
Staphylococcus epidermidis small basic protein (Sbp) forms
amyloid fibrils, consistent with its function as a scaffolding
protein in biofilms
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Biofilms are communities of microbes embedded in a micro-
bial extracellular matrix. Their formation is considered the
main virulence mechanism enabling the opportunistic bacterial
pathogen Staphylococcus epidermidis to cause devastating nos-
ocomial, implant-associated infections. Biofilms often contain
proteins, and an 18-kDa protein called small basic protein (Sbp)
recently was discovered in the S. epidermidis biofilm matrix and
may serve as a scaffolding protein in both polysaccharide inter-
cellular adhesin (PIA)-dependent and accumulation-associated
protein (Aap)-dependent biofilm formations. In Aap-mediated
biofilm formation, Sbp colocalizes with Domain-B of Aap,
implying that Sbp directly interacts with Aap’s Domain-B. How-
ever, the structure of Sbp and its interaction with Aap, as well as
the molecular mechanism underlying Sbp’s roles in biofilm
formation, are incompletely understood. In this work, we used
small-angle X-ray scattering (SAXS), NMR, analytical size-ex-
clusion chromatography, and isothermal titration calorimetry
analyses to determine the Sbp structure and characterize its
interaction with Aap’s Domain-B. We found that Sbp is mono-
meric and partially folded in solution, and, unexpectedly,
we observed no direct interactions between Sbp and Aap
Domain-B. Instead, we noted that Sbp forms amyloid fibrils
both in vitro and in vivo. Atomic force, transmission electron,
and confocal fluorescence microscopy methods confirmed the
formation of Sbp amyloid fibrils and revealed their morphology.
Taken together, the Sbp amyloid fibril structures identified here
may account for Sbp’s role as a scaffolding protein in the S. epi-
dermidis biofilm matrix.

Previously regarded as an innocuous human commensal that
normally colonized the human skin and mucous membrane,
Staphylococcus epidermidis has emerged as a leading opportu-
nistic pathogen causing nosocomial infection associated with
permanent or intermittent indwelling medical devices (1, 2). In
contrast with its more virulent cousin Staphylococcus aureus,
which produces an abundance of toxins, adherence factors,
and cytolysins, the main virulence mechanism through which
S. epidermidis evade the host immune response relates to its
capability of adhering and forming biofilms on biotic and abi-
otic surfaces (3). Staphylococcal biofilms are adherent multilay-
ered communities of multicellular organisms embedded in self-
produced extracellular matrix that are functionally resistant to
antibiotics and components of the immune system (4). There-
fore, S. epidermidis–mediated infections are difficult to treat
and affect millions of patients worldwide annually, causing sig-
nificant morbidity and mortality and a high burden for the pub-
lic health system (5).

Biofilm formation is a complex, multifactorial process and
can be divided into at least three stages: initial attachment to
abiotic surfaces, protein-coated materials, and host cells; sub-
sequent cell proliferation and accumulation via cell– cell adhe-
sion leading to a mature biofilm; and finally detachment/
dispersal (4, 5). A variety of extracellular matrix components
involved in biofilm formation, including proteinaceous adher-
ence factors, polysaccharides, extracellular DNA, teichoic
acids, nucleases/proteases, and phenol-soluble modulin fac-
tors, have been extensively studies and recently reviewed (6, 7).
Although polycationic polysaccharide intercellular adhesin
(PIA),3 which is synthesized by the icaADBC operon that is
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widely distributed in clinical S. epidermidis isolates, has long
been identified as a major component of the biofilm matrix and
considered as the major intercellular adhesin in staphylococci
biofilm formation, not all strains of S. epidermidis carry the
icaADBC operon, and it is now clear that protein-based matri-
ces also have the ability to mediate biofilm accumulation and
cause infection in an ica-independent manner (6, 8). In S. epi-
dermidis, among these biofilm matrix proteins, is the well-stud-
ied accumulation-associated protein (Aap), which is a cell wall–
anchored, multidomain, multifunctional surface protein with
significant roles in biofilm formation (3, 4, 9). Aap consists of an
N-terminal Domain-A with a variable number of 16-aa repeats
located N terminally and a putative L-type lectin subdomain, a
C-terminal Domain-B composed of between 3 and 17 nearly
identical 128-aa B repeats terminating in a conserved “half-
repeat” motif. Domain-B in Aap is followed by a collagen-like
domain and an LPXTG cell wall anchor sequence. Each of these
B repeats is composed of two subdomains, G5 and E (10).
Recent structural studies revealed that the G5-E repeats can
undergo a Zn2�-dependent homophilic interaction, suggesting
that two identical Aap molecules expressed on the surface of
neighboring cells may interact with each other and promote
cell– cell accumulation during biofilm development (11, 12).
Besides Aap, specific homophilic interactions have been iden-
tified for SraP (13)-, IsdC (14)-, SasG (15)-, and SdrC (16)-
mediated biofilm accumulation; thus, homophilic interactions
appear to be a common mechanism by which the matrix pro-
teins promote biofilm formation. Clearly, understanding the
molecular mechanism of biofilm matrix proteins involved in
biofilm formation is key to combat the significant nosocomial
infectious diseases (3, 9).

There is increasing evidence showing that in some bacteria
one of the extracellular matrix components includes amyloid
fibers (17–19). Amyloids are highly organized protein aggre-
gates that form unbranched protein fibers composed of cross-
�-sheet quaternary structures, which have long been viewed as
pathological entities traditionally associated with several incur-
able neurodegenerative diseases, including Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease, and prion diseases
(20). Growing evidence, however, indicates that most proteins
can adopt the amyloid fold given the correct environment and
that some amyloids carry out nonpathological biological roles
and are known as functional amyloids (21, 22). Functional amy-
loids have been found in a wide range of organisms, from bac-
teria to mammals, with functions as diverse as biofilm forma-
tion, development of aerial structures, scaffolding, regulation of
melanin synthesis, epigenetic control of polyamines, and infor-
mation transfer (21). There is a limited but growing number of
examples, including the curli homolog in Salmonella (23), FapC
in many Pseudomonas species (24), TasA in Bacillus subtilis
(25), the phenol-soluble modulins (26) and the biofilm-associ-
ated surface protein (27) in Staphylococcus aureus, and the

adhesin protein P1 in Streptococcus mutans (28), found to be
able to form amyloid fibrils and that are implicated in biofilm
formation (29).

