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ABSTRACT
Intricate relationships among cytokines (including chemokines) shape the tumor microenvironment
(TME) and reflect cell-cell interactions between malignant cells and other cells from the TME.
Although our previous study indicated the transcriptional landscape of cytokines in 19 cancer types,
the global pattern somatic copy number (SCN) alterations and the clinical relevance of cytokines have
not been systematically investigated. Here, we reported a significant negative selection on cytokine
genes. We also linked the SCN losses of cytokine genes to the abundance of immune infiltrates which
affects cancer progression and patient prognoses. We also demonstrated and validated the correlations
between SCN alterations of cytokine-containing loci and drug sensitivity. The results indicated the
genomic loss of cytokines in malignant cells as a crucial theme for interrogating cancer progression,
malignant cell-TME interactions, and therapeutics.
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Introduction

Somatic copy number (SCN) alterations of genes are widespread
genetic events in cancers that may result in the activation of
oncogenes and the inactivation of tumor-suppressor genes
(TCGs).1−3 Exploration for the features of SCN alterations can
lead to advances in cancer diagnoses and therapeutics. Previous
studies focused on drivers of SCN alterations that were implicated
in oncogenesis and cancer progression.1,3,4 The identification of
recurrent SCN events has provided insights into cancer cellular
defects. Despite the understanding of genome-wide SCN events in
those earlier attempts, alterations of the SCN landscape of cyto-
kines (and chemokines) in compared to other protein-coding
genes remain unclear.

Tumor microenvironment (TME) is thought to be crucial for
tumor initiation, progression, angiogenesis, and metastasis.5-8

Cells that constitute the TME, including cancer-associated fibro-
blasts (CAFs), endothelial cells, and immune cells, may interact
with malignant cells and contribute to the clinical outcomes, i.e.,
overall survival9 or therapeutic responsiveness.10 Characterization
of the TME, especially the immune components, has led to an
understanding of tumor-TME interactions.11 Although cytokines
(and chemokines) play important roles in shaping the inflamma-
tory TME,12 only a few studies have focused on global patterns and
functional implications of cytokines/chemokines in different can-
cer types.13,14 Our previous study characterized the transcript

landscape of the cytokinome (including cytokines, chemokines,
and several related genes) across human cancers.14 In that study,
we utilized expression data compiled from bulk tumor profiles to
delineate expression patterns and prognostic correlations of cyto-
kine genes in 19 cancer types. Despite those findings, the clinical
relevance and functional correlations of SCNs of cytokine genes
have not been systematically characterized.

Herein, we attempted to address these questions by conduct-
ing a systematic analysis of SCN events of cytokine genes using
several publicly available data from The Cancer Genome Atlas
(TCGA) project, Cancer Cell Line Encyclopedia (CCLE) project-
15 and caSNP project.16 We identified SCN loss as a significant
feature of cytokine-containing loci compared to the SCN genetic
background, and it was associated with patients’ pathological
stage, overall survival, and therapeutic efficacy.

Results

Comparison of SCNs between cytokine genes and other
PCGs reveals subtle differences in SCN events

We used TCGA exome sequencing data to assess SCN altera-
tion profiles of 250 cytokines in 8642 tumors of 19 cancer
types (Table S1). We first characterized SCNs of cytokine-
containing loci (Figure 1A) and other protein-coding gene
(PCG)-containing loci (Fig. S1). As shown for each cancer
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type, SCNs of cytokines were altered with different frequen-
cies. In addition, frequencies of SCN gain and loss also dif-
fered across various cancer types (Fig. S2). Given similar SCN

gain and loss patterns between cytokine-containing loci and
other PCG-containing loci in different cancer types, we found
that SCNs of cytokines were highly dependent on the nature

Figure 1. Cytokine copy numbers are somatically altered in human cancers. (A) Heatmap showing the fraction of somatic copy number (SCN) alterations of cytokine-
containing loci (y axis) across 19 cancer types (x axis). Cytokines were ordered according to their genomic coordination. For each cancer type, red and blue colors
respectively indicate percentages of SCN gain and loss events across specimens of corresponding genomic coordination. Numbers at the top are average percentages
of SCN gain and loss values across cytokines. (B) Distributions of SCN gain (x axis) and loss (y axis) fractions of cytokines in each cancer type. Each dot represents the
frequency of a cytokine gene in a specific cancer type. For each cancer type, cytokines with a fraction of SCN gain or loss of > 0.25 (high-frequency) are respectively
denoted in red and blue. Cytokines with both fractions of SCN gain and loss of > 0.25 or < 0.25 are respectively denoted in black and gray. (C) Distribution of SCN
gain and loss fractions of other protein-coding genes (PCGs) in each cancer type.

Table 1. Differences in SCNs between cytokine-containing loci and other PCG-containing loci.

Gain frequency Loss frequency

Cancer Cytokines Other PCGs Pa FDRb Cytokines Other PCGs Pa FDRb

BLCA 0.1190 0.1704 0.0292 0.0846 0.2698 0.2215 0.0686 0.14976
BRCA 0.0913 0.1307 0.0749 0.1498 0.2341 0.1619 0.0027 0.01029*
CESC 0.0952 0.1246 0.1812 0.3130 0.1706 0.1420 0.2057 0.33985
COAD 0.0516 0.1181 0.0006 0.0031** 0.0754 0.1127 0.0720 0.1498
DLBC 0.0278 0.0334 0.8597 1 0.0159 0.0112 0.371 0.5221
GBM 0.0873 0.1294 0.0483 0.1222 0.1310 0.0943 0.0518 0.1231
HNSC 0.0357 0.0628 0.0895 0.1701 0.2540 0.1317 1.84 × 10−7 6.99 × 10−6**
KIRC 0.0635 0.0641 1 1 0.0794 0.0609 0.2334 0.3696
KIRP 0.2222 0.2537 0.2775 0.4192 0 0 1 1
LGG 0.0040 0.0253 0.0246 0.0778 0.1429 0.0923 0.0086 0.0298*
LIHC 0.1151 0.1894 0.0021 0.0091** 0.2540 0.1456 6.28 × 10−6 1.2 × 10−4**
LUAD 0.07540 0.0964 0.2868 0.4192 0.2817 0.1700 1.06 × 10−5 0.0001**
LUSC 0.1587 0.2463 0.0010 0.0046** 0.4444 0.3229 6.44 × 10−5 0.0005**
OV 0.3770 0.4448 0.0312 0.0846 0.5754 0.5265 0.13 0.2352
PAAD 0 0.0001 1 1 0.1151 0.0497 2.98 × 10−5 2.83 × 10−4**
PRAD 0 0.0010 1 1 0.0437 0.0360 0.4955 0.6725
READ 0.0516 0.1182 0.0004 0.0027** 0.2024 0.2104 0.8168 1
THCA 0 0 1 1 0 0 1 1
UCEC 0.0635 0.0709 0.8054 1 0.024 0.0196 0.6445 0.8445

