
Size and topology modulate the effects of frustration
in protein folding
Alex Klubera,b, Timothy A. Burta,c, and Cecilia Clementia,b,1

aCenter for Theoretical Biological Physics, Rice University, Houston, TX 77005; bDepartment of Chemistry, Rice University, Houston, TX 77005;
and cDepartment of Physics, University of Houston, Houston, TX 77004

Edited by Susan Marqusee, University of California, Berkeley, CA, and approved August 1, 2018 (received for review January 24, 2018)

The presence of conflicting interactions, or frustration, determines
how fast biomolecules can explore their configurational land-
scapes. Recent experiments have provided cases of systems with
slow reconfiguration dynamics, perhaps arising from frustration.
While it is well known that protein folding speed and mechanism
are strongly affected by the protein native structure, it is still
unknown how the response to frustration is modulated by the
protein topology. We explore the effects of nonnative interactions
in the reconfigurational and folding dynamics of proteins with dif-
ferent sizes and topologies. We find that structural correlations
related to the folded state size and topology play an important
role in determining the folding kinetics of proteins that otherwise
have the same amount of nonnative interactions. In particular, we
find that the reconfiguration dynamics of α-helical proteins are
more susceptible to frustration than β-sheet proteins of the same
size. Our results may explain recent experimental findings and
suggest that attempts to measure the degree of frustration due
to nonnative interactions might be more successful with α-helical
proteins.
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Protein folding has become an exemplar problem for the
study of conformational changes in biomolecules. During the

past couple of decades, significant theoretical (1) and compu-
tational (2) advances have shown that, even though the fold-
ing of a protein involves the complex and coordinated motion
of many atoms, it can often be described by relatively sim-
ple models (3, 4). In general, the number of collective vari-
ables needed to describe large macromolecular rearrangements
depends on the separation between fast and slow relaxation
timescales, and the complexity of these systems often requires
the use of computational methods to extract the relaxation
timescales from simulation and understand their correspond-
ing structural processes (5). However, energy landscape theory
has shown that, under general physical assumptions (6), protein
folding can be described as the slow equilibration between the
folded and unfolded free energy basins while neglecting the fast
relaxations.

The principle of minimal frustration, a central tenet of energy
landscape theory, posits that evolution has crafted protein inter-
actions to stabilize the native state while destabilizing competing
misfolded states (6). This picture has inspired “structure-based”
coarse-grain models where the energy landscape is funneled
toward the native state by design, by including the native struc-
tural geometry in the construction of the model and by discarding
potentially conflicting “nonnative” interactions (7). These mod-
els have had success illuminating how folding rates, folding
mechanisms, and functional motions depend on native topol-
ogy (8, 9). However, proteins with the same native structure
can still have starkly different folding behavior (10), suggesting
that sequence-specific effects are necessary for a more complete
picture.

While the principle of minimal frustration has become a cen-
tral paradigm for molecular biophysics, recent single-molecule
experiments on several aggregation-prone proteins, such as the

prion protein (PrP) (11) and the intrinsically disordered protein
α-synuclein (12), have provided examples where frustration may
be significant. In particular, a careful analysis of the extension
statistics from force spectroscopy has revealed multiple “off-
pathway” misfolded states in monomeric PrP (11) and several
marginally stable states in monomeric α-synuclein (12). These
proteins provide concrete examples where nonnative interac-
tions may be an important source of frustration. While some
progress has been made in understanding the role of nonna-
tive interactions in specific cases (e.g., ref. 13), it has been
unclear if there are more general conclusions to be made.
Experimental evidence has shown that the effect of nonnative
interactions varies between different proteins and experimental
conditions. For example, studies have found that the unfolded
state tends to collapse in a protein-specific manner at low con-
centrations of denaturant (14) or high concentrations of salt (15),
with more collapsed states showing slower rates of folding or
reconfiguration.

As an attempt to garner general principles, we investigate
the effect of nonnative interactions on the (mis)folding of pro-
teins with different topologies. We show that rates of folding
and reconfiguration depend on the strength of nonnative inter-
actions in a protein-specific way. In particular, we find that
α-helical proteins have more compact misfolded ensembles than
β-sheet proteins of a comparable size and, consequently, have
slower reconfiguration dynamics. We further connect these dif-
ferences to the underlying energy landscape. Our results provide
some general insight into the role of frustration in protein
(mis)folding and why some proteins appear more frustrated than
others.

