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ABSTRACT
The accurate diagnosis of endometrial cancer (EC) holds great promise for improving its treatment
choice and prognosis prediction. This work aimed to identify diagnostic biomarkers for differ-
entiating EC tumors from tumors in other tissues, as well as prognostic signatures for predicting
survival in EC patients. We identified 48 tissue-specific markers using a cohort of genome-wide
methylation data from three common gynecological tumors and their corresponding normal
tissues. A diagnostic classifier was constructed based on these 48 CpG markers that could predict
cancerous versus normal tissue with an overall correct rate of 98.3% in the entire repository.
Fifteen CpG markers associated with the overall survival (OS) and development of EC were also
identified based on the methylation patterns of the EC samples. A prognostic model that
aggregated these prognostic CpG markers was established and shown to have a higher discrimi-
native ability to distinguish EC patients with an elevated risk of mortality than the FIGO staging
system and several other clinical prognostic variables. This study presents the utility of DNA
methylation in identifying biomarkers for the diagnosis and prognosis of EC and will help improve
our understanding of the underlying mechanisms involved in the development of EC.
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Introduction

In recent years, gynecologic cancer, including ovarian
cancer (OC), endometrial cancer (EC), cervical can-
cer (CC), vaginal cancer, and vulvar cancer, has
become the third leading cause of death for women
worldwide. Among them, EC is the most commonly
diagnosed gynecological cancer in developed coun-
tries, accounting for approximately 7% of new cancer
cases in women [1]. Currently, FIGO staging – deter-
mined by the International Federation of Gynecology
and Obstetrics –, together with histological classifica-
tion are the main factors used for EC patient stratifi-
cation. The diagnosis of EC is generally based on
histological subtype [2] and other markers identified
via histology and immunohistochemistry. Accurate
diagnosis is crucial when choosing the proper treat-
ment and predicting survival [3]. However, complex
anatomy may influence the accurate identification of
the tissue of origin or tumor type. In addition, the
acquisition of low-quality biopsy specimens may also

increase the diagnostic uncertainty. Therefore, the
improvement of diagnostic certainty is urgent. At
present, molecular characterization is increasingly
applied to predict cancer prognoses and responses
to therapy. In addition, candidate biomarker studies
have consistently identified many specific molecular
alterations in EC, including mutations, DNA methy-
lation, microsatellite instability, copy number altera-
tions, and gene expression patterns [4–8].

Gene promoter DNA methylation, an epigenetic
regulator of gene expression that usually results in
gene silencing [9], is a crucial factor in cancer
progression. Although DNA methylation is highly
cell specific, some changes in methylation are
reproducibly found in nearly all cases of a specific
type of cancer [3]. Therefore, DNA methylation
could be used as a biomarker of cell types to
distinguish ambiguous tissues and infer underlying
cell type proportions [10]. Due to its early occur-
rence in carcinogenesis and its stability and
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detectability using highly sensitive and specific
assays [8], DNA methylation has rapidly gained
clinical attention as a biomarker for the diagnosis
and prognosis of malignant carcinomas such as
lung cancer [11,12]. Although methylation studies
in EC are still preclinical, the understanding of
DNA methylation associated with the EC pheno-
type continues to rapidly improve [13] as genome-
wide technologies continue to develop, such as the
Infinium HumanMethylation27 array and
HumanMethylation450 array.

Other types of tissues, such as cervix, are inevi-
tably mixed with our tissue of interest in the
process of clinical diagnostic sampling. Therefore,
in this study, we focused on the accurate diagnosis
of EC, as well as in the differentiation of EC from
other gynecological cancers. We analyzed genome-
wide methylation profiles from three common
gynecological tumors and their corresponding
normal tissues to identify tissue-specific methyla-
tion markers. A diagnostic classifier was subse-
quently constructed to distinguish the presence of
a malignancy as well as its tissue of origin.
Additionally, we identified prognostic methylation
markers of EC based on DNA methylation pat-
terns and constructed a prognostic model to pre-
dict survival of EC patients.