aP values were calculated using binomial test. bFalse discovery rates (FDRs) were calculated using Benjamini-Hochberg method. *FDR value less than 0.05. **FDR
value less than 0.01.
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of intrinsic SCN amplification and deletion. For example, in
THCA, one cancer type that showed the least genetic altera-
tions in other PCGs, also showed the fewest SCN alterations
in cytokines.17 In contrast, cytokine-containing loci were
highly amplified in OV, which showed the most significant
SCN in their genomic regions compared to other cancer
types.18

We next examined mean differences in SCNs between
cytokine-containing loci and other PCG-containing loci
(Table 1). A significant gain in cytokines (vs. other PCGs) in
COAD, LIHC, LUSC, and READ (FDRs < 0.05) was found. In
addition, significant loss of cytokines (vs. other PCGs) was
identified in seven cancer types, including BRCA, HNSC,
LGG, LIHC, LUAD, LUSC, and PAAD (FDRs < 0.05).
These results indicated the presence of subtle differences in
SCNs of cytokine genes compared to the genetic background
(other PCGs) in different cancer types.

SCN loss of cytokine genes as a critical genetic feature in
human cancers

To further depict SCNs of the cytokinome in human cancers,
the copy number (CN) gain (CN > 2.30, gene amplification)
and loss (CN < 1.74, gene deletion) events in each specimen
was defined. We calculated the frequencies of gain and loss
events across samples and defined a CN event as “high-fre-
quency” if this aberration occurred in > 25% of samples of a
given cancer type. By comparing distributions of high-fre-
quency gain and loss SCN alterations across all cancers, we
discovered that the ratio of gain versus loss in cytokine-con-
taining loci (gain: loss = 8.36%:17.12% ≈ 1:2, Figure 1B) is
lower than other PCG-containing loci (gain: loss =
12.75%:11.70% ≈ 1:1, p < 2.2 × 10−16, Fig. 1C), which indi-
cates a negative selection of CN in cytokine containing loci.
This is despite frequencies of cytokines that were never
(74.21% and 75.25%) or both (0.32% and 0.29%) highly
amplified and deleted in a given tumor type being the same.
Notably, we found that only a few loci (14 in OV and one in
READ) had concurrent high-frequency gain and loss
(Fig. S3), indicating their context specific function in these
types of cancer. These findings indicated that the loss of
cytokine-containing regions is very likely to involve in
tumorigenesis.

To account for the fact that the detection of somatic copy
number cytokine genes may varies with gene size (gene length),
we thus conducted permutation tests for the ratio of gain and
loss SCN by randomizing the gene names in the genome across
samples, and then repeated for 9999 times to obtain empirical p
values. We found that the ratio of high-frequency gain of cyto-
kine genes was significantly lower than (permuted) genome
background, and the ratio of high-frequency loss of cytokine
genes was significantly higher than (permuted) genome back-
ground (p values < 1 × 10−4, Fig. S4).

Detailed analyses define a cytokine subset which is
commonly lost across human cancers

Given a large number of SCN gain and loss events being
observed in tumor specimens, we raised the question of how

common is the gain or loss events of these cytokine genes
across different cancer types. We, therefore, profiled the num-
ber of shared tumor types of high-frequency SCN gain
(Figure 2A) and loss (Figure 2B) cytokines. The amplification
(gain) of cytokines tended to be tumor-specific, with very few
high-frequency SCN gain events identified in more than two
cancer types (Figure 2A and 2C). In contrast, half of the
cytokine genes (n = 125, 50.0%) were deleted (high-frequency
loss) in ≥ 3 different tumor types (Figure 2B and 2D).
Notably, we found that BMP1 and seven TNFSF/TNFRSF
genes were lost in 11 of 19 (57.9%) tumor types (Fig. S5).

Based on the above results, we then grouped cytokine
genes based on their prevalences of high-frequency dele-
tions across cancer types: cytokine genes with a prevalence
of high-frequency loss of ≥ 3 as “coCytokines” (common
loss across different tumor types; n = 125); cytokine genes
with a low prevalence of high-frequency deletions (one or
two cancer types) as “spCytokines” (tumor-specific deletion
pattern; n = 58), and the remaining as “noCytokines” (no
high-frequency gene deletion events detected; n = 67).

As the cytokine category was defined using deletion profiles
of cytokine genes, the frequency of gene amplification in each
category was further assessed. We found that the frequency of
SCN gain of coCytokines was significantly lower than those of
spCytokines and noCytokines (FDRs < 2.2 × 10−16, Fig. S6).
Importantly, we found a high proportion of coCytokines in the
interferon (IFN), tumor necrosis factor (TNF) families, and XC
chemokines (XC); and a high proportion of spCytokines in the
CC chemokine (CC) group (Figure 2E and 2F). Then, a gene
ontology (GO) biological process (BP) enrichment analysis
revealed significant enrichment of coCytokines (especially
genes involved in the IFN family) in immune cell activation
(FDRs < 0.1, Fig. S7) and spCytokines (especially CC cytokines)
in immune cell chemotaxis (FDRs < 0.1, Fig. S8).

