang et al.,2013). Likewise, even for the chemicals 

detected, the scope and scale of data curated into sources like the CTD is generally 

insufficient to tailor the hypotheses to the species, target tissues, concentration ranges, and 

routes of exposure relevant to a given field study. For example, in the present study when 

KAM building was limited to fish-specific data, the networks generated were too sparse to 

support useful hypothesis generation (not shown). Consequently, when resources and 

capacity allow, unsupervised biological effects surveillance approaches can be a very useful 

complement to the analytical chemistry and knowledge-driven biological effects prediction 

approaches (Ekman et al., 2013; Schroeder et al., 2016; Tang et al., 2013).

In the present study, the approach used for unsupervised biological effects surveillance was 

examination of hepatic transcriptome responses in fathead minnows exposed in situ. 

However, the use of a DNA microarray-based approach allowed for screening of effects on a 

broad range of biological pathways within the liver, a key organ that can serve as both a 

target site in terms of toxicity and as a site of detoxification with regard to xenobiotic 

metabolism. It should be noted that unlike CTD-based biological effects prediction or 

biological effects surveillance employing a battery of high throughput in vitro assays 

(Schroeder et al., 2016), hepatic transcriptome responses to in situ exposure are not 

necessarily specific to effects of chemicals. Other environmental variables such as water-

quality parameters, dietary influences, etc. also can influence biological response profiles. 

Although other environmental variables were controlled to the extent possible through the 

use of MMUs, it cannot be assumed that all transcriptional differences between fish exposed 

to control well water and stream water were driven by chemicals.

In the case of stream N, the total numbers of genes differentially expressed compared to well 

water-exposed controls ranged from 4369 for males exposed to water from N-US 

(Supplementary Table S7) to 3561 for those exposed to N-EFF (Supplementary Table S8), 

with N-DS showing an intermediate effect at 3918 differentially expressed genes 

(Supplementary Table S9). In terms of numbers of DEGs, the trend was opposite of what 

might have been predicted based on total numbers of contaminants detected at each site (4, 

45, 11 for N-US, N-EFF, and N-DS, respectively). Nearly 30% (1893) of the differentially-

expressed probes were common to the N-US, N-EFF, and N-DS exposed fish. This suggests 

that the handful of contaminants detected at all three stream N locations (e.g., atrazine, p-
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cresol, and/or cholesterol) were influencing the transcriptome response. However, it is 

plausible that non-contaminant-related differences between the well-water controls and N-

exposed fish and other contaminants not detected with the analytical techniques used were 

also contributing.

From a pathway analysis perspective, we were most interested in functional annotation terms 

associated with the genes enriched among those differentially expressed at the N-EFF and 

N-DS locations, but not N-US, because the effluent appeared to be a major source of 

contaminant introduction. No such enriched terms were observed (Figure 3; Supplementary 

Table S10). Therefore, there was not compelling evidence for an effluent contaminant-

related, pathway-specific, effect on the hepatic transcriptome. Genes annotated as playing a 

functional role in embryo development and lipid metabolic processes were enriched among 

those differentially expressed in males exposed at the N-US and N-DS, but not N-EFF site. 

This differed from the site-specificity of the pathway-effects predicted based on the KAM. 

However, considering that the pathway analysis did not differentiate up-regulation from 

down-regulation, embryo exposures would still represent a useful follow-up investigation. 

None of the other enriched terms associated with alterations in the hepatic transcriptome of 

fish exposed at the N sites helped define endpoints or outcomes to monitor in a whole 

organism.

For the two stream C locations, the total numbers of DEGs were similar to that determined 

for the N stream locations, despite detection of significantly more chemicals. Numbers of 

DEGs ranged from 2983 for males exposed at the C-EFF location (Supplementary Table 

S11) to 3286 for those exposed at the C-DS location (Supplementary Table S12). In terms of 

enriched functional annotations, seven enriched biological process GO terms were common 

to hepatic transcriptome response to C-EFF and C-DS, relative to the well-water control 

(Supplementary Table S13; Figure 3C). Similarly, five of the enriched KEGG pathway 

annotations overlapped for C-EFF and C-DS. However, the overlapping functional 

annotations referred to very general cellular processes and did not lend much insight or 

suggest endpoints for future monitoring.