Materials and methods

Data sources and data processing

As shown in Supplementary Table S1,
HumanMethylation450 array data and the corre-
sponding clinical information from a total of 1303
tissue samples, including three common gynecolo-
gical tumors (n = 576 for primary CC tumors;
n = 464 for primary EC tumors; n = 185 for
primary OC tumors) and their corresponding nor-
mal tissue samples (n = 22 for normal cervix
tissues; n = 46 for normal uterine tissues; n = 10
for normal ovary tissues), were retrieved from The
Cancer Genome Atlas (TCGA) database (http://
cancergenome.nih.gov/), Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/), and International Cancer Genome
Consortium (ICGC) database (https://icgc.org/).
Among these samples, the CC group was mainly
composed of squamous cell carcinoma and most

of the OC group were serous cystadenocarcino-
mas. The EC group mainly included endometrioid
endometrial adenocarcinoma and serous endome-
trial adenocarcinoma (Supplementary Table S2).
Among the EC group samples, the EC cohort
(n = 422 for primary EC tumors, Supplementary
Table S3) from TCGA database was used for the
identification of prognostic markers and the con-
struction of the prognostic model. The entire
cohort was used for the identification of tissue-
specific markers and the construction of the diag-
nostic classifier. The expression profiling cohort of
EC (n = 422 for primary EC tumors) was also
downloaded from the TCGA database.
Normalization of beta values from the methylation
data was performed using the background normal-
ization method. Beta values for any markers that
did not exist across all 1303 samples were
excluded.

Identification of tissue-specific CpG markers

COHCAP, an accurate unique tool for single-
nucleotide resolution DNA methylation analysis
[14], can determine regions showing differential
methylation and has been shown to meet or
exceed the accuracy of all the other algorithms in
previous studies [15]. Therefore, COHCAP was
used to identify the differential methylation of
CpG sites with FDR <0.05 and delta-beta >0.3.
Considering the possibility of mixed tissues, we
not only compared EC with normal uterine tissue
but also with other two gynecologic cancers in
order to exclude the non-specific CpG sites and
improve the specificity of the markers for EC.
Therefore, each type (CC, EC, OC, and their cor-
responding normal tissues) was compared against
all other five types of samples to identify tissue-
specific signatures. For each of the six types of
tissue, the entire cohort was randomly split into
training and testing cohorts at a 2:1 ratio
(Supplementary Table S4). The least absolute
shrinkage and selection operator (LASSO), a vari-
able selection method suitable for high-dimension-
ality on the prescreened training cohort, was
implemented in R language (glmnet package) and
used for variable selection. The tuning parameters
were determined according to the expected gener-
alization error estimated from 10-fold cross-
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validation. As the results can strongly depend on
the arbitrary choice of a random sample split for
sparse high-dimensional data, we adopted the
‘multi-split’ method [16], a remedy to improve
variable selection consistency while controlling
finite sample error. We repeated the ‘randomly
split-screen-selection’ procedure 10 times and
ended up with 10 different sets of candidate sites.
These sites were then aggregated into the most
common ones and subjected to the next round of
LASSO analysis for the identification of tissue-
specific markers.

Construction and evaluation of the diagnostic
classifier

Unsupervised hierarchal clustering according to
the methylation pattern of these tissue-specific
markers was performed using the pheatmap pack-
age in R language. The construction of the diag-
nostic classifier based on the panel of tissue-
specific CpG markers was conducted by perform-
ing LASSO under a multinomial distribution. The
confusion matrix and receiver operating character-
istics (ROC) curves were provided to further eval-
uate the sensitivity and specificity of the diagnostic
classifier in addition to prediction accuracy.

Identification of prognostic CpG markers in EC

The entire cohort of 422 EC samples was randomly
split into training (n = 281) and testing (n = 141)
cohorts at a 2:1 ratio (Supplementary Table S4).
Univariate Cox regression analysis, a univariate pre-
screening procedure, was performed on the training
cohort to remove excessive noise and accelerate the
computational procedure, which was generally con-
ducted prior to applying any variable selection
method [17]. Due to the limitations of the Cox
model with high-dimensional data when the sam-
ple-size-to-variables ratio is too low (such as <10:1)
[18], a Cox model regularized by LASSO penalty
was conducted in Coxnet package for further vari-
able selection. The optimal step was determined by
the expected generalization error estimated from
10-fold cross-validation. Just as in the aforemen-
tioned procedure, we repeated the ‘randomly split-
screen-selection’ procedure 10 times to ensure the
stability of the variable selection procedure. In

addition, the prognostic markers were ultimately
identified by performing Coxnet based on the
most common markers present in these sets of
candidate sites.