We next analyzed cytokines based on their biological func-
tions (Table S2), and found that most immunosuppressive
cytokines were noCytokines (IL10, IL19, IL20, IL22 and IL24)
or spCytokine (TGFB1). In addition, most of the cytokines
that may activate cytotoxic activity were coCytokine (IL2, IL4,
IL5, IL12B, IL15, IFNA1 and IFNB1), while the remaining
were noCytokine (IL7, IL12A, TNF and IFNG).

Enrichment of focal SCN amplified or deleted genes in
cytokine category

We further assessed the enrichment of the significant focally
amplified or deleted gene list in each cytokine category across
19 cancer types. For each cancer type, we assessed the over-
representation of focal SCNAs in coCytokines, spCytokines,
and noCytokines. We found that coCytokines showed signifi-
cant over-representation in genes that focally lost (deletion) in
6 cancer types (GBM, KIRC, LIHC, LUAD, PRAD, and
THCA) and genes that focally gained (amplification) in 1
cancer type (THCA). The spCytokines were enriched in
focally amplified genes in BRCA, and enriched in focally
deleted genes in DLBC and THCA. In addition, noCytokines
were enriched in focally amplified genes in 4 cancer types
(KIRC, LUSC, PAAD and THCA). Enrichment of
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noCytokines in focally deleted genes was not observed
(Fig. S9).

Cytokine expression profiles are less correlated with SCN
alterations compared to background genes

For each cancer type (Table S3), we estimated the contribu-
tion of SCNs to transcript abundances of cytokines by com-
paring SCNs and expression levels for all cytokines. We found
that a positive correlation (Pearson’s product moment corre-
lation coefficient (R) ≥ 0.2) between SCN and expression was
detected for 21.5% of cytokines, compared to 49.9% for other
PCGs (p < 2.2 × 10−16, Figure 3A and 3B). In addition,
positive SCN-RNA correlations for 23.7% of coCytokines
and 20.4% of spCytokines were detected. By calculating the
frequency of positive SCN-RNA correlations for each cancer
type (Figure 3C and 3D, Table S4), we found that cancer
types with abundant SCN alterations (LUSC, OV, and READ)
showed higher SCN-RNA correlations than cancer types with
fewer SCNs (PRAD and THCA).

In considering that the observed SCN-RNA correlation
may be due to uneven read mapping of cytokine genes in
compared to other PCGs, we further investigated the TCGA
microarray data in 10 available cancer types, including BRCA,
COAD, KIRC, KIRP, LGG, LUAD, LUSC, OV, READ, UCEC.
As microarray expression profiles were quantified in a probe-
based manner, it is able to prevent the potential bias due to
difficulty mapping of some genes. Hence, microarray data was
considered as a good choice for cross-platform validation of
SCN-RNA correlation pattern of cytokines and other PCGs.
We observed similar results that the positive correlation (R ≥
0.2) between SCN and expression was detected for 27.2% of
cytokines, compared to 52.6% for other PCGs (Fig. S10).

We also noticed that while assessing the correlation
between SCNA of cytokine genes and transcript abun-
dances, an important confounder may be the tumor purity
of specimens. As the calling ability of SCN may be low in
specimens with high immune infiltration (and thus lower
tumor purity), we further selected the samples with 80%
tumor purity or above (based on immunohistochemistry

Figure 2. Sharing patterns of high-frequency somatic copy number (SCN) alterations of cytokines across cancers. (A) Pie chart showing the distribution of sharing patterns of
high-frequency SCN gain of cytokines. The number outside the parentheses indicates the number of shared cancer types. The number and percentage of cytokines are
indicated inside the parentheses. (B) Pie charts showing distributions of shared patterns of high-frequency SCN loss of cytokines. (C) Distribution of number of (high-
frequency) amplified cytokines (x axis) and the number of shared cancer types (y axis). noCytokines (high-frequency amplified in none of the cancer types), spCytokines
(shared across one or two cancer types), and coCytokines (shared in ≥ 3 cancer types) are separated by two dotted lines. (D) Distribution of the number of (high-frequency)
deleted cytokines and number of shared cancer types. (E) The number of high-frequency SCN loss events in each cytokine family. Bars are colored on the basis of cytokine
categories (spCytokines, noCytokines, and coCytokines) (F) The percentage of high-frequency SCN loss events in each cytokine family.
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(IHC) staining) to ensure the reliability of SCN calling.
With using 80% as threshold, 3432 (~40%) samples across
17 cancer types (DLBC and PAAD were excluded) remained
for further analyses. We found that the ratio of high-fre-
quency gain and loss in cytokine-containing loci (gain:
loss = 13.41%:20.35% ≈ 1:1.5) also differed from other
PCG-containing loci (gain: loss = 16.32%:16.99% ≈ 1:1,
permutation p values < 1 × 10−4, Fig. S11). We then con-
ducted SCNA-RNA correlation analysis, and confirmed the
pattern that the positive SCNA-RNA correlations (R ≥ 0.2)

for cytokine genes (24.6%) were lower than that of other
PCGs (52.7%, Fig. S12).

To further confirm the difference in SCN-RNA correla-
tions between cytokines and other PCGs, we leveraged CN
and mRNA expression data from the CCLE dataset. As
expected, positive CN-RNA correlations were detected for
15.3% of cytokines and 49.0% for other PCGs (p <
2.2 × 10−16, Figure 3E and 3F).