These results illustrate one of the challenges associated with the use of transcriptomics in 

organisms exposed in situ for biological effects surveillance. Although a rich database of 

putative DEGs are identified, functional annotation terms often lack the specificity to 

interpret what the responses may mean in the whole organism. Whereas it is possible to 

develop a large number of hypotheses by delving into the lists of DEGs in detail, objective 

selection of targets to focus on can be problematic when there are thousands of options to 

choose from.

Phenotypic anchoring offers one potential solution. When transcriptome-related responses 

can be linked to observed phenotypic changes, there is increased confidence in their 

interpretation. However, in the present study there were no notable morphological or 

histological changes associated with in situ exposure at the N and C stream locations 

(Supplementary Table S14). The only significant difference among exposures was reduced 

body condition factor in the fish exposed to water from C-DS compared to the well-water 
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control. No effects on secondary sex characteristics, plasma vitellogenin, sperm, or liver 

histopathology were detected.

3.4. Identification of Chemicals Associated with Observed Transcriptomic Responses

The previous two analyses were based on location-specific chemical analyses alone or 

biological effects alone. However, when both analytical and biological effects data are 

available, KAM-based approaches can be used to statistically evaluate chemicals likely or 

unlikely to be causing the effects observed (i.e., addressing question 4 from the 

Introduction). This can be done using Reverse Causal Reasoning, which evaluates richness 

and concordance statistics for HYPs representing different chemical-biological interactions 

for each location (Table 1; Supplementary Tables S15, S16). For example, atrazine was 

detected at the N-US location. Based on the CTD, 303 RNAs were previously reported to be 

affected by atrazine exposure. Among those, 36 were identified as differentially expressed in 

the livers of fish exposed at the N-US location (Supplementary Figure S2). Twenty-three of 

those 36 DEGs showed a direction of change (up- or down-regulation) consistent with the 

state changes curated in CTD and subsequently represented in the KAM, providing 

significant richness and concordance of 1.01E-51 and 0.066, respectively (Table S15, 

Supporting Information). There were four HYPs with significant richness and concordance 

from the KAM for the N-EFF, including carbemazepine, metformin, thiabendazole, and 

diazepam (Table 1). The KAM for the N-DS location also identified four significant HYPs, 

including atrazine, carbemazepine, cholesterol, and p-cresol. The KAM for the C-EFF 

identified four significant HYPs (phenytoin, omeprazole, carbamazepine, erythromycin), 

whereas the KAM for the C-DS location identified five significant HYPs (17β-estradiol, 

cholesterol, cimetidine, erythromycin, and estrone; Table 1).

Among the chemicals detected at these locations, those with significant concordance and 

richness (p<0.1) of biological responses are arguably chemicals for which there is greater 

weight of evidence they may be directly contributing to responses in organisms exposed at 

the location. Although this does not mean with certainty that these chemicals are the cause 

of the responses observed, it does mean that based on existing knowledge, there is a 

quantifiable likelihood that these chemicals are contributors, which provides a basis for 

prioritizing them for further monitoring and/or investigation. The method still includes an 

inherent bias toward the detection of well-studied chemicals because they will have more 

documented HYPs upon which to base the concordance and richness calculations. 

Nonetheless, that bias is reflective of the current state of scientific knowledge and is similar 

to the bias an investigator may impose from simply reviewing available evidence in the 

literature. The real value in this statistical approach lies in the quantitative evaluation of the 

overall concordance with the existing literature. The approach utilizes weight-of-evidence 

for linking chemicals with observed biological response, and thus should have value for 

integrated environmental monitoring.

4. Conclusions

The current study highlights the potential of KAMs to systematically utilize existing 

knowledge of chemical-biological interactions to help address key questions concerning the 
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potential effects of chemical exposures in the environment. First, it illustrates how, in the 

absence of site-specific biological data, KAMs could be used to hypothesize biological 

effects that may be associated with chemicals detected at a field location. Second, it 

demonstrates how, when both chemistry and biological response data are available for a site, 

it is possible to use a KAM-based approach to evaluate involvement of specific chemicals in 

eliciting the observed biological responses.