Results
Nonnative Heterogeneity and Folding Dynamics. The role of nonna-
tive interactions can be quantified in terms of a simple diffusional
model of folding. If folding is much slower than forming nonna-
tive structure, the dynamics can be modeled as diffusion along
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a one-dimensional reaction coordinate (16, 17) with the folding
rate given by Kramers theory (18):

kf = k0e
−∆G†

kBT , [1]

where kBT is the thermal energy, ∆G† is free energy bar-
rier to folding, and k0 is the rate prefactor. The prefactor
describes the elementary rate of conformational change (19), and
it is sensitive to the structure of the energy landscape. Accord-
ing to the diffusion model, the prefactor k0 in Eq. 1 is given
by ref. 18:

k0 =
βD
√
κuκb

2π
, [2]

where κu (κb) is the curvature of the unfolded well (transition
barrier) along the free energy profile, β= 1

kBT
, and D is the

diffusion coefficient. Theory predicts that frustration increases
energy fluctuations on the folding landscape, ∆E , and that aver-
aging over these fluctuations gives the diffusion coefficient D a
strong temperature dependence, D ∝ exp(−(∆E/kBT )2) (16).
The diffusion model has been fruitfully applied to simulations
(20) and to extract D from experiments (21, 22). Interestingly,
experiments on several aggregation-prone proteins, such as the
PrP (11, 23), the intrinsically disordered protein α-synuclein
(12), and the engineered protein α3D (21), have found dif-
fusion coefficients much smaller than other globular proteins,
indicating that these proteins may have frustrated landscapes.
Connecting measurements of D to properties of the energy land-
scape (∆E ) can help illuminate the degree of frustration for real
proteins.

Here we take a statistical approach to modeling the effects
of nonnative interactions. Starting with a structure-based model
(7), we add nonnative interactions whose strengths are assigned
from a zero-mean Gaussian distribution with standard devia-
tion b (24). As such, each nonnative interaction is equally likely
to be attractive or repulsive (see Materials and Methods and SI
Appendix for details). The parameter b increases the nonnative
heterogeneity and, as a result, increases the potential for com-
peting misfolded states (i.e., frustration). For example, 15% of
nonnative interactions are stronger than native interactions when
b = 1 (see SI Appendix, Fig. S1).

We simulate many independently sampled nonnative parame-
ter sets for each value of b and average the resulting observables
(e.g., folding time) across the different parameter sets. Data
points and error bars (see Figs. 1, 3, and 5) show the average
and SD, respectively, over all parameter sets at each b (unless
otherwise indicated). Averaging over parameter sets reveals
that many important structural and kinetic properties depend
generically on the level of nonnative heterogeneity, through
b. In addition, the SD across parameter sets shows that some
observables are more sensitive than others to the specific set
of nonnative interactions and that the differences parameter
sets increases at higher degrees of frustration (see SI Appendix,
Fig. S4).

A statistical approach is motivated by the fact that, at the level
of our coarse-grained representation (one bead per residue),
nonnative interactions could have different physical and chem-
ical origins, and they could be modulated by denaturant, salt,
mutations, etc. While this level of coarse-graining does not allow
us to comment on proteins with a specific sequence of amino
acids, we can investigate the general principles underlying the
differences in the level of frustration observed between different
protein topologies and between different sequences for the same
topology.

To determine how the effects of nonnative interactions de-
pend on native structure, we have selected 10 proteins with dif-
ferent sizes and topologies (Table 1). Several of our proteins
were chosen because they have exhibited signs of frustration

Table 1. Proteins in this study

Name PDB N M ACO α, % β, %

Lambda 1R69 63 155 17.14 54 0
A3D 2A3D 73 151 18.68 75 0
LysM 1E0G 48 117 18.69 38 17
1imq 1IMQ 85 219 22.39 64 0
SH3 1FMK 58 164 22.67 5 41
2akk 2AKK 74 213 24.41 0 46
S6cp13 1RIS 95 263 27.53 30 47
PrP 1QLX 104 266 27.61 58 4
S6cp81 1RIS 95 264 31.57 30 47
S6wt 1RIS 95 263 37.37 30 47

ACO, absolute contact order; M, number of native contacts; N, number
of residues; PDB codes, Protein Data Bank codes.

in other studies, such as the aggregation-prone PrP (23) and
the engineered protein α3D (A3D) (21) [the topology of pro-
tein A3D is also similar to one of the Spectrin proteins (25),
on which frustration has been experimentally observed]. Our set
also includes the ribosomal protein S6 and two of its circular per-
mutants [S6cp13 and S6cp81 (26)]. S6 and its circular permutants
are included because they have the same native structure but dif-
ferent contact order, which we found to be a useful metric in
understanding our findings.