We next calculated the Jensen-Shannon (JS) divergence-
derived specificity score of each gene to quantify the

Figure 3. Transcript abundances of cytokines are less explained by somatic copy number (SCN) alterations. (A) Histogram showing frequency distributions of
cytokines’ SCN-RNA correlation coefficients in all cancer types from TCGA. Percentages of cytokines with an SCN-RNA correlation coefficient of > 0.2 are shown and
highlighted in color. (B) Histogram showing frequency distributions of other protein-coding genes (PCGs)’ SCN-RNA correlation coefficients in all cancer types from
TCGA. (C) Histogram showing frequency distributions of coCytokines’ SCN-RNA correlation coefficients in all cancer types from TCGA. (D) Histogram showing
frequency distributions of spCytokines’ SCN-RNA correlation coefficients in all cancer types from TCGA. (E) Histogram showing frequency distributions of cytokines’
SCN-RNA correlation coefficients in all cancer types from the CCLE. (F) Histogram showing frequency distributions of the other PCGs’ SCN-RNA correlation coefficients
in all cancer types from the CCLE. The area of color in the histogram is approximate to the percentage of the number of genes with SCN-RNA correlation coefficients
of > 0.2.
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specificity of expressions of genes across 19 types of primary
cancer specimens (Fig. S13). Cytokines showed higher can-
cer-type specificities than other PCGs (p < 2.2 × 10−16),
suggesting higher tissue- or cell-type specificities. Notably,
we detected no discrepancy in specificity score distributions
in the cytokine category (p > 0.05). We further validated the
higher tissue- or cell-type specificity of cytokines (vs. other
PCGs) in cell line data (CCLE database, p = 1.78 × 10−10)
and human normal tissue data (GTEx database, p =
8.01 × 10−8, Fig. S14).

Correlations between SCNs of cytokines and immune
infiltrates

To determine whether the SCNs of cytokines were associated with
infiltrating immune cells, we resolved the composition of 24
immune cell types, including innate and adaptive immune cells,
using a functional gene set fromGabriela et al.19 For each primary
tumor specimen, 24 immune metagenes were calculated. The
highest median enrichment score of the B-cell metagene in
DLBCs confirmed the reliability of the gene set (Fig. S15).

We hypothesized that the genetic loss of coCytokines in
human cancers may imply its important role in immune reac-
tions against cancers. To test this hypothesis, we correlated the
SCNs of coCytokines, spCytokines, and noCytokines with 24
immune metagenes. On average, coCytokines showed higher
SCN-immune correlations than spCytokines and noCytokines
(coCytokines vs. spCytokines: p < 2.2 × 10−16, coCytokines vs.
noCytokines: p < 2.2 × 10−16; and spCytokines vs. noCytokines:
p = 2.28 × 10−6, Figure 4A). Aided by a heat map, we found a
discernible pattern regarding correlations between cytokine

categories and intensities of immune metagenes (Figure 4B,
Fig. S16), suggesting that cytokines that are commonly deleted
in cancers may be associated with increased immune infiltrates.

We further validated these results using another TME-related
gene set derived from single-cell data20 and derived eight TME
metagenes (including B cells, cancer-associated fibroblasts, CD8
positive T cells, Endothelial cells, Macrophages, NK cells, CD4
positive T helper cells and regulatory T cells). We identified in
total 495 genes that highly expressed in single cell type (exclud-
ing genes that highly expressed in malignant cells (Fig. S17)).
The expression values of the genes that specifically expressed in
each cell type were averaged to give cell type-specific metagene
(Fig. S17). We found significant differences in correlations
between cytokine categories and TME/immune metagenes
(coCytokines vs. spCytokines: p < 2.2 × 10−16, coCytokines vs.
noCytokines: p < 2.2 × 10−16; and spCytokines vs. noCytokines:
p = 2.45 × 10−4, Figure 4C, Fig. S18).

Cytokine categories are clinically valuable in cancer
therapy

Given the categorized cytokine groups based on SCN altera-
tion profiles and their correlations with expression and
immune infiltrates, fundamental questions are whether and
what proportion of SCN gain and loss events are clinically
relevant. To address these questions, we correlated SCN
alterations of cytokines with pathological stages and patients’
overall survival. For each specimen of 12 cancer types with
available pathological data, we summarized SCNs of
coCytokines and spCytokines and assessed differences in
average SCN levels across pathological stages. SCNs of

Figure 4. Deconvolution of bulk cancer mRNA profiles suggests a positive correlation between the somatic copy number (SCN) of coCytokines and immune
infiltrates. (A) The correlation coefficient (x axis) between SCNs of cytokines and immune metagenes (adopted from Bindea et al.) across cytokine categories
(coCytokines vs. noCytokines vs. spCytokines). (B) Correlation coefficients of cytokine categories (x axis) and each immune metagene (y axis). Hierarchical clustering
was performed on immune cell types to depict their similarity of correlations to cytokine categories. (C) Validation, correlation coefficient (x axis) between the SCNs of
cytokines and immune metagenes (derived from single-cell profiles, I. Tirosh et al.) across cytokine categories.
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coCytokines were significantly correlated with tumor patho-
logical stages (Figure 5A and 5B). In particular, SCNs of
coCytokines were significantly lost in stages II to IV com-
pared to stage I, implying their crucial role in cancer progres-
sion. However, we detected no correlation between SCNs of
spCytokines and pathological stages (Figure 5B, Fig. S19).

In addition, a Cox regression model was further applied to
evaluate the association between SCNs of cytokines (or other
PCGs) and patients’ overall survival (Table S5). By comparing
the cytokine category to the other PCGs, we found significant
differences in the percentage of damaging (hazard ratio (HR)
> 1.0) or protective (HR < 1.0) genes in compared to other
PCGs (Fig. S20). For instances, coCytokines showed higher
percentage in protective group in compared to other PCGs
(4.51% vs. 2.75%, binomial p = 0.045), and lower percentage
in damaging group (1.31% vs. 2.54%, binomial p = 0.013). For
spCytokines, the pattern of enrichment of significant genes in
protective group (2.99% vs. 2.75%, binomial p = 0.03) and
damaging group (2.00% vs. 2.54%, binomial p = 0.02) were
similar to coCytokines. However, the differences of percen-
tages were modest, suggesting weak correlation between
spCytokines and patients’ prognoses across cancers. For
noCytokines, the percentage of significant genes in protective
group is lower than that of other PCGs (0.94% vs. 2.75%,
binomial p = 0.0009), and the percentage of significant genes
in damaging group is higher than that of other PCGs (2.75%
vs. 2.54%, binomial p = 0.027).