Recently, an 18-kDa extracellular protein called small basic
protein (Sbp) was identified in S. epidermidis biofilm matrix.
Sbp was implicated to serve as a scaffold protein to provide
support for cell– cell adhesion and aggregation for both PIA-
and Aap-mediated biofilm accumulation (30). Sbp has been
found to colocalize with Domain-B of Aap. Besides the proba-
ble direct Sbp–Aap Domain-B interactions involved in Aap-
mediated biofilm formation, Sbp could also have indirect
impact by recruiting additional and yet unknown factors for
biofilm formation (30). So far, little is known about the struc-
ture of Sbp and its interaction with Aap, and the precise molec-
ular mechanism underlying its roles in biofilm formation
remains largely unexplored.

Here, we report a detailed structural and biophysical charac-
terization of Sbp and its interaction with Aap Domain-B. Sbp is
monomeric and partially folded in solution, and unexpectedly,
no direct interactions were observed between Sbp and Aap
Domain-B under our in vitro experimental conditions. Instead,
we found that Sbp assembles into amyloid-like fibrils both in
vitro and in vivo. Biochemical, kinetic, and microscopy studies
indicate that these fibrils have characteristics of bacterial func-
tional amyloids (18, 31). We propose that amyloid fibril forma-
tion of Sbp is responsible for its role as a scaffold protein in
S. epidermidis biofilm formation.

Results

Sbp is monomeric and partially folded in solution

Previous bioinformatics analysis identified an N-terminal
export signal (aa 1–20) for Sbp (30). To study its structure and
interaction in vitro, a recombinant Sbp (rSbp; aa 21–169) with-
out its export signal was expressed in BL21(DE3) and purified
by affinity, ion-exchange, and size-exclusion chromatography.
The His6 tag was removed by tobacco etch virus (TEV) protease
cleavage. Purified rSbp eluted as a single peak in size-exclusion
chromatography (SEC) and was shown as a single band in SDS-
PAGE, indicting high homogeneity of the rSbp protein in solu-
tion (Fig. S1).

To study the overall conformation of rSbp in solution, we
performed small-angle X-ray scattering (SAXS) analysis. The
scattering profile, with scattering intensity I(q) plotted against
momentum transfer q, and pair distance distribution function
(PDDF) transformed from the scattering profile for rSbp are
shown in Fig. 1, A and B. The Guinier plot is linear in the
Guinier region (qmax � Rg � 1.3) of the scattering profile, indi-
cating that the rSbp is monodisperse and homogeneous in solu-
tion. The PDDF is asymmetric with maximum frequency at a
distance shorter than half of the maximum distance within the
molecule (Dmax), indicating that rSbp is rather open and elon-
gated in solution. The overall structural parameters, including
Rg calculated from Guinier slops, Rg and Dmax from PDDF func-
tions, and molecular weights derived from the power law of
volume-of-correlation (Vc) (32) and the SAXSMoW package
(33), are summarized in Table 1 where the molecular weights
from SAXS data are compared with the predicted molecular

cule; Vc, volume-of-correlation; HSQC, heteronuclear single quantum
coherence; IDP, intrinsically disordered protein; CR, Congo red; PFA, para-
formaldehyde; hiAPP, hormone islet amyloid polypeptide; PAP, prostatic
acid phosphatase; IPTG, isopropyl �-D-1-thiogalactopyranoside; GST, glu-
tathione S-transferase; I(0), forward scattering intensity; TSB, tryptic soy
broth.
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weight, indicating that rSbp is monomeric in our solution con-
dition. The dimensionless Kratky and Porod–Debye plots (Fig.
1, C and D), plotted as (qRg)2I(q)/I(0) versus qRg and as I(q)q4

versus q4, respectively, are useful methods to infer the folding,
compactness, and flexibility of biomolecules in solution (34).
For a compact globular protein, the Kratky plot has a typical bell
shape with a clear maximum. For a completely unfolded protein
or protein in a premolten globule conformation, no such max-
imum in the Kratky plot can be observed, and the curve displays
a plateau at elevated q. As shown in Fig. 1C, the dimensionless
Kratky plot of rSbp is found between these two extremes, indi-
cating that rSbp is a partially folded protein with some flexibil-
ity. This was further supported by the Porod–Debye plot (Fig.
1D), which shows a plateau for the protein lysozyme that is lost
for rSbp, suggesting increased flexibility of rSbp in solution.

The overall folding of rSbp was further assessed by 2D
1H-15N heteronuclear single quantum coherence (HSQC)
NMR spectra. For properly folded proteins of medium sizes
(smaller than 200 aa), peaks in the HSQC spectra are usually of
similar intensities and well-resolved, but for intrinsically disor-
dered proteins, peaks in HSQC are usually heavily overlapped.
As shown in Fig. 1E, HSQC of rSbp at 25 °C shows some well-
dispersed peaks with nonuniform intensities, but significant
overlap also exists between 8.0 and 8.8 ppm in the 1H dimen-
sion, indicative of unstructured domains (35), suggesting that
rSbp is only partially folded. Lowering the temperature to 15 °C
slightly improves the spectrum (Fig. 1F) such that some well-
resolved new peaks appear and the intensities of peaks become
more uniform. However, further lowering temperature to 5 °C
or increasing to 35 °C worsens the spectra (Fig. S2, A and B),
suggesting that rSbp has an optimal folding temperature
around 15–25 °C. In the spectra at 37 °C, those well-dispersed

peaks disappear possibly due to broadening exchange. The
majority of amide proton frequencies are clustered within an
area of 1 ppm (8.6 –7.6-ppm region) (Fig. S2B), characteristic of
intrinsically disordered proteins (IDPs) (35). Increasing the salt
concentration up to 400 mM does not improve the spectra sig-
nificantly; the central region is still heavily overlapped (Fig. S2,
C and D), preventing further high-resolution three-dimen-
sional (3D) structure determination of rSbp by NMR.