Construction and evaluation of the prognostic
model of EC

Using the training cohort of EC patients, the prog-
nostic model was constructed by fitting the regular-
ized Cox regression model using markers selected at
the optimal step as the covariates. The predictability
of the model was evaluated by two criteria: the
proportion of explained randomness [19], calculated
from the training cohort, and the C-index [20],
computed from the test cohort. For the prognostic
model, the survival risk score for each patient was
calculated by summing the product of the methyla-
tion level of a marker and its corresponding regres-
sion coefficient. For the model proposed by O’Mara
et al., the prognostic score for each patient (used for
plotting ROC curve in Supplementary Figure S3A)
was calculated using the panel of nine gene signa-
ture (PDLIM1, FBP1, NLRC3, ST6GALNAC1,
C4BPA, PPP2R3A, TRIM46, EPH2, and PRRG1),
as previously described [21]. The ROC curve was
plotted for 5-year OS prediction to estimate the
sensitivity and specificity of the prognostic model.
The optimal cut-off risk score was obtained based
on the maximum Youden index in the ROC curve
and was used to stratify patients into distinct prog-
nostic groups. Non-parametric (Kaplan-Meier) and
semi-parametric (Cox proportional hazards regres-
sion prediction) curves were used to analyze the
correlations between variables and OS. Hazard
ratio (HR) and P values were calculated to compare
survival curves by using the ‘survdiff’ function in R
language. Wilcoxon rank sum test implemented in
survcomp package was employed to compare any
two integrated areas under the curves (IAUC)
through the results of time dependent ROC curves
at some points in time.

Co-expression and functional enrichment
analyses of prognostic markers

The correlations between the methylation levels of
the prognostic markers and the expression levels
of regulated genes were calculated by Spearman’s
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correlation test. The co-expression relationships
between the genes were computed by Pearson’s
correlation test. Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses of
the co-expressed genes were performed using the
clusterProfiler package [22]. Hypergeometric test-
ing was used as the statistical method, while whole
human genes were used as background genes.
Only the top 35 pathways with a P value threshold
of <0.05 were shown and considered to be signifi-
cantly enriched functional categories.

Results

Identification of the tissue-specific methylation
markers

The entire cohort, comprised of CC (n = 576), EC
(n = 464), OC (n = 185) and their corresponding
normal tissue samples, was incorporated in this
analysis (Supplementary Table S1). By perform-
ing differential methylation analyses, a list of tis-
sue-specific methylation sites for six types of
tissues was obtained. Subsequently, the number
of these markers was narrowed down to select
optimal signatures by using LASSO. Repeated cal-
culations based on 10 training cohorts (randomly
partitioned cohorts) were performed continuously
to stabilize the variable selection procedure. As a
result, 10 sets of candidate sites (average: 96.4,
minimum: 84, maximum: 117) were identified
from these 10 training cohorts.

Based on the candidates present in at least 7 out
of 10 sets, a panel of 48 CpG sites was ultimately
selected as tissue-specific methylation markers for
these six types of tissues (Supplementary
Table S5). Unsupervised hierarchal clustering of
entire cohort samples according to the methylation
pattern of these tissue-specific markers was per-
formed, and the heatmap showed that most of the
same types of tissues clustered together apart from
a few exceptions (Figure 1(a)). Similarly, the rela-
tively obvious discrimination between cancer and
normal tissue was also observed when cohorts
were stratified by cervix, uterus, and ovary
(Supplementary Figure S1). These results reveal
that these methylation markers might be used to
distinguish the three types of cancer tissue, as well
as to differentiate cancer tissue from normal tissue.

Construction of a diagnostic classifier based on
tissue-specific markers

A multiclass prediction system (diagnostic classifier)
was constructed based on this panel of tissue-specific
markers to predict the group membership of the
tissue samples (Supplementary Table S6). When
using this diagnostic classifier, the overall correct
diagnosis rates in the training and testing cohorts
were 99.1% and 96.8%, respectively (Table 1). And
an overall correct rate of 98.3% was observed when
this diagnostic classifier was applied to the entire
cohort (Table 1). Remarkably, no false-positive case
was found in the entire cohort, suggesting the high
prediction accuracy of this classifier. The ROC curves
for various tissue predictions were plotted to evaluate
the sensitivity and specificity of this classifier (Figure 1
(b)), and the area under the ROC curve (AUC) of
each tissue was consistently higher than 0.97. Taken
together, these results demonstrate the robustness of
these methylation patterns in identifying the presence
of a malignancy, as well as its tissue site of origin.

Identification of prognostic methylation markers
in EC

In this section, we explored the prognostic utility of a
methylation signature in EC. Using the training data,
CpG sites associated with OS were identified by
fitting univariate Cox proportional hazard regression
models with P values <0.05. Meanwhile, only signif-
icantly differentially methylated sites between EC
and normal uterine tissues were considered for
further analysis. As a result, an average of 881
(min.: 557, max.: 1135) OS-related CpG sites was
retained in 10 randomly generated training cohorts.
By fitting the Cox model regularized by LASSO
penalty, 10 sets of candidate sites (avg.: 27, min.: 6,
max.: 56) were identified from these 10 training
cohorts. A panel of 15 sites was finally selected as
methylation markers using Coxnet based on the
candidates present in at least 3 out of 10 groups.