Evaluation of chemicals detected at the five field locations along with knowledge concerning 

chemical-gene interactions curated in the CTD aided hypothesis formulation concerning 

possible biological effects, and associated identified assays or endpoints to potentially use in 

future location-specific monitoring. Specifically, follow-up investigations may want to 

examine effects on fish embryo development and larval growth. At a pathway-specific level, 

examination of steroid hormone concentrations and (or) production, as well as PPAR-related 

activity and glutathione status also may be useful. Direct analysis of the hepatic 

transcriptome responses following exposures to site water was not as fruitful for hypothesis 

formulation and endpoint selection, largely due to the rather broad and non-specific nature 

of many of the annotation terms identified via enrichment analyses and uncertainties as to 

whether the profiles were influenced primarily by chemical contaminants or other factors. 

Nonetheless, when the transcriptome data were analyzed in the context of the KAMs using 

reverse causal reasoning, a list of detected chemicals with some evidence to suggest they 

may be causing biological responses in fish caged at the site(s) were identified. Together 

these approaches identify a target set of both analytes and assays or endpoints to target in 

future studies. This type of hypothesis formulation represents an important step in initial 

environmental surveillance, which can be used to inform subsequent targeted investigation 

and monitoring (Ekman et al., 2013).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 –. 
Workflow diagram showing the construction of the knowledge assembly model (KAM) for 

location-specific hypothesis generation and biological effects prediction or statistical, 

weight-of-evidence, based approach for evaluating which chemicals are likely associated 

with empirical gene expression results based on richness and concordance in relation to prior 

knowledge. (Modified from 14,15).
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Figure 2 –. 
Hierarchical clustering (Euclidean distance, complete linkage) of upstream (UP), effluent 

(EFF), and downstream (DS) locations for the North Branch (Stream N) and effluent and 

downstream locations for the Chisago (Stream C) WWTPs based on chemical composition. 

Chemicals detected at each location are indicated in yellow and chemicals below the method 

detection limit are indicated in black.
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Figure 3 –. 
Venn diagrams showing the overlap in biological process (BP) gene ontology (GO) terms or 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation terms identified as 

enriched among the differentially expressed genes identified for the hepatic transcriptome at 

each site. [A.] Numbers of overlapping biological process GO terms for N stream sites. [B.] 

Numbers of overlapping KEGG pathway annotation terms for N stream sites. [C.] Number 

of overlapping biological process GO terms for C stream sites, along with identification of 

the overlapping terms.
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Table 1 —

Richness and concordance p-values for the significant HYPs (chemicals) identified at each location.

Site Location HYP (Chemical) Richness
P-Value

Concordance
P-Value

North Branch Upstream Atrazine 1.0E-51 0.066

North Branch Effluent Carbamazepine 1.7E-19 0.015

North Branch Effluent Metformin 3.9E-09 0.020

North Branch Effluent Thiabendazole 3.0E-07 0.031

North Branch Effluent Diazepam 0.0004 0.031

North Branch Downstream Cholesterol 3.1E-20 0.0009

North Branch Downstream Atrazine 3.6E-37 0.0063

North Branch Downstream Carbamazepine 1.8E-20 0.0064

North Branch Downstream p-Cresol 2.2E-07 0.027

Chisago Effluent Phenytoin 0.0057 0.0001

Chisago Effluent Omeprazole 2.6E-06 0.0078

Chisago Effluent Carbamazepine 4.5E-05 0.048

Chisago Effluent Erythromycin 0.0061 0.062

Chisago Downstream 17-beta Estradiol 0.0001 0.0088

Chisago Downstream Cholesterol 0.0029 0.011

Chisago Downstream Cimetidine 0.0009 0.015

Chisago Downstream Erythromycin 0.0033 0.062

Chisago Downstream Estrone 0.074 0.062
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