Determination of low-resolution model for Sbp

So far, no experimentally determined high-resolution or ho-
mologous 3D structural information is available for Sbp. We
therefore first predicted the secondary structure of Sbp (aa
1–169) using the PSIPRED web server (36), which reveals
extensive �-sheet regular secondary structure interspersed
with several �-helices for Sbp (Fig. 2). To verify the secondary
structure composition, a circular dichroism (CD) spectrum was
recorded for rSbp in solution. As shown in Fig. 3A, a minimum
at 200 nm and positive ellipticity below 192 nm were observed,
suggesting that �-sheets are predominant in Sbp along with
regions of low structural complexity. Based on the CD data, an
estimation of the secondary structure composition according
to Reed’s algorithm (37) is 13% �-helices, 45% �-sheets, and
31% random coil. The tertiary structure of rSbp was further
predicted using the I-TASSER web server, resulting in a com-
pact structure with three �-helices packed against a �-sheet
(Fig. 3B).

To gain more specific information on the overall 3D struc-
tures of rSbp, a low-resolution ab initio shape envelope was
built using the program DAMMIN and auxiliary programs.
This strategy models a macromolecule as an assembly of scat-
tering beads arranged in space such that a calculated scattering
curve reproduces the experimental curve. As shown in Fig. 3C,
the bead model has an elongated ellipsoidal shape, which is
much larger than the predicted compact atomic model, indicat-
ing that rSbp is much extended and open in solution.

No direct interaction between Sbp and Aap Domain-B in vitro

Previously, Sbp was found to be colocalized with Aap
Domain-B, suggesting that Sbp may interact with Aap
Domain-B directly (30). Domain-B of Aap is a Zn2�-binding
protein that can mediate intercellular adhesion through Zn2�-
dependent self-assembly (11, 12). Interestingly, a dose-depen-
dent increase in Sbp binding in the presence of elevated ZnCl2
concentration has also been observed for immobilized Aap
Domain-B in solid-phase binding assays (30). To validate and
characterize the interactions between Sbp and Aap Domain-B
on a biochemical level, a construct consisting of the terminal
intact B repeat along with the C-terminal G5 domain (called
Brpt1.5), which represents Aap Domain-B (11), was expressed
and purified. The interaction between Brpt1.5 and rSbp was
studied in the absence and presence of ZnCl2 using analytical
SEC (Fig. 4). Unexpectedly, no interactions between rSbp and

Figure 1. Folding and flexibility analysis of rSbp by SAXS and NMR. A and B, scattering profile (A) and PDDF (B) of Sbp. The inset in A is the Guinier region
with fitting line of the scattering profile. C and D, dimensionless Kratky plot (C) and Porod-Debye plot (D) of Sbp (black line) and the protein lysozyme (red line).
Lysozyme is a well-folded protein serving here as a reference. E and F, 2D 1H-15N HSQC of rSbp in 20 mM KiPO4, 100 mM KCl, pH 7.20, collected at 25 (E) and 15 °C
(F). Many peaks are clustered within the boxed central region. a.u., arbitrary units.

Table 1
Data collection and structural parameters derived from SAXS
experiments

a Rg derived from Guinier fitting.
b Rg derived from GNOM analysis.
c Molecular weight was calculated from the primary protein sequence.
d Molecular weight was calculated using the Rg/Vc power law developed by Rambo

and Tainer (32).
e Molecular weight was calculated using the web portal SAXSMoW.
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Brpt1.5 were observed either in the absence or presence of
Zn2�. As shown in Fig. 4A, both protein components in the
sample mixtures of Brpt1.5 and rSbp (with molar ratios of 1:2,
2:2, and 4:2, respectively) eluted at their respective retention
volumes as for each protein alone through the SuperdexTM 75
SEC column. The rSbp binding property of Brpt1.5 was further
verified using isothermal titration calorimetry (ITC). Again, as
shown in Fig. 4, B and C, rSbp does not bind with Brpt1.5 either
in the absence or presence of Zn2�.

Sbp forms amyloid fibrils in vitro

Because no direct interaction between rSbp and Aap
Domain-B was observed, Sbp may utilize a different modality to
contribute biofilm formation. Given its richness of �-sheet sec-
ondary structure and partial folding characteristic, we became
interested in its propensity to form amyloid fibrils. A variety of
bioinformatics tools have been developed to identify amyloido-
genic hot spots within proteins that are prone to aggregation
and may induce amyloid formation. The propensity of Sbp to

form amyloid fibrils was analyzed using AMYLPRED2 (38, 39),
which determines amyloidogenic regions based on the consen-
sus score of 11 such tools and thus provides a reliable estimate
of the amyloid propensity. Consensus short peptide segments
that might be responsible for amyloid fibril formation were pre-
dicted for Sbp (Fig. 2), suggesting that Sbp has high potential to
form amyloid fibrils.