Construction of a methylation prognostic model
for predicting OS in EC

Subsequently, the DNA methylation levels of the
15 methylation markers in a newly generated
training cohort was used to construct a survival
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risk score system (prognostic model) and, thus, the
regression coefficient for each CpG was obtained
(Table 2). On average, the proportion of explained
randomness calculated from the training data was
0.78 (min.: 0.72, max.: 0.82) and the average
C-index calculated from the test data was 0.83
(min.: 0.78, max.: 0.88), indicating the good pre-
dictability of these methylation signatures.

In detail, the survival risk score was calculated
based on the following formula: Risk
score = [1.50 × beta value (BV) of cg00143527] +
(−0.03 × BV of cg20072442) + (1.26 × BV of
cg22032364) + (1.71 × BV of cg00463767) +
(−1.55 × BV of cg22912497) + (−0.11 × BV of
cg04385765) + (−0.37 × BV of cg19832521) +
(2.72 × BV of cg11793269) + (−0.97 × BV of

Figure 1. Performance of the DNA methylation diagnostic classifier in tissue prediction using the entire cohort. (A) Unsupervised
hierarchical clustering and heatmap of the entire cohort based on the methylation patterns of the tissue-specific markers selected.
(B) ROC curves were generated to predict the six types of cancerous and normal tissues.
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cg14537713) + (−0.72 × BV of cg14359824) +
(1.81 × BV of cg21233675) + (0.78 × BV of
cg05165559) + (−1.20 × BV of cg26697065) +
(−1.15 × BV of cg01750724) + (−1.14 × BV of
cg03241649). Based on the formula above, a higher
score indicates an increased risk of mortality,
whereas a lower score denotes a better outcome.
Based on the BV of these 15 markers in the train-
ing cohort, survival risk scores were calculated for
each patient. In addition, the 281 patients were
partitioned into two groups according to the med-
ian of risk score. The Kaplan-Meier curve for these
two groups was plotted, which demonstrated
a significant difference between the OS for
patients in Group 1 and Group 2 (P <0.001,
Supplementary Figure S2A). The analogous situa-
tion was observed for the test cohort P <0.001,
Supplementary Figure S2B). These findings indi-
cate that the methylation prognostic model might
be used to predict the OS for EC patients.

Performance evaluation of the methylation
prognostic model

For entire EC cohort (n = 422), the risk score of
EC patients ranged from 0.072 to 37.733 (Figure 2
(a,b)). The time-dependent ROC curve for 5-year
OS prediction was plotted with an AUC of 0.898
(Figure 2(c)), confirming the ability of this methy-
lation model to predict prognosis in EC patients.
The patients were divided into 2 risk groups
(Figure 2(a,b)) based on the optimal cut-off risk
score (1.311, Figure 2(c)) determined by the max-
imum Youden index in the ROC curve. More
specifically, 278 (65.88%) patients were classified
into the high-risk group, whereas the remaining
144 (34.12%) patients were categorized into the
low-risk group. It is noteworthy that there was a
significant difference in the number of deaths
between these two groups (40.28% in high-risk
vs. 5.04% in low-risk, P <0.001, Figure 2(b)). A
significant difference in the 5-year OS between the
2 risk groups was demonstrated by a Kaplan-Meier
curve (HR = 10.75, P <0.001, Figure 2(d)) and a
Cox proportional hazards regression prediction
curve (HR = 11.31, P <0.001, Figure 2(e)). The
high concordance between the non-parametric
and semi-parametric prediction curves indicated
the possibility of accurately predicting a newTa
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patient’s survival status for any future time point
using this methylation model.

FIGO stage and histological type correlate with
the prognosis of EC and are very important mar-
kers in achieving optimal treatment outcomes.
Therefore, several clinical variables potentially
associated with prognosis, including age, FIGO
stage, histological type, and histologic grade,
together with this methylation model, were
included in univariate and multivariate Cox
regression analyses using entire and test EC
cohorts (Table 3), which indicated the relatively
high prognostic ability of this methylation model
in predicting OS of EC patients (all P <0.001).
These findings suggest that this model might be
an independent classifier for prognostic predic-
tions of EC patients. Additionally, survival analysis
was further performed to evaluate the effectiveness
of the prognostic model in subsets of patients with
the clinical variables mentioned above. When stra-
tified by these variables, our model also displayed
a clinical and statistical significance (all P <0.001,
Table 4). For instance, EC patients in the same
FIGO stage [early stage (I/II stage in Figure 3(a))
and advanced stage (III/IV stage in Figure 3(b))
could be successfully separated into high-risk and
low-risk subgroups by plotting both Kaplan-Meier
curves and Cox proportional hazards regression
prediction curves (all P <0.001, Figure 3).