Furthermore, SCNs of cytokines showed significant dama-
ging and protective effects on overall survival in seven of 19
(36.8%) cancer types (Figure 5C). For all significance tests, 79.5%

of SCNs of coCytokines and 54.5% of SCNs of spCytokines were
protective, compared to 7.4% of noCytokines (Figure 5D). This
indicated that coCytokines and some spCytokinesmay be crucial
for protection against cancer cells, and the genetic loss of these
cytokines may lead to poorer outcomes.

Therapeutic relevance of cytokines’ SCN gain and loss
events

We finally sought to determine whether SCN alterations of
cytokines could affect cancer therapeutic responsiveness. We
utilized the half maximal inhibitory concentration (IC50) pro-
files of 24 drugs from the CCLE database15 to examine the
effects of CNs on therapeutic sensitivity. Agglomerative hier-
archical clustering of correlation coefficients of CN-drug pairs
revealed several meaningful clusters: topotecan and irinotecan
(chemotherapeutic agents); tyrosine kinase inhibitors includ-
ing lapatinib, ZD-6474 (vandetanib), AZD0530 (saracatinib),
and erlotinib; RAF inhibitors including RAF265 and
PLX4720; and MEK inhibitors including AZD6244 and PD-
0325901. In addition, we found that TKI258 (dovitinib, a
c-Kit inhibitor), PF2341066 (a c-Met inhibitor), and
Sorafenib (a c-Raf inhibitor) were adjacent to each other
(Figure 6A). Furthermore, for all significant correlations
being detected, CNs of spCytokines and noCytokines were
largely (~75%) positively correlated (r > 0) with IC50 values
(Figure 6B). In contrast, 53.8% of detectable significant corre-
lations regarding CNs of coCytokines were negatively corre-
lated (r < 0) with IC50 values, suggesting that the genetic loss

Figure 5. Clinical relevance of cytokine categories. (A) Distributions of mean somatic copy number (SCN) levels of coCytokines (y axis) across different pathological
stages. (B) Comparison of the mean fraction of coCytokine and spCytokine SCN losses (y axis) and pathological stages (x axis). For each pathological stage, average
fractions (across cancer types) of high-frequency (> 25% across specimens) SCN loss were calculated. The red star denotes a significant difference (p < 0.05). (C) The
number of cytokines that are significantly associated with patients’ overall survival (FDR < 0.1) in each cancer type. Numbers of significant cytokines are shown. Bars
are colored on the basis of the direction of the effect, i.e., orange for protection (hazard ratio (HR) < 1) and green for damaging (HR > 1). (D) Percentages of
protection and damaging effects of cytokine categories. The percentages were calculated from cytokines that were significantly associated with overall survival (FDR
< 0.1).
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of coCytokines may lead to drug resistance (higher IC50

values).
For all cytokines (CN-IC50 correlations) that reached a

significant threshold, coCytokines accounted for the majority
of the results (Figure 6C, Fig. S21). In particular, we found
that CNs of coCytokines were positively correlated with the
IC50 of Lapatinib (n of coCytokines = 16, hypergeometric p ≪
0.001) and negatively correlated with the IC50 of TKI258 (n of
coCytokines = 18, hypergeometric p ≪ 0.001, Fig. S22). As
SCN alterations of cytokines may also provoke expression
changes, we further validated these observations using two
cell line expression datasets from the GEO. First, we leveraged
a dataset (GSE16179)21 to compare the mean multiples of
change (FCs) of mRNA expressions of 16 coCytokines in
BT474-J4 (a lapatinib-resistant breast cancer cell line) vs.
BT474 (a HER2-positive and lapatinib-sensitive breast cancer
cell line). As a result, a positive mean logFC in lapatinib-
treated BT474-J4 vs. lapatinib-treated BT474 (Figure 6D)
was observed, indicating upregulation of 16 coCytokines in a
lapatinib-resistant cell line, which was consistent with the
direction of the correlation that we observed in Figure 6C.
Notably, upregulation of 16 coCytokines in lapatinib-treated
BT474-J4 vs. DMSO-treated BT474-J4 was also observed,

implying a further enrichment of lapatinib-resistant cells or
enhanced resistance mechanisms during exposure. We then
utilized another dataset (GSE69226)22 to analyze expression
changes of cytokines in LC-2/ad DR (a dovitinib-resistant
lung adenocarcinoma cell line) vs. LC-2/ad (a dovitinib-sen-
sitive lung adenocarcinoma cell line). Five of 18 (27.8%)
coCytokines showed significant differential expression across
these two cell lines (Figure 6E). Among them, four
coCytokines were downregulated (logFC < 0) in LC-2/ad DR
compared to LC-2/ad, which was consistent with results in
Figure 6C that CNs of coCytokines were negatively associated
with the IC50 of dovitinib.

Discussion

The advent of comprehensive tumor profiling has drawn
widespread attention to the characterization of complex
interactions of malignant cells with their TME9,19,23–25 and
the functional consequences.26,27 Cytokines (and chemo-
kines) and related genes are implicated in this complex
tumor-TME crosstalk and regulate the behaviors of malig-
nant cells, CAFs, endothelial cells, and immune cells.28,29