The amyloidogenic nature of rSbp was first confirmed using
Congo red (CR) binding assays specific for amyloids (Fig. 5A).
In in vitro assays, fibrillization is routinely triggered by mechan-
ical agitation to increase the probability of the intermolecular
collisions necessary to form the initial nucleus. The binding of
CR to rSbp that had been agitated at 37 °C for 12 h was evalu-
ated. As shown in Fig. 5A, compared with CR alone, the spectra
of the agitated rSbp sample demonstrated dye binding and a
shift in the CR absorbance maxima that is characteristic of amy-
loid fibrils. We speculated that, under this condition, rSbp
assembled into an amyloid fibrillar state, hereafter named as
rSbpfib (as opposed to the native, soluble Sbpsol). Based on Fou-
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Figure 2. The primary sequence, predicted secondary structure, and amyloidogenic hot spot of Sbp. The secondary structure predicted by PSIPRED
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rier transform IR (FTIR) spectroscopy data, distinct structural
differences were observed between rSbpsol and rSbpfib (Fig. 5B).
The amide I region (1,600 –1,700 cm�1) reflects the vibrational
stretching of the amide backbone and is indicative of secondary
structure (40). The shift in the �-sheet peaks to lower wave-
number (from 1631 cm�1 in Sbpsol to 1624 cm�1 in Sbpfib) is
indicative of rearrangement of globular �-sheets to extended
�-sheets, which is consistent with a previous report of amyloid
fibrils (40).

The kinetics of Sbpfib formation was monitored by thioflavin
T (ThT) fluorescence at 37 °C. As shown in Fig. 6A, Sbpfib for-
mation follows a typical sigmoidal time profile, suggesting that
Sbpfib undergoes a nucleation-dependent polymerization pro-
cess characterized by an initial lag phase reflecting nucleation
and a subsequent elongation/growth phase culminating in a
steady plateau (20). We also performed time-resolved atomic
force microscopy (AFM) imaging of the system to ascertain that
rSbp forms amyloid fibrils. Starting from the homogeneous
solution of rSbp monomer, rSbp showed amorphous structure
at times 0 and 2 h; isolated protofilament or short fibers were
not seen until at 4 h. Upon progression of time, more and longer

fibers were formed, and fiber branching was observed at 8 h of
incubation (Fig. 6, B–E). The aspect ratio, which was defined as
the ratio of fibril length with respect to fibril diameter (41),
varies significantly for rSbp fibrils. As shown in Fig. 6E, the
diameter of the fibril by AFM is about 3 nm; the aspect ratio of
one short and long fibril can be about 84 –373. After 12 h of
incubation, rSbp formed a mature, intertwined fibril network
(Fig. 6F). The formation and morphology of rSbp fibrils
were further confirmed with transmission electron microscopy
(TEM) analysis of mature rSbp fibrils at 12, 24, and 48 h, respec-
tively (Fig. 6, G–I). The mature fibril structure usually exhibits a
width of about 5 nm and a length of 100 –5,000 nm.

Sbp undergoes further unfolding in lag phase of fibrillation

To characterize the structural changes of rSbp in lag phase,
we performed in situ SAXS measurement of the fibrillation
reaction of rSbp at 37 °C. The respective time-dependent scat-
tering profiles and the PDDFs are shown in Fig. 7, A and B. To
roughly evaluate changes in the profiles, apparent molecular
weights were calculated using the scattering profiles as input
by the SAXSMoW package, which reveals gradually increased
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molecular weight over time but that are still smaller than the
molecular weight of a dimer (Table S2), suggesting that the
monomeric rSbp dominates during the lag phase. The Dmax as
well as the dominant peaks in PDDFs shift to larger distances
over time, implying obvious structural changes, which were
supported by the Kratky plots (Fig. 7C). At the starting point
time, the Kratky plot of rSbp has a curving-down feature, suggest-
ing a partial folding structure; however, at a time of 2 h,
the Kratky plot has a clear plateau and continues to increase over
the q range 0.18–0.3 Å�1, reflecting the predominantly extended
conformation characteristic of unfolded rSbp. Therefore, rSbp
undergoes further unfolding during the lag phase of fibrillation.

Sbp forms intracellular amyloid aggregates in Escherichia coli
cells

It has been shown that amyloidogenic proteins from differ-
ent origins, when expressed in E. coli, are accumulated as

cytoplasmic inclusions of amyloid nature (42). To investigate
whether Sbp can form amyloid aggregates in vivo, E. coli cells
carrying pSbp plasmid were grown at 37 and 16 °C, respectively,
until early exponential phase was reached, and then the expres-
sion of Sbp was induced. At defined time points (i.e. 4, 8, and
12 h), aliquots of induced cells were sampled and fixed with 4%
PFA, stained with the probes BTA-1 and thioflavin S (ThS) that
specifically bind to amyloid aggregates, and visualized by con-
focal microscopy. As shown in Figure 8, a variable number of
inclusions were observed in cells grown at 37 °C at specific
induction time intervals that were recognized by both amyloi-
dophilic dyes as intense fluorescent foci. In contrast, cells
grown at 16 °C do not accumulate inclusions.

Sbp is essential for S. epidermidis biofilm formation

Following the observation of amyloid fibril formation of
overexpressed Sbp in E. coli at 37 °C, to test the relevance of Sbp
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amyloid fibrils to S. epidermidis biofilm formation, we knocked
out sbp in S. epidermidis 1457 using the Gateway system (Fig. 9,
A and B). S. epidermidis 1457 WT and 1457 �sbp were grown at
37 °C overnight, stained with ThS, and visualized by confocal
microscopy. As shown in Fig. 9C, S. epidermidis 1457 WT could
form a biofilm in which cells are clustered together showing
clear ThS fluorescent foci. In contrast, S. epidermidis 1457 �sbp
do not form biofilm: the cells were detached, and no fluorescent
foci were observed (Fig. 9D). The results support a close inter-
connection of Sbp amyloid fibril formation and S. epidermidis
biofilm formation in vivo.

Discussion

In this study, we provide a detailed structural characteriza-
tion of an extracellular protein called Sbp in S. epidermidis and
demonstrate its ability to form amyloid fibrils using different
biophysical techniques. CD, SAXS, and NMR analyses show
that Sbp is a �-sheet–rich protein adopting a monomeric and
partially folded structure at physiological condition. Alterna-
tively, Sbp can aggregate into amyloid fibrils, which was con-

firmed and characterized by fluorescence spectroscopy and
microscopy both in vitro and in vivo.