Subsequently, ROC curve analysis was performed
to compare the sensitivity and specificity in OS
prediction among these different prognostic vari-
ables (Figure 4(a)). Here, we assumed that a larger
AUC value of ROC curves implies a better model

for prediction [23]. As shown in Figure 4(b), the
IAUC value of the methylation prognostic model
was significantly higher than that of the FIGO stage,
histological type, and histologic grade (all <0.001).
These findings further demonstrate that this model
is a novel prognostic marker with better predictive
ability than other clinical variables. Remarkably, a
combined model comprised of the methylation
model and FIGO stage (Figure 4(a,b)) had a larger
AUC than those of the prognostic factors alone and
other forms of combined models, suggesting that
our model might be used to assist prognosis predic-
tions for EC patients. In addition, a nine-gene sig-
nature proposed by O’Mara et al. [21] was also
included in this analysis (Figure 4), which demon-
strated its ability to predict the prognosis for EC
(Supplementary Figure S3). By comparison, our
model exhibited a significantly increased IAUC
value (P < 0.001).

Characterization and functional analysis of the
prognostic methylation markers

As for the characteristics of these methylation mar-
kers, higher methylation levels of the six markers
were associated with shorter OS (coefficient >0)
whereas higher methylation levels of the remaining
nine markers were related to longer OS (coefficient
<0, Table 2). A comparison of the DNAmethylation
levels of these 15 prognostic marker sites between
EC and normal uterine tissues was conducted using
the EC subset (n = 464 for primary EC tumors and
n = 46 for normal uterine tissues) of the full cohort.
Remarkably, the methylation level of eight markers

Table 2. Fifteen methylation markers included in the prognostic model of EC.

Methylation marker Coefficient Chromosome location Gene name
Methylation level association

with poor prognosis

cg00143527 1.50 Chr15: 81,292,171 MESDC1 High
cg20072442 −0.03 Chr2: 80,530,255 LRRTM1 Low
cg22032364 1.26 Chr13: 26,112,093 ATP8A2 High
cg00463767 1.71 Chr2: 63,282,043 OTX1 High
cg22912497 −1.55 Chr19: 38,974,117 RYR1 Low
cg04385765 −0.11 Chr7: 5,122,887 - Low
cg19832521 −0.37 Chr14: 27,065,974 NOVA1 Low
cg11793269 2.72 Chr5: 2,752,545 C5orf38; IRX2 High
cg14537713 −0.97 Chr6: 27,258,466 - Low
cg14359824 −0.72 Chr9: 72,435,533 C9orf135 Low
cg21233675 1.81 Chr12: 66,122,497 - High
cg05165559 0.78 Chr20: 62,037,758 KCNQ2 High
cg26697065 −1.20 Chr16: 30,456,379 SEPHS2 Low
cg01750724 −1.15 Chr8: 1,570,635 DLGAP2 Low
cg03241649 −1.14 Chr19: 44,405,924 - Low
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were significantly downregulated in the 464 EC
samples compared with the 46 normal uterine tis-
sues (all FDR <0.001, Figure 5(a)). In contrast, the
methylation level of the remaining seven markers
were upregulated in EC tissues (all FDR <0.001,
Figure 5(a)). These findings suggest that these 15
selected markers may be not only associated with
prognosis of EC but also involved in the develop-
ment of EC.

The relationship between the 15 selected markers
and their regulated genes was annotated (Table 2)
and subsequently analyzed using the EC cohort
(n = 422) and its corresponding gene expression

profiling cohort (n = 422). Based on Spearman’s
correlation tests, the correlation between methyla-
tion level and gene expression was significantly
inversed for MESDC1 (P = 2.38E-06), LRRTM1
(P = 1.65E-07), NOVA1 (P = 1.06E-51), C5orf38
(P = 1.33E-11), IRX2 (P = 4.92E-10), C9orf135
(P = 9.10E-08), and SEPHS2 (P = 4.55E-16), and
significantly positive for ATP8A2 (P = 1.50E-21),
OTX1 (P = 9.21E-23), RYR1 (P = 0.012), KCNQ2
(P = 5.04E-09), and DLGAP2 (P = 6.76E-10).