Absolute Contact Order (ACO) characterizes differences in
native structure (27) and is defined as the average sequence

separation between native contacts: ACO = 1
Nnat

Nnat∑
ij

lij , where

lij = |i − j | is the sequence separation between residues that
make a native contact and Nnat is the number of native contacts.
ACO captures aspects of both size and topology; ACO increases
with size, and β proteins have larger ACO than α proteins of the
same size.

We seek to characterize the folding and reconfiguration
dynamics as a function of nonnative heterogeneity b. To do so,
we project the dynamics onto the fraction of native contacts
Q . By combining Eqs. 1 and 2, we can recast the folding time
τf = 1/kf in the diffusion model as

ln

(
τf (b)

τf (0)

)
=C + ln

(
D(0)

D(b)

)
+

∆G†(b)

kBTf (b)
− ∆G†(0)

kBTf (0)
, [3]

where remaining factors have been grouped into C . Eq. 3 shows
that the folding time as a function of nonnative heterogeneity,
τf (b), normalized by its value in the pure structure-based model
at b = 0, τf (0), depends on the change in free energy barrier and
diffusion coefficient.

We compare the terms of Eq. 3 estimated from simulation.
The folding time τf is calculated as the average dwell time in
the unfolded state (SI Appendix, Fig. S1, Left), and the free
energy barrier ∆G† is estimated from the free energy profile
(SI Appendix, Fig. S1, Right). While Kramers’ theory technically
requires the diffusion coefficient at the barrier top D(Q =Q†)
in Eq. 2, here we report the diffusion coefficient in the unfolded
state: D =D(Q =QU ) = 〈∆Q2〉U

τr
, where ∆Q =Q −〈Q〉U and

τr is the reconfigurational timescale in the unfolded state, which
can be estimated as the decay time of the autocorrelation func-

tion (28), τr =
∞∫
0

〈∆Q(t+τ ′)∆Q(t)〉U
〈∆Q(t)2〉U

dτ ′. We report D(Q =QU )

because it may be more relevant for comparing with energy
landscape theory (29) and experiments that probe transient mis-
folding (30). If D has a weak dependence on Q , as some previous
studies have found for structure-based models (31), then D(Q =
QU ) is an acceptable approximation for D in Eq. 2.
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Fig. 1. The dependence of the following as a function of nonnative heterogeneity: (A) folding time, (B) free energy barrier height, (C) diffusion coefficient
in the unfolded state, and (D) transition path time. Observables in B–D are normalized by their pure structure-based (b = 0) values for ease of comparison.
Arrows in C indicate the nonnative heterogeneity bD* needed to slow diffusion by the same amount for each protein. Error bars indicate the SD across
parameter sets.

We find that folding time decreases for some range of non-
native heterogeneity for all proteins except Lambda and LysM
(Fig. 1A), which have two of the three lowest ACO values.
Previous work suggests that the impact of nonnative interac-
tions on the free energy barrier and diffusion coefficient can
have potentially competing effects on the folding time (24, 32).
Consistent with previous studies, we find that, for all proteins
studied, there is a range of nonnative heterogeneity that low-
ers the barrier to fold (Fig. 1B). The protein-specific behavior
of τf indicates that the folding time is not solely determined by
the free energy barrier height but depends significantly on the
diffusion coefficient D , and changes in D are strongly protein-
dependent.