We initially attempted to determine the high-resolution
structure of Sbp using NMR. If well-folded, Sbp should be suit-
able for NMR study given its medium size. Both secondary and
tertiary structure predictions suggest that Sbp could be a well-
folded protein consisting of regular secondary structures. How-
ever, our NMR and SAXS studies indicate that Sbp is partially
folded at near physiological condition. At elevated temperature
(37 °C), Sbp shows characteristics of IDPs. This property may
relate to its high propensity to form amyloid fibrils at elevated
temperature in vitro, which seems relevant to S. epidermidis
biofilm formation in vivo. Many amyloidogenic proteins such
as �-synuclein, A�(1– 42), SOD1, and TDP-43, which are
involved in neurodegenerative diseases, are partially folded or
intrinsically disordered proteins that lack definite ordered 3D
structure (43). Structural flexibility and plasticity originating
from the lack of a definite ordered 3D structure are believed
to represent the major functional advantages for these proteins,
enabling them to interact with a broad range of binding part-
ners, including self-aggregation to form secondary structures
and subsequently fibers with other proteins, membranes,
nucleic acids, and various small molecules. One example is the
human hormone islet amyloid polypeptide (hIAPP), an IDP
that functions in glucose homeostasis (44). Monomeric hIAPP
is primarily, but not completely, unstructured. The interaction
of hIAPP with membrane promotes formation of secondary
structures that nucleate aggregation; this process in turn
induces membrane disruption via a two-step mechanism (44,
45). Sbp appears to be a partially unfolded protein with an
extended coil-like conformation. As our time-resolved SAXS
measurement shows, in the lag phase of fibrillation, Sbp under-
goes a further unfolding process, which may expose the amy-
loidogenic hot spot to form the nucleation sites leading to
polymerization.

It was proposed that Sbp fosters PIA- and Aap-mediated bio-
film accumulation by forming a biofilm scaffold instead of
directly inducing cell aggregation. Recently, Sbp was identified
by affinity purification from S. epidermidis crude biofilm
matrix preparations using recombinant Aap Domain-B as a
ligand, suggesting a direct Sbp–Aap Domain-B interaction (30).
However, the exact modalities of Sbp–Aap Domain-B interac-
tion remain unclear. It was reported that Aap Domain-B is a
zinc-binding protein and undergoes Zn2�-induced self-associ-
ation, suggesting the importance of Zn2� in Aap function. We
expressed and purified both Sbp and the Aap Domain-B con-
sisting of 1.5 G5 repeats and characterized the interactions
using SEC and ITC both in the absence and presence of
Zn2�. Unexpectedly, no obvious interaction of Sbp and Aap
Domain-B was observed in our condition. Given that Sbp can
adopt different folding states, either the partially folded mono-
mer or the amyloid fibril state, there is a possibility that the Sbp
monomeric state is not the active form. Notably, PAP(248 –
286), a peptide fragment of prostatic acid phosphatase, a pro-
tein abundant in human semen, is inactive in the monomeric
state and must first aggregate to form the active form, semen
enhancer of viral infection, with characteristics of amyloid
fibrils to promote viral infection. Bacterial amyloid proteins like
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curli can promote the aggregation of PAP(248 –286) into semen
enhancer of viral infection (46). It is of interest in future studies
to determine whether Sbp in crude biofilm matrix preparations
forms amyloid fibrils, therefore presenting the active form for
Aap Domain-B binding, or whether Aap Domain-B may inter-
act with Sbp by enhancing the aggregation of Sbp into func-
tional amyloid.

Sbp is the first structural S. epidermidis extracellular biofilm
matrix protein with significant relevance for both Aap- and
PIA-dependent biofilm formation. It is now recognized that
several staphylococcal surface proteins, including Aap, can

promote biofilm accumulation in a PIA-independent manner
through specific homophilic interactions between proteins
expressed on different cells (9). Recent studies have recognized
amyloid fibers as common functional components in bacterial
biofilm matrix. There is a growing number of examples dem-
onstrating the direct implication of amyloids in biofilm forma-
tion, including the phenol-soluble modulin and Bap protein
from Staphylococcus aureus (29). Bap is a large protein consist-
ing of multiple domains whose function is regulated post-trans-
lationally (47). It was found that Bap forms an amyloid scaffold
under acidic solution conditions to promote biofilm develop-

Figure 6. Kinetics of amyloid fibrillization of rSbp at 37 °C. A, kinetics of rSbp amyloid fibril formation was monitored by in situ measurement of ThT
fluorescence. B–F, kinetics of rSbp amyloid fibril formation probed by AFM. One short (green) and one long (red) fibril in E selected for aspect ratio analysis are
marked with arrows. The images are shown as height traces, and the scale bar corresponds to 500 nm. G-I, transmission electron micrographs of negatively
stained rSbp amyloid fibrils. Scale bars were set to 100 nm.
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ment (18). To our knowledge, Sbp is the first S. epidermidis
protein identified to have the propensity to assemble into amy-
loids at near physiological conditions both in vitro and in vivo.
We propose that the formation of functional amyloid fibrils by
Sbp may account for its role as a scaffolding protein in S. epi-
dermidis biofilm formation. Amyloid formation may represent
another common mechanism in protein-mediated cell– cell
accumulation. We expect more such proteins to be identified.

Taken together, we report that Sbp has an intrinsic amyloid-
forming ability. This is the first report about a functional amy-
loid in S. epidermidis. The well-organized Sbp amyloid fibers
may be involved in both PIA- and Aap-mediated biofilm forma-
tion as a matrix component.

Experimental procedures

Protein expression and purification

The genomic DNA of S. epidermidis 1457 was extracted for
gene cloning using the EasyPure Bacteria Genomic DNA kit
(TransGen Biotech). The DNA fragments encoding rSbp (aa
21–169) and Brpt1.5 were amplified from the genomic DNA by
PCR using the appropriate primers (Table S1). The PCR prod-
ucts were then subcloned into pET28a (for rSbp) and pGEX-
4T-2 (for Brpt1.5), respectively. The positive clones were con-
firmed by DNA sequencing and subsequently transformed into
E. coli BL21(DE3).