To further investigate the potential biological
roles of the genes regulated by the 15 methylation
markers, the co-expression relationships between

Figure 2. Performance of the methylation prognostic model in the OS prediction of patients with EC. The distribution of survival risk
score (A) and survival (or censoring) time (B) of EC patients in the entire EC cohort (n = 422). (C) The ROC curve was generated for
5-year OS predictions with an AUC of 0.898. An optimal cut-off value (1.311), shown as a black straight line in A and B, was obtained
to divide the patients into low- and high-risk groups. Kaplan-Meier curves (D) and Cox proportional hazards regression prediction
curves (E) were plotted to analyze the correlations between this model and OS, respectively. Patients in the high-risk group exhibited
a poorer OS than patients in the low-risk group (all P <0.001).
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these twelve genes and all genes in the EC expres-
sion dataset were evaluated. A co-expression net-
work was further constructed based on the
Pearson’s correlation coefficients (>0.40,
Figure 5(b)), and the expression of 1148 genes
was highly correlated with that of at least one of
the twelve genes. Subsequently, these co-expressed
genes were included in KEGG enrichment ana-
lyses. The top 35 significantly enriched pathways
(P <0.05) are shown in Figure 5(c). In detail, these
genes are associated with various signaling path-
ways, such as the mitogen-activated protein kinase
(MAPK) signaling pathway, hippo signaling path-
way, and oxytocin signaling pathway, as well as
several pathways involved in cancer, including

hepatocellular carcinoma, endometrial cancer,
and breast cancer (Figure 5(C)).

Discussion

This study demonstrates the utilization of a series
of methylation signatures to identify cancer tissue
of origin. Although we focused on the diagnosis of
EC here, we also included other two common
gynecologic tumors (and their corresponding nor-
mal tissues) in the identification of tissue-specific
methylation markers to improve the specificity of
our diagnostic classifier in these common gyneco-
logical cancers. After multiple screening, a panel of
48 tissue-specific markers was ultimately

Table 3. Univariable and multivariable Cox regression analyses of potential prognostic variables for EC patients.

Variables

Entire EC cohort Test EC cohort

HR (95% CI) P value HR (95% CI) P value

Univariable analysis
Age >60 vs. ≤60 2.27 (1.25–4.15) 0.007 2.18 (0.46–0.73) 0.16
FIGO stage Advanced stage vs. Early stage 4.55 (2.83–7.31) ###### 4.89 (2.04–11.68) ######
Histologic grade G3 vs. G1/G2 3.61 (1.85–7.05) ###### 5.16 (1.20–22.19) 0.03
Histological type MSE vs. EEA 2.36 (0.92–6.04) 0.07 5.50 (1.45–20.83) 0.01

SEA vs. EEA 3.13 (1.93–5.08) ###### 5.14 (2.00–13.24) ######
Methylation model High risk vs. low risk 11.31 (6.27–20.38) ###### 18.00 (6.00–54.00) ######
Multivariable analysis
Age >60 vs. ≤60 1.41 (0.75–2.63) 0.28 0.78 (0.22–2.77) 0.70
FIGO stage Advanced stage vs. Early stage 3.13 (1.90–5.18) ###### 5.31 (1.78–15.89) ######
Histologic grade G3 vs. G1/G2 1.37 (0.64–2.90) ###### 2.18 (0.43–10.99) 0.34
Histological type MSE vs. EEA 1.04 (0.39–2.76) 0.94 1.82 (0.38–8.66) 0.45

SEA vs. EEA 0.76 (0.43–1.35) 0.35 0.41 (0.10–1.63) 0.20
Methylation model High risk vs. low risk 8.78 (4.55–16.95) ###### 22.41 (5.58–89.98) ######

Advanced stage: I/II stage; Early stage: III/IV stage; EEA: Endometrioid endometrial adenocarcinoma; MSE: Mixed serous and endometrioid; SEA:
Serous endometrial adenocarcinoma.

Table 4. Stratification analysis of the methylation prognostic model.

Subgroup

Entire EC cohort Test EC cohort

No. of Patients HR (95% CI) P value No. of Patients HR (95% CI) P value

Age
≤60 132 16.90 (3.90–73.20) 3.58E-09 45 Inf 7.09E-08
>60 290 8.32 (4.86–14.24) 1.92E-14 96 8.97 (3.06–26.32) 2.82E-06
FIGO stage
Early stage 299 7.11 (3.00–16.89) 2.70E-09 103 8.37 (1.60–43.84) 2.56E-04
Advanced stage 123 11.20 (6.10–20.55) 5.07E-09 38 19.68 (6.05–64.02) 4.50E-05
Histological type
EEA 303 9.80 (4.15–23.12) 8.33E-15 104 8.90 (0.89–88.70) 1.63E-04
SEA 98 6.16 (3.03–12.53) 5.46E-04 29 Inf 7.09E-03
MSE 21 14.03 (0.72–272.79) 7.24E-05 8 Inf 4.31E-02
Histologic grade
G1/G2 151 13.04 (1.70–100.08) 1.84E-07 52 13.67 (0.06–3338.65) 1.18E-02
G3 271 8.39 (5.03–14.00) 1.06E-13 89 15.15 (5.44–42.22) 5.92E-09