In the present study, we reported a comprehensive

Figure 6. Therapeutic liability of somatic copy number (SCN) alterations of cytokines in human cancers with using the Cancer Cell Line Encyclopedia (CCLE) database.
(A) Heat map showing correlations of SCN levels of cytokines (including coCytokines, noCytokines and spCytokines, row) and 50% inhibitory concentration (IC50)
values of 24 drugs (column). Each cell represents the Pearson’s product moment correlation coefficient. (B) Percentages of positive and negative correlations of
cytokine categories to IC50 values of 24 drugs. Ratios were calculated from significant cytokines in each cancer type. Bars are colored on the basis of the direction of
the effect, i.e., orange for positive correlations (r > 0) and green for negative correlations (r < 0). (C) Numbers of cytokines that were significantly correlated with drug
sensitivity (false discovery rate [FDR]-adjusted). Bars are colored on the basis of cytokine categories. (D) Validation, average log multiple of change (FC) of 16
coCytokines (associated with the IC50 of lapatinib) in four conditions (y axis). (E) Validation, logFC of five (out of 18) coCytokines differentially expressed in dovitinib
(TKI258)-treated LC-2/ad DR compared to dovitinib-treated LC2/ad cells. logFC, estimated logFC corresponding to dovitinib-treated LC-2/ad DR vs. dovitinib-treated
LC2/ad cells; AveExpr, average expression across all samples; T, moderated t-statistic; PAdjusted, Benjamini and Hochberg (BH)-adjusted p value; B, log odds.
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characterization of global patterns and clinical relevances
of SCN alterations in cytokine-containing loci across dif-
ferent human cancer types. We identified two distinct
features regarding SCN alterations of cytokine genes com-
pared to other PCGs across human cancers, including (1)
the significant loss of cytokine-containing loci; (2) the
correlations between SCN levels of coCytokines and
pathological stages; and (3) the relevance of cytokine-con-
taining loci and drug sensitivity.

We observed significant deviations of the gain-to-loss ratio
in cytokine-containing loci compared to the genomic back-
ground (all other PCGs). As we assumed that patterns of SCN
alterations that were observed across the genome may reflect
selective pressures, the significant loss of cytokine genes (espe-
cially for cytokines that may activate cytotoxic activity) sug-
gested negative selection in malignant cells. This pattern of
selection is likely to be the consequence of intricate interac-
tions between malignant cells and the TME. The negative
selection force that shapes the genomic landscape of cytokines
(and chemokines) which in turn, led to the observation that
SCN-RNA correlations of cytokine genes were significantly
lower than those of other PCGs.

In this study, we mainly focused on coCytokines (cyto-
kines that are commonly lost across different tumor types)
that are commonly deleted in multiple (≥ 3) cancer types.
We revealed positive correlations between loss of
coCytokines and pathological stages, suggesting that the
negative selection of these cytokine genes was accompa-
nied by disease progression. In other words, these cyto-
kines may confer protective effects against a tumor.
Indeed, we observed that expressions of coCytokines
were most significantly associated with better patient
prognoses. In addition, we also demonstrated an enrich-
ment of IFN and TNF family genes that possessed tumor
protective effects30,31 in coCytokines. Type I IFNs play a
pivotal role in anticancer immunity.32,33 Previous pieces of
evidence also suggested that type I IFNs may promote
cancer eradication through autocrine and paracrine
effects.34 Furthermore, TNF was also identified in our
study, a multifunctional cytokine that possesses anticancer
effects by regulating immunity and apoptosis of cancer
cells.35,36 Taken together, our results provided information
to identify novel cytokines that may be important for the
treatment of cancers.

Previously, B. Mlecnik et al. reported the links between
copy number amplification of 59 cytokines and cytokine
receptors to the absence of lymph node metastasis (N0) and
distant metastasis (M0) of clinical colorectal cancer (CRC)
patients.27 In addition, G. Bindea et al. also reported the
clinical relevance of 53 chemokines and found that deletion
of 2 chemokines (CXCL2 and CXCL13) confer a higher risk of
CRC relapse.19 In addition, J. A. Malek et al. has elucidated
the deletion of CC chemokine subfamily genes in primary
ovarian cancers. As exemplified, they observed the deletion
of CCL2 in 70% of cancer specimens.37 These findings are
further consolidated by our results that SCN loss of
coCytokines is associated with advanced pathological stages
and the poorer patients’ prognoses across different cancer
types. Several studies have revealed the prognostic impact of

infiltrating immune cells.38,39 Arnold Han et al.40, X. Liu
et al.41 and M. Jang et al.42 have characterized the immune
repertoire profiles of T cells in colorectal carcinoma, follicular
lymphoma and ovarian cancer, respectively. Their studies
suggested a profound enrichment of specific T-cell receptor
clones in local cancer sites. Gentles AJ et al. have also reported
the prognostic landscape of immune-related genes (22
immune subsets) across 39 cancer types.9 In this study, we
have reported positive correlations between SCN levels of
coCytokines and immune metagenes, which enforce the
hypothesis that the common loss coCytokines are due to
their anticancer property and thus tend to be eliminated by
malignancies during cancer progression.

The implications of cytokines in the drug resistance
mechanisms have been investigated.43,44 Here, using lapa-
tinib and dovitinib (TKI258) as examples, our data sug-
gested that both SCN gain and loss may confer a drug-
resistance ability. For lapatinib, SCN alterations and
expression levels of coCytokines were positively correlated
with its IC50 (conferring resistance); for dovitinib,
decreases in SCN alterations and expression levels were
associated with higher therapeutic resistance (against
resistance).

By correlating SCN alterations to the transcript levels, we
found a profoundly low SCN-RNA correlations among cyto-
kine genes in compared to other PCGs. Given that RNA
profiles of TCGA datasets were compiled from bulk tissues,
the quantified mRNA levels may thus capture expressions of
genes from an admixture of cell types. The low SCN-RNA
correlations may thus reflect the fact that the cytokine (and
chemokine) network in bulk tumors can be less attributed to
malignant cells compared to other cell types. Furthermore, we
also showed that coCytokines were positively correlated with
immune infiltrates, and confirmed the contribution of the
TME to cytokine (and chemokine) levels in bulk tumors.

To summarize, our findings highlight SCN loss of cytokine
(and chemokine) genes as a crucial theme for investigating the
mechanisms of cancer progression, clarifying tumor-TME inter-
actions, and developing therapeutic strategies. Further efforts
are required to characterize subtype-specific effects and impacts
of SCN alterations of cytokine genes, to elucidate functional
implications of each cytokine in interactions of malignant cells
with the TME, and finally, shed light on cancer therapeutics.