For purification of rSbp, cells were grown in LB culture
medium at 37 °C until A600 nm reached �0.8. Expression of the
rSbp recombinant protein was induced with 0.5 mM isopropyl
�-D-1-thiogalactopyranoside (IPTG) at 16 °C for another 20 h
before harvesting. Bacteria were collected by centrifugation at
4,500 � g for 30 min. The cell pellet was suspended in lysis
buffer (20 mM Tris-HCl, pH 7.4, 500 mM NaCl) and then
homogenized by a high-pressure cell disruptor system. After
centrifugation at 18,500 � g for 30 min, the supernatant con-
taining the His-tagged protein was collected and loaded onto a
nickel-nitrilotriacetic acid affinity resin that was pre-equili-
brated with binding buffer (20 mM Tris-HCl, pH 7.4, 500 mM

NaCl). The resin was extensively washed by two different buf-
fers (20 mM Tris-HCl, pH 7.4, 1 M NaCl, 20 mM imidazole and
20 mM Tris-HCl, pH 7.4, 200 mM NaCl, 20 mM imidazole)
sequentially to remove nucleic acid contamination. The Sbp
protein was then eluted with 20 mM Tris-HCl, pH 7.4, 200 mM

NaCl, 250 mM imidazole. The protein fractions were mixed and
digested by TEV protease to remove the His tag. Next, the pro-
tein was further purified using an ion-exchange HiTrap S col-
umn and a HiLoad16/600 Superdex 75 PG column pre-equili-
brated with gel filtration buffer (20 mM Tris-HCl, pH 7.4, 100
mM NaCl, 1 mM DTT). The final sample purity was checked by
SDS-PAGE and MS (MALDI-TOF).

For purification of Brpt1.5, cells were grown in LB culture
medium supplemented with 100 �g/ml ampicillin at 37 °C until
A600 nm reached 0.8. Expression of Brpt1.5 was induced with 0.5
mM IPTG at 37 °C for 5 h. The cells were harvested, suspended,
and lysed using a similar protocol as described above. After
centrifugation at 18,500 � g for 30 min, the supernatant was
loaded onto a GST column. The resin was extensively washed
with binding buffer. The target protein was eluted with 20 mM

Tris-HCl, pH 7.4, 200 mM NaCl, 25 mM GSH. The GST tag was
removed with TEV protease treatment. After cleavage, the pro-
tein was loaded onto a GST column to remove uncleaved
protein and the free cleaved GST tag. The flow-through was
collected, concentrated, and injected onto a HiLoad16/600
Superdex 75 PG column pre-equilibrated with gel filtration
buffer. The final sample purity was checked by SDS-PAGE.
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Structural analysis by small angle X-ray scattering

Conventional and in situ time-resolved SAXS measurements
were carried out at room temperature and 37 °C, respectively,
at beamline 12 ID-B of the Advanced Photon Source, Argonne
National Laboratory, equipped with a temperature controller.
The scattered X-ray photons were recorded with a PILATUS
1M detector (Dectris). The setups were adjusted to achieve
scattering q values of 0.005 � q � 0.89 Å�1 where q 	 (4�/
�)sin� and 2� is the scattering angle. Thirty two-dimensional
images were recorded for each buffer or sample solution using a
flow cell with an exposure time of 0.5–2 s to minimize radiation
damage and obtain good signal-to-noise ratio. No radiation
damage was observed as confirmed by the absence of system-
atic signal changes in sequentially collected X-ray scattering
images. The 2D images were reduced to one-dimensional scat-
tering profiles using Matlab scripts on site. Scattering profiles of
the protein were calculated by subtracting the background

buffer contribution from the sample buffer profile using the
program PRIMUS (48) following standard procedures (49).
Concentration series measurements (4- and 2-fold dilution and
stock solutions) for the same sample were carried out to remove
the scattering contribution due to interparticle interactions and
to extrapolate the data to infinite dilution. The forward scatter-
ing intensity I(0) and the radius of gyration (Rg) were calculated
from the data of infinite dilution at low q values in the range of
qRg � 1.3 using the Guinier approximation: lnI(q) 
 ln(I(0)) �
Rg

2q2/3. These parameters were also estimated from the scat-
tering profile with a broader q range of 0.006 – 0.30 Å�1 using
the indirect Fourier transform method implemented in the pro-
gram GNOM (50) along with the PDDF, p(r), and Dmax. The
parameter Dmax (the upper end of distance r) was chosen so that
the resulting PDDF has a short, near-zero-value tail to avoid
underestimation of the molecular dimension and consequent
distortion in low-resolution structural reconstruction. The Vc

Figure 8. Formation of intracellular amyloid inclusions in E. coli cells expressing rSbp at 16 and 37 °C, respectively. Cells sampled after 4, 8, and 12 h of
induction, respectively, were fixed with PFA, then stained with either BTA-1 or ThS, and visualized by confocal microscopy. BF, bright field. Scale bar, 1 �m.
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values were calculated using the program Scatter, and the
molecular weights of solutes were calculated on a relative scale
using the Rg/Vc power law developed by Rambo and Tainer (32),
independent of protein concentration and with minimal user
bias.

Low-resolution ab initio bead models were built up with the
program DAMMIN, which generates models represented by an
ensemble of densely packed beads (51), using scattering data
within the q range of 0.006 – 0.30 Å�1. Thirty-two independent
runs were performed, and the resulting models were subjected
to averaging by DAMAVER (52), superimposed by SUPCOMB
(53) based on the normalized spatial discrepancy (NSD) crite-
ria, and filtered using DAMFILT to generate the final model.
NSD is a measure of quantitative similarity between sets of
three-dimensional models: if two models systematically differ
from each other, their NSD exceeds 1; for identical objects,
it is 0.

