Skip to main content
. 2018 Sep 5;5(4):ENEURO.0051-18.2018. doi: 10.1523/ENEURO.0051-18.2018

Table 1.

Statistical table.

Data structure Type of test Statistic and p value
a Normal distribution 2-way ANOVA; Tukey–Kramer test F(11,168) = 14.84, p < 0.001; p < 0.001
b Normal distribution 2-way ANOVA; Tukey–Kramer test F(11,72) = 4.02, p < 0.001; p = 0.87
c Normal distribution 2-way ANOVA; Tukey–Kramer test F(11,72) = 10.77, p < 0.001; p < 0.001
d Normal distribution 2-way ANOVA; Tukey–Kramer test F(11,72) = 13.13, p < 0.001; p < 0.001, p = 0.35
e Normal distribution 2-way ANOVA; Tukey–Kramer test F(11,72) = 2.69, p = 0.005; p = 1, p = 0.96
f Normal distribution 2-way ANOVA; Tukey–Kramer test F(11,72) = 7.23, p < 0.001; p = 1, p < 0.001
g Normal distribution 2-way ANOVA; Tukey–Kramer test F(11,132) = 14.62, p = 0; p < 0.001, p = 0.15
h Normal distribution 2-way ANOVA; Tukey–Kramer test F(11,120) = 12.58, p = 0; p < 0.001, p = 0.1
i Nonnormal distribution Wilcoxon rank-sum test z = –4.099, p = 4.1 × 10–5
j Nonnormal distribution Wilcoxon rank-sum test z = –3.187, p = 0.0014
K Normal distribution t test t(579) = 5.64, p < 0.001
l Normal distribution t test t(395) = 3.35, p = 9 × 10–4
m Normal distribution t test t(750) = 0.75, p = 0.45
n Normal distribution t test t(408) = 0.64, p = 0.52
o Normal distribution t test t(383) = 2.55, p = 0.011
p Nonnormal distribution Wilcoxon rank-sum test z = –4.4, p = 1.1 × 10–5
q Nonnormal distribution Wilcoxon rank-sum test z = ×2.46, p = 0.013
r Normal distribution t test t(720) = 5.29, p < 0.001
s Normal distribution t test t(345) = 2.1, p = 0.03
t Normal distribution t test t(690) = 0.86, p = 0.39
u Normal distribution t test t(308) = 0.08, p = 0.94
v Normal distribution t test t(18) = 2.32, p = 0.032
w Normal distribution 2-way ANOVA; Tukey–Kramer test F(11,72) = 13.42, p < 0.001; p = 0.018
x Normal distribution 2-way ANOVA; Tukey–Kramer test F(11,72) = 6.57, p < 0.001; p = 0.004, p = 0.41
y Normal distribution t test t(6) = 5.02, p = 0.002
z Normal distribution 2-way ANOVA; Tukey–Kramer test F(11,72) = 6.68, p < 0.001; p = 0.01
ab Normal distribution 2-way ANOVA; Tukey–Kramer test F(11,72) = 1.41, p = 0.18
ac Normal distribution 2-way ANOVA; Tukey–Kramer test F(11,72) = 5.42, p < 0.001; p = 0.022
ad Normal distribution t test t(6) = 2.53, p = 0.04
ae Normal distribution t test t(6) = 3.66, p = 0.01
af Nonnormal distribution Kruskal–Wallis test; Tukey–Kramer post hoc test H(4) = 14.52, p = 0.0058; p = 0.52, p = 0.011, p = 0.96, p = 0.97
ag Nonnormal distribution Kruskal–Wallis test; Tukey–Kramer post hoc test H(4) = 83.97, p < 0.0001; p < 0.0001, p < 0.001, p = 0.96, p = 0.003
ah Nonnormal distribution Kruskal–Wallis test; Tukey–Kramer post hoc test H(4) = 13, p = 0.011; p = 0.82, p = 0.005, p = 0.99, p = 0.99
ai Nonnormal distribution Kruskal–Wallis test; Tukey–Kramer post hoc test H(4) = 17.24, p = 0.0017; p = 0.48, p = 0.04, p = 0.004, p = 0.8, p = 0.99
aj Nonnormal distribution Kruskal–Wallis test; Tukey–Kramer post hoc test H(4) = 22.06, p < 0.001; p = 0.004, p = 0.039, p = 0.99, p = 0.85