Materials and methods

Pan-cancer SCN alteration data for cytokinome analyses

Nineteen cancer types (urothelial bladder cancer [BLCA],
breast cancer [BRCA], cervical cancer [CESC], colon adeno-
carcinoma [COAD], diffuse large B-cell lymphoma [DLBC],
glioblastoma multiforme [GBM], head and neck squamous
cell carcinoma [HNSC], clear cell kidney sarcoma [KIRC],
papillary kidney carcinoma [KIRP], lower-grade glioma
[LGG], liver hepatocellular carcinoma [LIHC], lung adeno-
carcinoma [LUAD], lung squamous cell carcinoma [LUSC],
ovarian serous cystadenocarcinoma [OV], pancreatic ductal
adenocarcinoma [PAAD], prostate adenocarcinoma [PRAD],
rectal adenocarcinoma [READ], papillary thyroid carcinoma
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[THCA], and uterine corpus endometrial carcinoma [UCEC])
were included in this study.

Gene-level GISTIC2 SCN profiles (without germline CN
variations) were queried from The Cancer Genome Atlas
(TCGA) GDAC Firehose with using TCGA-Assembler package.
The CN events were detected using Affymetrix SNP Array 6.0
(probe-based) with reference genome of hg19. In addition, CN
values were quantified as log2(CN/2) and zero-centered. The CN
value of 0 means normal copy. For each cancer type, primary
tumor data was selected for downstream analyses. The gene-
level copy number value was calculated by taking mean CN
value of the genomic region, which is implemented in the
“ProcessCNAData” function from TCGA-Assembler package.

We investigated CNs of 261 cytokines (including chemo-
kines and other miscellaneous genes) as previously defined.14

After filtering genes based on GENCODE (vers. 24) annota-
tions and further quality sanitization, 250 genes with available
CN data were used in this study. We defined the remaining
genes as “other PCGs”.

For the processed CN data, we defined a CN gain as a copy
number of >+0.2 (CN value) and a CN loss as a copy number
of <-0.2 (CN value). For each tumor type, the CN alteration
that was found in >25% of tumor specimens was defined as a
high-frequency CN gain or loss.

We also queried focal SCN data of each cancer type from
TCGA database. The regions with focal amplification or dele-
tion across a set of tumors were identified by GISTIC v2.045.
The genes that were focally gained or lost were subjected to
downstream analysis.

TCGA mRNA expression profiles

Level-3 mRNA transcriptomic profiles (RNA-sequencing vers.
2) of 19 TCGA cancers (restricted to primary tumors) were
downloaded using the TCGA-Assembler package. We further
processed mRNA data using the “ProcessRNASeqData” func-
tion implemented in the TCGA-Assembler package. Genes were
further filtered according to GENECODE (vers. 24) annotations
to include only protein-coding genes (PCGs). For the remaining
genes, and for each cancer type, we performed sample-based
quality filtering by removing outliers based on the deviation
(standard deviation of > 5) from the mean connectivity (using
signed, weighted bi-weight midcorrelations).

In addition, we further downloaded and processed the
level-3 microarray profiles of 10 available TCGA cancers,
including BRCA, COAD, KIRC, KIRP, LGG, LUAD, LUSC,
OV, READ and UCEC. The data were further processed using
TCGA-Assembler package. We also selected only primary
tumor tissue specimens for cross-platform validation.

TCGA samples’ clinical information

For each cancer type, clinical data were acquired using the
“DownloadClinicalData” function in the TCGA-Assembler
package. Information about gender, age, and overall survival
time of each patient was extracted for downstream analyses.

caSNP database

We downloaded GISTIC data from caSNP, a comprehensive
cancer CN alteration (CNA) database using single-nucleotide
polymorphism (SNP) array data (~11,500 SNP density across
34 cancer types). We extracted cytokines with GENECODE
(vers. 24) annotations and available CN data (G score =
(
P

log2 CNð ÞðCN> thresholdÞ/N) for analysis.

Cancer cell-line encyclopedia (CCLE) database

Expression, CN, and drug sensitivity data from the CCLE
project were queried from the CCLE portal (https://portals.
broadinstitute.org/ccle). CN data were profiled using an
Affymetrix SNP6.0 array and quantified as log2(CN/2).
Expression data were profiled using the Affymetrix U133+2
array and normalized with the robust multi-array average
(RMA) algorithm, followed by quantile normalization. In
addition, pharmacological profiles contained IC50 information
of 24 anticancer drugs across 504 cell lines.

Microarray data from the gene expression omnibus (GEO)

Microarray data were downloaded from a public repository
(GEO) using the “getGEO” function implemented in
GEOquery.46 We directly adopted the normalized data. We

further log2-transformed their expressions for downstream
analyses. The queried datasets are summarized as follows:

Specificity score analysis

We adopted a specificity scoring method from Yan et al.48

to quantify similarities of expression profiles across TCGA
cancers (19 cancer types), CCLE cell lines, and 13 normal
tissue types from the GTEx project. For each gene, we
calculated the average expression value across samples of
the same cancer types (TCGA and CCLE data) or tissue
types (GTEx data). Then, fraction values were calculated

GEO
accession Platform Normalization Note Publication

GSE36133 Affymetrix
Human
Genome
U133 Plus
2.0 Array

RMA Cancer Cell Line
Encyclopedia (CCLE)

Barretina
et al.15

GSE45878 Affymetrix
Human Gene
1.1 ST Array

RMA The Genotype-Tissue
Expression (GTEx)
project

The GTEx
Consortium47

GSE69226 Illumina
HumanHT-12
V4.0
expression
beadchip

Quantile
normalization

Dovitinib (TKI258) in
lung
adenocarcinoma (3
replicates for each
condition)

Kang et al.22

GSE16179 Affymetrix
Human
Genome
U133 Plus
2.0 Array

MAS5 Lapatinib in HER2-
positive breast
cancer (3 replicates
for each condition)

Liu et al.21
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by dividing each average value using the sum of these
average values across all cancer or tissue types. These
fraction metrics can be used to infer the propensity of a
gene to be expressed in specific cancer or tissue type. We,
therefore, calculated the Jensen-Shannon (JS) divergence
of these fraction metrics with control metrics, which indi-
cated perfect tissue-specific expression. The minimum
value was finally selected to calculate the specificity score
of each gene, i.e., 1-sqrt(JS divergence).