NMR spectroscopy

A similar preparation protocol as above was followed to
prepare 13C,15N-labeled rSbp except that cells were grown
and induced in M9 minimal medium with 15NH4Cl and
[13C6]glucose as the sole nitrogen and carbon sources, respec-
tively. The samples used for NMR experiment were as follows:
0.5 mM 13C,15N-labeled-rSbp in 90% H2O, 10% D2O containing
20 mM K2HPO4/NaH2PO4, 100 mM NaCl, 50 �M NaN3, pH
7.20, and additives. 2D 1H-15N HSQC spectra were recorded on
Bruker Avance 600- or 800-MHz spectrometer at variable tem-
perature, all equipped with four radio frequency channels and a
triple-resonance cryoprobe with pulsed field gradients. Each
spectrum comprised 1,024 complex points in the t2 dimension
and 160 complex points in the t1 dimension. All spectra were
processed using the software package NMRPipe (54) and ana-
lyzed with NMRView (55).

Figure 9. Sbp amyloid fibrils and S. epidermidis biofilm formation in vivo. A, strategy of allele replacement for construction of S. epidermidis 1457 mutant
in which sbp gene was knocked out (KO) using the Gateway system. B, the mutant was verified with PCR analysis on the 1457 WT and 1457 �sbp. S. epidermidis
1457 WT (C) and 1457 �sbp (D) cells were grown overnight at 37 °C, stained with ThS, and visualized by confocal microscopy (right, bright field image; middle,
ThS fluorescence; left, merged).
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CD spectroscopy

The secondary structure of rSbp in solution was checked by
CD on an Applied Photophysics Chirascan-plus (Leatherhead)
controlled by Pro-Data Chirascan v4 software. Far-UV CD
spectra were recorded between 190 and 260 nm with a step
resolution of 1 nm, a slit width of 0.6 nm, and an integration
time of 5 s. Acquisition was performed at 25 °C using a 0.2-mm-
path length cuvette with a protein concentration of �0.3
mg/ml. The spectra were averaged over three scans and cor-
rected by subtraction of the buffer signal.

Secondary and tertiary structure prediction

The secondary structure of Sbp was predicted using the
PSIPRED web server (36). The tertiary structure of Sbp was
predicted using the I-TASSER online server (56).

Analytical size-exclusion chromatography

Samples of Sbp alone, Brpt1.5 alone, and the mixture of Sbp
and Brpt1.5 with molar ratios of 1:1 and 2:1 were injected onto
a Superdex 75 10/300 GL column (24.0 ml; GE Healthcare)
pre-equilibrated with binding buffer (20 mM Tris-HCl, pH 7.4,
100 mM NaCl, 1 mM DTT or 20 mM Tris-HCl, pH 7.4, 100 mM

NaCl, 1 mM DTT, 1 mM ZnCl2), respectively. Concentrations of
Brpt1.5 protein were kept constant at 30 �M.

Isothermal titration calorimetry

Purified Sbp and Brpt1.5 samples were extensively exchanged
into buffer (20 mM Tris-HCl, pH 7.4, 100 mM NaCl, 1 mM DTT
or 20 mM Tris-HCl, pH 7.4, 100 mM NaCl, 1 mM DTT, 1 mM

ZnCl2, respectively) using a Superdex 75 10/300 GL column
and then concentrated to 30 �M for Brpt1.5 and 300 �M for Sbp.
The ITC measurements were performed with a MicroCal iTC
200 calorimeter (GE Healthcare) at 25 °C. The background data
obtained from the buffer sample were subtracted before the
data analysis. The data were fitted using the Origin7 software
package (MicroCal). Measurements were repeated twice, and
similar results were obtained.

In vitro amyloid fibril formation

For amyloid fibril formation, rSbp at a concentration of 250
�M in 20 mM Tris-HCl, pH 7.2, containing varied concentra-
tions of NaCl and 0.01% sodium azide was incubated at 37 °C
with rotary agitation at 220 rpm. The rSbp solution after salt-
induced fibrillation was subjected to CR assay, FTIR character-
ization, ThT fluorescence assay, AFM, and TEM characteriza-
tion at certain time points.

CR assay

The assay was performed with an Implen UV-visible nano-
photometer (München, Germany). The concentration of CR
solution was 5 �M. The buffer was 10 mM phosphate saline
buffer, pH 7.4. The assay was performed ex situ. 20 �l of rSbp
solution was added into 980 �l of CR solution in a 1.0-cm quartz
cuvette. The solution was incubated in the dark for 30 min. The
solution in the cuvette was shaken first before each spectral
acquisition.

FTIR spectroscopy

The FTIR spectra were recorded using a Bruker Vertex
70 FTIR spectrometer equipped with a DLaTGS detector. A
Bruker-made sample shuttle was installed inside the sample
compartment, which has two sample holders: one for sample
and the other for reference. The FTIR spectra of the samples
were collected with 4 cm�1 resolution and 32 scans. 100 �l of
solution was deposited onto the CaF2 windows, and then the
CaF2 window surface was dried with a dryer.

ThT binding assay

The ThT binding assay was performed with a Hitachi F-7000
fluorescence spectrophotometer (Tokyo, Japan). An excitation
wavelength of 450 nm with a slit width of 5 nm was used. The
emission spectrum in the region of 460 – 600 nm was measured
using a slit width of 10 nm. The concentration of ThT solution
was 10 �M. The buffer was 20 mM Tris-HCl, 100 mM NaCl, pH
7.2. The assay was performed ex situ. For each measurement, 1
�l of rSbp solution was added into 1 ml of ThT solution in a
1.0-cm quartz cuvette. The solution in the cuvette was shaken
first before each spectral acquisition.