The unfolded state diffusion coefficient displays two regimes
for all proteins (Fig. 1C): a regime where D is relatively
insensitive to b, and a regime where D decreases dramatically
with b. We can empirically define the crossover between these
regimes as the amount of nonnative heterogeneity, b∗D , needed
to decrease the diffusion coefficient such that ln

(
D(0)
D(b∗D )

)
= 0.5

(see Fig. 1C). We find that b∗D correlates strongly with ACO (Fig.
2 red points) but is less correlated with the number of residues
N and uncorrelated with relative contact order RCO = ACO/N
(see SI Appendix, Table S1 and Fig. S3). Interestingly, Fig. 2
shows that the behavior of b∗D versus ACO is linear at small val-
ues and then appears to saturate at high values of ACO. The
saturation can be explained by considering that ACO increases
with the protein size, while b∗D is an intensive variable and is
expected to converge to a finite value in the thermodynamic
limit (32).

This result implies that size and topology both play a role in
setting the reconfiguration rate in proteins with frustration. In
particular, for proteins with the same number of residues, the
ones with lower ACO (i.e., α-helical proteins) are more sensi-
tive to frustration. This has important implications for how we
understand the connection between intermolecular interactions
and molecular motion.

Recent single-molecule experiments have been interested in
the transition path time τtp (SI Appendix, Fig. S1, Middle) as
a way to measure the diffusion coefficient, because τtp only
depends weakly on the free energy barrier in the diffusion model

(33), τtp ≈
ln(2eγβ∆G†)

βDκb
, where γ is Euler’s constant and the

equation is exact only in the large barrier limit ∆G†� kBT .
We find that τtp calculated from simulation (Fig. 1D) increases

at large b and qualitatively resembles the behavior of D for all
proteins, except A3D. It is worth noting that A3D has the small-
est folding barrier of all proteins studied (∆G < 1kBT ), and
the assumptions of the diffusion model underlying the equation
above may not apply.

We expect that our findings can be tested by experiments
that measure τtp to determine the reconfigurational diffusion
coefficient D . In particular, we expect that proteins with larger
contact order require more frustration (i.e., a higher fraction of
strongly attractive nonnative interactions) to slow their diffusion
compared with proteins with lower contact order.

Collapse and Nonnative Structural Motifs. We investigate the struc-
tural properties of the unfolded state to understand how non-
native interactions can have a protein-specific effect on the
reconfiguration dynamics. We find several interesting differences

Fig. 2. Value of crossover nonnative heterogeneity b* versus ACO. The val-
ues of b* are obtained from the decrease of the diffusion coefficient as a
function of frustration (bD*, red points), the increase of the degree of col-
lapse (bη*, blue points), and the increase of the depth of nonnative minima
in the folding landscape (bE*, green points).
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between how proteins with different topologies respond to frus-
tration. The first difference arises in the collapse of the unfolded
state. The second difference arises in the patterns of nonna-
tive contacts, with α-helical and β-sheet topologies displaying
different “motifs” in nonnative contact formation.

The central feature of disordered polymer states, such as the
unfolded state in protein folding, is their overall size, which is
given by their radius of gyration Rg or their degree of collapse
η. The radius of gyration Rg of the unfolded state (Fig. 3A)
scales with protein size Rg ∝N γ at b = 0 and decreases mono-
tonically with increasing nonnative heterogeneity. To compare
Rg from different proteins on the same scale, we define the

degree of collapse as η=
Rg−Rmax

g

Rmin
g −Rmax

g
∈ (0, 1), where Rmax

g =Rb=0
g

is the radius of gyration of the unfrustrated coil and Rmin
g ∝N

1
3 is

the radius of gyration of the completely collapsed chain (details
in SI Appendix). The degree of collapse (Fig. 3B) depends on
frustration in a similar way to the diffusion coefficient discussed
above (Fig. 1C). For example, α proteins become more compact
than β proteins of a similar size. The degree of collapse η has a
sigmoidal dependence on nonnative heterogeneity, and the mid-
points of the sigmoid functions for each protein b∗η also strongly
correlate with ACO (Fig. 2 blue points). The same saturation
behavior at high values of ACO observed for b∗D above is also
present for b∗η .

Contact maps show that, even when a significant amount of
nonnative heterogeneity is present, the unfolded state is largely
unstructured on average (Fig. 4, Upper Triangles), with some
partially formed native contacts (blue) but very little nonnative
structure (red). However, even if the unfolded state has very lit-
tle average structure, it is not featureless. Patterns emerge in
how structure forms transiently, and these patterns are revealed
by the fluctuations in contact formation. Contact fluctuations,

A

B

Fig. 3. Unfolded state dimensions. (A) Radius of gyration Rg and (B) degree
of collapse η versus b. The nonnative heterogeneity needed to collapse the
unfolded state of each protein to η= 0.5 is labeled bη

* and indicated by
arrows.