Advanced stage: I/II stage; Early stage: III/IV stage; EEA: Endometrioid endometrial adenocarcinoma; MSE: Mixed serous and endometrioid; SEA:
Serous endometrial adenocarcinoma.
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identified, which could distinguish the origins of
these three cancers as well as differentiate them
from their corresponding normal tissues. A diag-
nostic classifier was subsequently constructed
based on this panel of tissue-specific markers, fol-
lowed by performance evaluations using fusion
tables and ROC curves, which demonstrated the
accuracy and effectiveness of this classifier in the
diagnosis of EC as well as two other gynecological
tumors.

Beyond that, we also utilized methylation signa-
tures to predict prognosis in EC patients. By per-
forming multiple screening procedures, 15 CpG

sites were selected as methylation markers that
may be not only associated with the prognosis of
EC but also involved in the development of EC.
Twelve genes, including MESDC1, LRRTM1,
NOVA1, C5orf38, IRX2, C9orf135, SEPHS2,
ATP8A2, OTX1, RYR1, KCNQ2, and DLGAP2,
that corresponded to the selected CpG markers
were determined via annotation and correlation
analyses. It is noteworthy that some of these
genes have been reported in previous studies asso-
ciated with cancer. For example, MESDC1 is
thought to have an oncogenic function in human
bladder cancer [24]. C5orf38 and IRX2 may be

Figure 3. Performance of the methylation prognostic model in the OS prediction of EC patients stratified by FIGO stage. (A, B) EC
patients with early (FIGO I/II stage) and advanced stage (FIGO III/IV stage) were divided into high- and low-risk groups based on their
cut-off value, respectively. By plotting Kaplan-Meier curves and Cox proportional hazards regression prediction curves, the prognostic
model capability for OS prediction of EC patients with early stage (A) and advanced stage (B) was assessed individually.
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closely implicated in the carcinogenesis of intest-
inal type gastric carcinomas [25]. OTX1 is
involved in human colon carcinogenesis and may
serve as a potential therapeutic target for human
colorectal cancer [26]. To further investigate the
potential biological roles of the genes regulated by
these 15 methylation markers, we constructed a
co-expression network comprising these 12 genes
and their 1148 highly correlated genes. Functional
enrichment analysis showed that these genes were
enriched in several pathways in cancers, including
hepatocellular carcinoma, endometrial cancer,
melanoma, breast cancer, and gastric cancer.
Moreover, a significant enrichment of these genes
in various signaling pathways, such as the MAPK
signaling pathway, hippo signaling pathway, oxy-
tocin signaling pathway, and cell adhesion mole-
cule pathways, was also observed. Oxytocin may
play a regulatory role in tumor growth [27], and
the presence of the oxytocin receptor in endome-
trial cancer cells represents a key factor in endo-
metrial cancer progression [28]. The Ras-activated
MAPK signaling pathway has been well studied
[29] and is known to regulate the transcription of
genes that are important in the cell cycle [30]. The
hippo pathway plays a key role in regulating organ
size and tumorigenesis by inhibiting cell

proliferation, promoting apoptosis, and regulating
stem/progenitor cell expansion [31], which repre-
sent potential therapeutic targets in diseases such
as degeneration and cancer [32]. Cell adhesion
molecules play an important role during the pro-
gression of a wide variety of human diseases
including cancer. Through their adhesive activities
and their dialogue with the cytoskeleton, adhesion
molecules directly influence the invasive and
metastatic behavior of tumor cells and, by their
signaling function, they can be involved in the
initiation of tumorigenesis [33]. A prognostic
model was ultimately constructed based on these
15 selected CpG markers and further evaluated by
plotting ROC curves and non-parametric and
semi-parametric prediction curves of OS predic-
tion, confirming the ability of this methylation
model to predict prognosis in EC patients.

Notably, histological typing correlates not only
with prognosis but also with molecular alterations,
expression, and methylation profiles in each tumor
type [5,34]. Nevertheless, there is some overlap
between different types of EC, both morphologi-
cally and molecularly, as noted by the distribution
of several genetic alterations described earlier [13].
Moreover, the limitation of histological classifica-
tion in prognostic predictions has been

Figure 4. Comparison of the survival prediction power of the potential prognostic variables for EC. (A) The time-dependent ROC
curves for the 5-year OS prediction of the potential prognostic variables. (B) Comparison of the integrated areas under the ROC
curves of the potential prognostic variables for EC. The entry values of the table represent the P values calculated from the Wilcoxon
rank sum test for the comparison between larger IAUC and smaller IAUC.

