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Weighting genomic and genealogical information for genetic parameter estimation 
and breeding value prediction in tropical beef cattle
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ABSTRACT: A combined matrix that exploits ge-
nealogy together with marker-based information 
could improve the selection of elite individuals in 
breeding programs. We present genetic parame-
ters for adaptive and growth traits in beef cattle by 
exploring linear combinations of pedigree-based 
(A) and marker-based (G) relationship matrices. 
We use a data set with 2,111 Brahman (BB) and 
2,550 Tropical Composite (TC) cattle with gen-
otypes for 729,068 SNP, and phenotypes for five 
traits. A weighted relationship matrix (WRM) com-
bining G and A was constructed as WRM  =  λG 
+ (1 − λ)A. The weight (λ) was explored at values 
from 0.0 to 1.0, at 0.1 intervals. Additionally, four 
alternative G matrices, in the WRM, were evaluated 
according to the selection of SNP used to generate 
them: 1) Gw: all autosomal SNP with minor allele 
frequency (MAF)  >  1%; 2)  Gg: autosomal SNP 
with MAF > 1% and mapped inside to gene coding 
regions; 3) Gp: autosomal SNP with MAF > 1% and 
previously reported to have significant pleiotropic 
effect in these two populations; and 4)  Gc: auto-
somal SNP with MAF > 1% and with significant 
correlated effects previously reported in both BB 
and TC populations. In addition, two A matrices 

were evaluated: 1) A: all relationships between ani-
mals were considered after tracing back known 
ancestors; and 2) Ad: a distorted A matrix where a 
random 1% of the off-diagonal nonzero values were 
set to zero to simulate relationship errors. Five in-
dependent Ad matrices were explored each with 
a different random 1% of relationships masked. 
Criteria for comparing the resulting WRM included 
estimates of heritability (h2) and cross-validation ac-
curacy (ACC) of genomic estimated breeding val-
ues. The choice of WRM had a greater impact on h2 
than on ACC estimates. The 1% errors introduced 
in pedigree relationships generated large distortion 
in genetic parameters and ACC estimates. However, 
employing a λ > 0.7 was an efficient mechanism to 
compensate for the errors in A. Additionally, al-
though significant (P-value < 0.0001), we found no 
consistent relationship between the type of SNP 
used to compute G and h2 or ACC estimates. We 
devised the optimal value of λ for maximum h2 and 
ACC at λ = 0.7 suggesting a 70% and 30% weight-
ing to genomic and genealogical information, re-
spectively, as an optimal strategy to compensate for 
pedigree errors, to improve genetic parameters esti-
mates and lead to more accurate selection decisions.
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INTRODUCTION

The notion that realized relationships among 
individuals inferred from high-density SNP 

genotypes are more accurate than the expected 
from identity-by-descent theory and based on 
pedigree information helps to justify the invest-
ment in genomic technologies in livestock and 
plant breeding programs (Hickey et  al., 2017). 
However, the choice of  numerical measures of 
relatedness can be driven by optimizing criteria 
that are relevant to parameters, such as model 
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likelihood and predictive accuracy (Speed et  al., 
2014). A  linear combination of  the pedigree- (A) 
with a genomic-based (G) relationship matrix is a 
common approach for single-step genomic BLUP 
(Misztal et al., 2013). A combined matrix that sim-
ultaneously exploits genealogy and marker infor-
mation could provide more reliable estimates of 
genetic parameters and potentially capture parts 
of  the genetic covariances among traits that are 
not accounted by either A or G alone (Momen 
et al., 2017). The optimal weighting factor (λ) to be 
assigned to G and A will depend on a number of 
attributes. These include genotype density, amount 
of  incorrect or missing pedigree available, gen-
etic architecture and heritability (h2) of  the trait, 
and number of  animals and phenotypes used in 
the genetic evaluation. For instance, high λ val-
ues attributed to the genomic information instead 
pedigree-based information have been success-
fully used in two situations where there were pop-
ulations with smaller reference data set sizes and 
traits with low h2 (Rodríguez-Ramilo et al., 2014). 
Instead of  employing an ad hoc value for λ, a sys-
tematic statistical assessment of  possible λ values 
will assist animal breeding programs.

Thus, the aim of this study was to comprehen-
sively explore linear combinations of A and G and 
their impact on estimates of genetic parameters 
and accuracy of genomic predictions using a range 
of growth and adaptive phenotypes and two popu-
lations of tropical beef cattle.