Immune metagene analysis

To infer the extent of infiltrating immune cells in primary
tumor specimens, two gene sets of immune-specific mar-
kers were adopted. The first gene set included 24 cell type-
specific sets containing 577 marker genes. These cell type-
specific sets were adopted from Bindea et al.,19 and con-
tain specifically expressed genes of 24 immune cell types
involved in innate immunity (natural killer [NK] cells, NK
CD56dim cells [NK.CD56dim], NK CD56bright cells [NK.
CD56bright], dendritic cells [DCs], immature [i]DCs, acti-
vated [a]DCs, plasmocytoid [p]DCs, eosinophils, macro-
phages, mast cells, and neutrophils) and adaptive
immunity (B cells [B], CD4 T cells [CD4T], T helper
cells [CD4Th], T central memory cells [Tcm], T effector
memory cells [Tem], T helper 1 cells [CD4Th1], T helper
2 cells [CD4Th2], T follicular helper cells [Tfh], T helper
17 cells [CD4Th17], T regulatory cells [CD4Treg], CD8 T
cells [CD8T], T gamma/delta cells [Tgd], and cytotoxic T
cells [CTL]).

The other gene set was calculated from single-cell mela-
noma data (RNA-seq).20 The queried RNA-seq data were
already sanitized (removed low expressed genes and cells
with poor quality) and the expression of transcripts (Eg,c)
were quantified as log-transformed transcripts per million, i.
e. log2(TPMg,c/10 + 1), where g refers to gene and c refers to
the cell. Immune cells can be further separated into B cells, T
cells, natural killer (NK) cells and macrophages based on
annotations from downloaded data. We further distinguished
T cells into CD8+ T cells (avg.[CD8A, CD8B] > 3.0), Treg cells
(CD4 > 3 and avg.[FOXP3, CD25] > 3.5), and CD4+ Th cells
(CD4 > 3 and avg.[FOXP3, CD25] < 2.5).

We then defined cell type-specific marker genes by
using 3 criteria. For each gene, we first performed
Kruskal-Wallis (KW) test to identify its significant differ-
ential expression across cell types. The genes with KW
p-value less than 0.01 (criteria 1), the gene(s) that were
expressed by greater than 50% of the cells in specific cell
type (criteria 2), as well as with median expression above 2
(i.e. 4-fold higher than another cell types) in a specific cell
type in compared to all other cell types (criteria 3) were
defined as cell type-specific marker genes. Notably, malig-
nant cells were also included for marker genes identifica-
tion. For identified immune-related cell type-specific
marker genes, we therefore averaged the expression values
of these genes to construct 8 cell type-specific metagenes
(cancer-associated fibroblasts, endothelial cells, CD8+ T
cells, CD4+ Th cells, Treg cells, B cells, NK cells and

macrophages). In total, we identified 24 B cell markers
(bCells), 8 CD8+ T cell markers (cd8tCells), 133 macro-
phage markers (macroCells), 25 NK cell markers
(nkCells), five CD4+ T helper cell markers (thCells), and
28 T regulatory cell markers (tregCells). In addition, 142
cancer-associated fibroblast markers (cafCells) and 130
endothelial cell markers (endoCells) were also included
in this analysis.

The above marker genes were subjected to a single-sample
gene set enrichment analysis (ssGSEA) algorithm.49 The
ssGSEA algorithm, as implemented in the GSVA package,
can calculate separate enrichment scores (i.e. metagenes) of
each sample for a given gene set. The enrichment scores
underwent further Z-scoring across samples.

Gene ontology (GO) overrepresentation analysis (ORA)

We conducted a GO biological process (BP) enrichment ana-
lysis using the topGO and GO.db packages. The significance
of enrichment was assessed using Fisher’s exact test. The
parameter algorithm, ‘weight01’, was used to take the GO
hierarchy into account. Benjamini and Hochberg (BH)-
adjusted false discovery rate (FDR) values were calculated to
reduce the likelihood of false positives.

Statistical analyses

To assess the enrichment of focal SCN amplification or
deletion in cytokine genes, we used Fisher’s exact test. The
significant enrichment (or over-representation) was
defined as odds ratio (OR) greater than 1 and p value
less than 0.05 (or 0.01). To correlate gene CN values
with their expressions and immune metagenes with drug
sensitivity indices (IC50 values), we adopted the Pearson’s
product-moment correlation test, with a significant FDR
threshold of 0.05. Exact binomial tests were conducted to
assess the difference between proportions. To test differ-
ences between distributions of specificity scores, we
adopted the Kolmogorov-Smirnov statistic and testing.
When comparing expressions of cytokines across different
tumor stages, we used the Kruskal-Wallis rank sum test
followed by pairwise comparisons using the Tukey and
Kramer (Nemenyi) test. BH-adjusted FDR values were
further calculated. For each gene in each cancer type, we
used a Cox-proportional hazard model (with age and
gender adjustment), implemented in the rms package, to
assess correlations between gene expressions and overall
survival of cancer patients. We selected a BH-adjusted
FDR value of 0.1 as the significance threshold for the
survival analysis. We also included age and gender as
covariates. In drug sensitivity analysis, we used Pearson’s
product moment correlation coefficient to quantify the
correlation between SCN of cytokine genes and drug sen-
sitivity profiles. We further computed tests of the associa-
tions being zero based on t-distribution with (N-2) degree
of freedoms. We defined a drug-CN pair as significance if
BH-adjusted FDR < 0.05. To identify differentially
expressed genes (DEGs) in the drug sensitivity analyses,
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we used a moderated t-test, implemented in the limma
package, to calculate p values of gene expressions across
resistant and sensitive cell lines. In addition, log-multiples
of change were also inferred to represent up- or down-
regulation of each gene in resistant cell lines.

In this study, analyses were conducted using R (http://
www.r-project.org/ and http://cran.r-project.org/) and
Bioconductor (http://www.bioconductor.org/).
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