Atomic force microscopy

Time-dependent morphological changes during rSbp aggre-
gation were measured using an atomic force microscope (SPM
P47 Solver, NT-MDT Co., Zelenograd, Russia) in tapping
mode. At regular time intervals during aggregation, small ali-
quots of the incubated rSbp samples were taken out and diluted
with deionized water to a final concentration of 40 �M. A 50-�l
aliquot of the diluted solution was deposited onto a freshly
cleaved mica surface followed by incubation at room tempera-
ture for 5 min. Washing steps were carried out twice with
deionized water to remove unbound proteins/aggregates fol-
lowed by drying in a desiccator. All AFM images were taken on
dried samples in air, and 5 � 5 �m scanning was used through-
out the AFM experiment.

Transmission electron microscopy

The formation and morphology of amyloid fibrils by Sbp
were confirmed by negatively staining samples. rSbp fibrils
were diluted to 0.5 mg/ml, and 3 �l of sample was directly
deposited onto a glow-discharged 300 mesh carbon-coated
copper grid (BZ10023a, Zhongjingkeyi, China) followed by
staining with 2% (w/v) uranyl acetate and blotted dry with filter
paper three times. The stained samples were imaged using a
Tecnai Spirit with iCorr D1319 (FEI) operating at 120 kV at a
magnification of �52,000.

Knockout of Sbp by Gateway system in S. epidermidis 1457

An allele replacement strategy was used for construction
of a specific Sbp knockout mutant in S. epidermidis 1457 as
reported previously (30). Briefly, two primers flanking regions
upstream (sbp_ko_att, 5�GGGGACAAGTTTGTACAAAA-
AAGCAGGCTTATATCCTGTCGTACTCGTG-3� and sbp_
eco_r, 5�-ACCGCCGAATTCTCACTCCTTTGATTCTTTA-
TGTCTTCTG-3�) and reverse primers covering downstream
regions (sbp_ko_eco, 5�-ACCGCCGAATTCAAAGATAAAA-
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ATGTGAAGTTATATCGTA-3� and sbp_att_r, 5�-GGGGA-
CCACTTTGTACAAGAAAGCTGGGTAGTACGTGCAGA-
TAAACGT-3�) of the Sbp-coding region were amplified fol-
lowing a standard PCR protocol. Purified PCR products were
cleaved using EcoRI, and the resulting, sbp-flanking fragments
were ligated with T4 DNA ligase. The 5� and 3� attB site ligation
products were introduced into pKOR1 using BP clones (Invit-
rogen, Karlsruhe, Germany) and transformed into E. coli
DC10B. Recombinant plasmid pKOR1�sbp was verified by
PCR and DNA sequencing.

For electrocompetent cells, S. epidermidis 1457 were grown
in tryptic soy agar medium until A600 nm reached 0.8. Cells were
harvested and washed three times with double-distilled H2O by
centrifugation at 3,000 � g for 10 min at room temperature.
Cells were resuspended and washed with 2 ml of 2% glycerol
twice and finally resuspended with 10% glycerol. Electropora-
tion was performed using a Bio-Rad Gene Pulser and Pulse
Controller using a standard protocol (57). Briefly, 10 �g of
pKOR1 was added into 50 �l of competent cells and incubated
on ice for 30 min before transfer to a prechilled 0.2-cm-gap
electroporation cuvette. The cells were immediately pulsed
with 2.1-kV voltage and diluted in 800 �l of B2 culture medium
followed by shaking at 30 °C for 3 h. Transformation products
were plated on a TSBKan plate and grown at 37 °C for 48 h.
Clones verified correct by PCR were transferred into 3 ml of
TSBcm10 medium at 30 °C overnight followed by dilution at a
1:100 volume ratio into 50 ml of TSBcm10 medium and shaking
at 42 °C overnight. Cells were diluted at a 1:100 volume ratio
into 5 ml of TSBcm5 medium and shaken at 42 ° overnight, twice
followed by plating on a TSBcm5 plate, and then incubated at 2 °
overnight. Single clones were picked into 5 ml of TSB medium
and shaken at 30 °C overnight. Cell were diluted 1:10,000,
plated on a TSBATc plate, and grown at 37 °C overnight. Ten
clones were picked and inoculated into both a TSB plate and a
TSBcm10 plate. Three clones that only grew on the TSB plate
were picked, and genomic DNA was extracted for PCR verifi-
cation and sequencing.

Cell fixation and staining for confocal microscopy

Cells were grown at 37 or 16 °C with shaking at 220 rpm until
A600 nm reached 0.8 and then induced with 0.5 mM IPTG for
another 12 h. At regular time intervals, 500 �l of cell cultures
was sampled and centrifuged at 3,000 � g for 4 min at room
temperature, and the pellets were washed twice with the same
volume of PBS buffer for the following fixation and staining
steps. For BTA-1 staining, the washed cells were resuspended
in 250 �l of 4% PFA, incubated for 30 min at room temperature,
then washed twice with 250 �l of PBS buffer, resuspended in 1
mM BTA-1 prepared in 100% ethanol, and incubated for 30 min
at room temperature. Finally, the stained cells were washed
twice with PBS again. For ThS staining, the washed cells were
suspended in 250 �l of 0.05% (w/v) ThS in 12.5% ethanol,
incubated for 1 h at room temperature, and then washed
three times with 250 �l of PBS buffer. Stained cells were
suspended in the appropriate volume of PBS buffer and
observed under confocal microscopy.

Confocal microscopy

Microscopy observations were performed using an LSM 780
(Zeiss) inversion confocal microscope with a 63�/numerical
aperture 1.40 oil immersion objective. BTA-1 fluorescence was
excited with a 405-nm laser diode, and the emission was regis-
tered between 410 and 495 nm. ThS fluorescence was excited
using a 488-nm argon laser, and the emission was registered in
a range from 493 to 630 nm.

Structural illustration

All of the structural illustrations were generated using the
PyMOL Molecular Graphics System, version 1.3 (Schrödinger,
LLC).
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