Fig. 4. Nonnative structure in the unfolded state. Unfolded state contact
formation 〈qij〉U (upper triangles) and contact fluctuations 〈∆q2

ij〉U (lower
triangles) for selected proteins.

given by the mean-squared variation of contacts 〈∆q2
ij 〉U where

∆qij = qij −〈qij 〉U , are largest for contacts that form and break
most often and, therefore, reveal preferences in how structure
forms transiently.

Contact fluctuations in the unfolded state (Fig. 4, Lower Tri-
angles) show that native topology qualitatively changes how
proteins form transient nonnative structure. In particular, con-
tact fluctuations show that α proteins (Fig. 4, Left) form more
nonnative contacts close to each other in sequence than β pro-
teins (Fig. 4, Right). In addition, the α proteins form more
nonnative contacts in between secondary structural elements,
while β proteins form nonnative contacts that are more local-
ized near native β-sheets. This suggests that the coupling of
secondary structure formation with nonnative interactions may
lead to different motifs in the misfolded ensembles of α and β
proteins.

Probing the Underlying Energy Landscape. Energy landscape the-
ory links protein folding kinetics to the statistical properties of
the energy landscape (6). At the folding temperature, the distri-
bution of energies is bimodal (Fig. 5A orange), with the lower
(higher) energy peak corresponding to the folded (unfolded)
state. At a constant temperature, these peaks are significantly
broadened from vibrations around the minima on the landscape.
By performing energy minimization of configurations sampled
along the trajectory, we get a clearer picture of the “inherent
structure” of the energy landscape (Fig. 5A blue) (34) (details
in SI Appendix).

We perform inherent structure analysis on a subset of our
proteins and calculate two important properties of their land-
scapes: the depth of the folded state minimum relative to the
unfolded ensemble, δEstab =E folded−E unfolded, and the breadth
of the energy distribution within the unfolded state, ∆Enon
(Fig. 5A). The ratio of these energy scales ∆Enon/δEstab describes
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A

B

Fig. 5. Results from inherent structure analysis. (A) Distribution of native
energy Enat before (orange) and after (blue) minimization. The depth of the
folding minimum is denoted δEstab. Inset shows how fitting the distribution
of nonnative energies Enon in the unfolded state (U) yields the depth of
typical misfolded minima, ∆Enon (see SI Appendix, Eq. S20). (B) The degree
of frustration ∆Enon

δEstab
. Arrows indicate the heterogeneity needed to observe

a given degree of frustration on the energy landscape, bE*.

the degree of frustration on the landscape: When ∆Enon/δEstab
approaches 1, misfolded minima are just as deep as the native
minimum (35).

Interestingly, we find that ∆Enon/δEstab (Fig. 5B) has protein-
specific dependence on the amount of frustration b similar to
what was noted above for the diffusion coefficient and degree
of collapse: The amount of nonnative heterogeneity needed to
increase the degree of frustration on the landscape by a given
amount b∗E also strongly correlates with ACO (Fig. 2, green
points). Again, the saturation behavior at high values of ACO
noted above is observed. This means that for the same amount
of nonnative heterogeneity, size and topology modulate the
depth of the unfolded state minima. This result provides an
energy landscape basis for interpreting the results of previous
sections.

The degree of frustration on the energy landscape can alter-
natively be quantified by comparing the folding temperature
Tf to the glass temperature Tg , where Tg is the temperature
where the system would get stuck in a single misfolded state.
The glass temperature can be calculated by the distribution of
inherent structures Tg = ∆Enon√

2S0
, where S0 is the entropy of the

unfolded state minima (6, 35). The ratio of temperatures Tg/Tf

displays qualitative similar dependence on size and topology
(SI Appendix, Fig. S5). Theoretical estimates of Tg/Tf for pro-
teins span a range, from Tg/Tf ≈ 0.2 (36) to Tg/Tf ≈ 0.6 (35).
Our findings suggest there is a range of nonnative heterogene-
ity allowable for proteins to be within the theoretical range (gray
rectangle in SI Appendix, Fig. S5). Notably, proteins with larger

ACO appear to have a wider range of nonnative heterogeneity
permissible.