500 J. YING ET AL.



demonstrated in clinical practice [35]. Therefore,
the various histological types of these three gyne-
cologic tumors (e.g., endometrioid endometrial
adenocarcinoma, and serous endometrial adeno-
carcinoma in EC) were all included in this work to
construct a robust model that would be applicable
for each type of EC. It is worth noting that muta-
tion profile and clinical outcome of mixed endo-
metrioid-serous endometrial carcinomas are
different from that of pure endometrioid or serous
carcinomas [36]. Therefore, the mixed

endometrioid-serous endometrial carcinoma was
included in the analyses.

Further evaluation procedure was conducted
using the entire and test EC cohorts; the prognos-
tic model was demonstrated to be an independent
prognostic factor capable of predicting OS of EC
patients. Additionally, a comparison of the survi-
val prediction power of this model with those of
other clinical prognostic variables as well as a
nine-gene signature was also performed, further
demonstrating that our model is a novel

Figure 5. Differential methylation analysis of 15 selected markers and the co-expression analysis of their regulated genes. (A) DNA
methylation levels of the 15 markers in 464 EC tissues and 46 normal uterine tissues. The distributions of the methylation level data
are represented by box plots and the FDRs were calculated by COHCAP. (***FDR <0.001) (B) Cytoscape visualization of the co-
expression of the 12 genes regulated by the 15 methylation markers with other genes (Pearson’s correlation coefficient >0.40) (C)
Functional enrichment of the co-expressed genes in EC with the 12 annotated genes.
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prognostic marker with higher accuracy that might
be used to assist in prognosis prediction for EC
patients.

Several studies have proposed a series of novel
candidate prognostic or diagnostic markers in EC
based on gene expression profiles [21,37,38] and
protein assays [35] that mainly depended on fresh-
frozen specimens. Some biomarkers previously
identified usually contained only a single marker
[39,40] or several markers [37,38] that lacked risk
score formulas or biomarker coefficients, which
restricted the widespread use of these biomarkers
in clinical practice. Integrating multiple biomar-
kers into a single model would substantially
improve prognostic value compared with a single
biomarker alone [41]. Here, we not only identified
methylation biomarkers for the diagnosis and
prognosis of EC but also constructed two models
with specific marker coefficients, which make this
system both efficient and convenient for clinical
application. Notably, methylation experimentation
requires only a small amount of tissue to obtain
adequate DNA, thus potentially allowing the use of
lower-quality biopsies, such as formalin-fixed and
paraffin-embedded (FFPE) material. Therefore,
this methylation classifier can also be efficiently
applied to the identification of EC in cases without
adequate tissue yields or quality for histological
diagnosis, which requires the preservation of the
tissue architecture. Compared with other methyla-
tion profile analyses used in the diagnosis of EC
[8], our models were established based on the
HumanMethylation450 array data that includes
wider CpG site coverage. Although our diagnostic
classifier contains more methylation markers, it
has a high discriminative ability to distinguish
not only three gynecological cancers but also
their corresponding normal tissues.

The limited available data about EC and two other
gynecological cancers (CC and OC) impose some
limitations to this study that should be acknowledged.
First, due to the limited sample amount currently
available in the database, especially normal tissue
samples, more samples are required to further prove
the diagnostic and prognostic values of our models in
patients before they are applied in the clinic. Second,
only a fraction of human CpG sites were included in
the analysis, although array data with wider CpG site
coverage (HumanMethylation450) was incorporated

into this work. Thus, the markers identified here may
not be the best signatures among all CpG candidate
sites that are potentially associated with the diagnosis
or prognosis of EC. Finally, we lack information on
the mechanisms behind the diagnostic and prognos-
tic values of these markers in EC, and experimental
studies on these CpG markers will provide valuable
information to further enhance the understanding of
their functional roles. However, despite these draw-
backs, ourmodels exhibited potentially powerful abil-
ities in the diagnosis and prognosis of EC patients.

In summary, we constructed a methylation diag-
nostic classifier based on 48 tissue-specific markers
in three common gynecological cancers that could
accurately and effectively identify the presence of a
malignancy as well as its site of origin. We also
established a robust prognostic model aggregating
15 CpG markers that can be used to efficiently assist
in prognosis prediction for EC patients and may
help to guide the application of rational therapy in
clinical practice. In addition, this study will help to
improve the understanding of the underlying
mechanisms involved in the development of EC.
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