It must be noted that our estimates appear to increase beyond
the theoretical bound of Tg/Tf < 1. This is most likely an artifact
of approximations made in the inherent structure analysis that
underestimate the magnitude of S0.

Discussion
We have found that the impact of nonnative interactions on pro-
tein folding and reconfiguration dynamics depends systematically
on native state size and topology. In particular, we have found
that the amount of nonnative heterogeneity required to produce
signs of a frustrated landscape (e.g., slower reconfiguration, col-
lapse, etc.), which we have called b∗, has a simple dependence
on the ACO (Fig. 2). In particular, b∗ is linear at low ACO
and then saturates when ACO ≥ 25. This saturation is expected
because b∗ is an intensive variable that should converge to a
finite value in the thermodynamic limit (and ACO increases with
size) (32). This means that protein topologies in the finite-size
regime (ACO< 25) are more sensitive to nonnative interactions.
It interesting to note that the PrP protein, which appears frus-
trated in the experiment (11), has a large enough ACO (' 28)
to fall in the plateau region of Fig. 2, which would suggest that
this topology is generally less sensitive to nonnative interactions.
However, it should be noted that the PrP structure has several
long stretches lacking secondary structure. As our model consid-
ers the effect of nonnative interactions on the tendency to form
native secondary structure, we expect the results may differ for
proteins that are partially intrinsically unstructured.

Our model suggests that the coupling between nonnative
interactions and protein topology could result in different mis-
folding behavior for α and β proteins. In particular, α proteins
have slower reconfiguration times because nonnative interac-
tions induce the unfolded state to become more collapsed, creat-
ing deeper misfolded minima on the folding landscape. Coupling
between secondary structure and nonnative interactions might
explain why the latter have been posited to be important in α-
helical proteins, such as Im9 (15), the Spectrin proteins R16/R17
(25), and protein A3D (21). Indeed, A3D is one of the protein
topologies that was found to be most sensitive to the effect of
frustration in our study, in agreement with experimental obser-
vation. A study of the salt-induced collapse of S6 also found
native-like secondary structure content (37), indicating a gen-
eral link between secondary structure and the effect of nonnative
interactions.

Interestingly, a recent study using a native-centric polymer
model found that, in the absence of nonnative interactions, the
native contact map of β proteins promotes collapse while folding
(38). As our study focuses on the coupling of secondary structure
with nonnative interactions, such results do not conflict with our
findings.

We also find that the variation between parameter sets tends
to increase with the onset of the frustrated regime. For example,
some quantities, such as the folding time, show large variations
between parameter sets at large levels of nonnative heterogene-
ity (SI Appendix, Fig. S4). This means that particularly attractive
or repulsive nonnative interactions, or clusters of such interac-
tions, could have a large influence on these quantities. This could
explain, for example, why a small number of mutations in the
Spectrin proteins can result in large differences in folding time
(25). Interestingly, the radius of gyration of the unfolded state is
relatively insensitive to the parameter set, as shown by the small
error bars in Fig. 3A.

Although there is no experimental equivalent to our param-
eter b, experiments can modulate nonnative interactions by
varying solution conditions and measure the degree of collapse,
secondary structure formation, and reconfiguration rate to con-
nect with our results. Our results could be tested by studying
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circular permutations of the same protein under solution con-
ditions that modulate collapse (e.g., salt, denaturant). If, for
example, salt concentration is analogous to our parameter b,
then the different circular permutants may show a turnover
in their folding rate at different concentrations of salt (e.g.,
see figure 3 of ref. 39). Alternatively, our findings could be
tested by measuring the transition path time under different pH
conditions, as was done for the protein α3D (21).

Materials and Methods
Simulation Model. We simulate a set of 10 proteins that span a range of
sizes and topologies, described in Table 1. Our Cα structure-based simulation
model with nonnative interactions is similar to what was used in previous
work (24) and is described in SI Appendix.

Inherent Structure Analysis. Performing energy minimization of configura-
tions sampled in a constant temperature simulation maps each frame to
its inherent structure minimum on the landscape (34). Following previous
applications, we perform inherent structure analysis on a subsample of
frames from trajectories at the folding temperature. Details are provided
in SI Appendix.
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