MATERIALS AND METHODS

Animal Care and Use Committee approval was 
not obtained for this study because historical data 
were used and no animals were handled as part of 
the study. Analyses were performed on phenotypic 
data and DNA samples that had been collected 
previously as part of the Australian Cooperative 
Research Centre for Beef Genetic Technologies 
(Beef CRC; http://www.beefcrc.com/).

Animals, Phenotypes, and Genotypes

Animals, phenotypes, and genotypes used in 
this study were a subset of those used in Porto-
Neto et al. (2014). In brief, we used data of 2,111 
Brahman (BB) and 2,550 Tropical Composite 
(TC) cows and bulls genotyped using either the 
BovineSNP50 (Matukumalli et  al., 2009) or the 
BovineHD (Illumina Inc., San Diego, CA) that 
includes more than 770,000 SNP. Animals that were 
genotyped with the lower density array had their 

genotypes imputed to higher density as described 
previously by Bolormaa et al. (2014).

The following five phenotypes were explored 
(Porto-Neto et  al., 2015): 1)  SHEATH: penile 
sheath score expressed as the correlated trait navel 
score in females and scored from 1 (very pendu-
lous) to 9 (extremely tight against the ventral sur-
face of the animal); 2) COLOR: coat color scored 
on a light (1) to dark (6) scale; 3) COAT: recorded 
during post weaning cool months at <12 mo of 
age. Subjectively scored at 1/3 score increments 
between 1 (extremely short and sleek coat) and 7 
(very woolly coat). Coat scores were converted to a 
continuous 21-point scale; 4) COND: body condi-
tion visually assessed at an average of 30 mo of age 
at the end of a growing (wet) season. Subjectively 
scored at 1/3 score increments from 1 to 5, and sub-
sequently converted to a continuous 15-point scale; 
and 5)  YWT: yearling weight (kg); average, min-
imum, and maximum of age at yearling weight was 
360, 302, and 416 d for BB, and 361, 319, and 403 d 
for TC, respectively.

Pedigree-Based, Genome-Based, and Weighted 
Relationship Matrices

The A matrix consisted of the pedigree data 
of 2,111 BB and 2,550 TC animals with pheno-
typic records and their known ancestors, resulting 
in 3,030 and 3,882 animals for BB and TC cattle, 
respectively. Also one alternative distorted A ma-
trix (Ad) was computed by setting to zero a random 
1% of nonzero off-diagonal values. In this case, the 
random sampling procedures was performed five 
times and the averaged heritability and accuracy 
estimates of distorted A matrix were showed in 
this paper.

Four alternative G matrices were evalu-
ated according to the selection of SNP used to 
generate them:

(1) � Gw: all autosomal SNP with minor allele fre-
quency (MAF) > 1%. This criterion resulted in 
651,253 SNP for BB and 689,818 SNP for TC;

(2) � Gg: autosomal SNP with MAF  >  1% and 
mapped inside gene coding regions according 
to the Bovine genome annotation and mining 
tools of Elsik et  al. (2016). This criterion 
resulted in 250,829 SNP for BB and 266,235 
SNP for TC;

(3) � Gp: autosomal SNP with MAF > 1% and with 
significant (P < 0.01) pleiotropic effect accord-
ing to the test by Bolormaa et al. (2014) and 
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resulting in 58,121 SNP for BB and 60,148 
SNP for TC; and

(4) � Gc: autosomal SNP with MAF > 1% and with 
significantly correlated effects in the two pop-
ulations, i.e., either always positive or always 
negative, according to the genomic correl-
ation study of Porto-Neto et  al. (2015) and 
resulting in 31,419 SNP for BB and 31,441 
SNP for TC.

The number of SNP in common between Gg 
and Gp, Gg and Gc, and Gp and Gc in the BB (TC) 
population was 22,982 (23,775), 11,166 (11,178), and 
3,256 (3,259), respectively. Also, there were 1,234 
(BB) and 1,235 (TC) SNP in common across Gg, Gp, 
and Gc (Supplementary Figure S2). In all cases, the 
G matrices were computed separately for each breed 
(BB or TC) and each SNP group (Gw, Gg, Gp, or Gc) 
following Method 1 of VanRaden (2008).

To compute the weighted relationship ma-
trix (WRM), we followed previously described 
approaches in Aguilar et  al. (2009), more recently 
implemented in Momen et al. (2017). Accordingly, 
the WRM was computed as follows: WRM = λG + 
(1 − λ)A, where λ is a real parameter bounded be-
tween 0 and 1, inclusively. To assess the best weight, 
we applied the grid weight between 0 and 1, with pace 
of 0.1. Using these WRM, we evaluated the result-
ing estimates of h2 and predictive ability (ACC). The 
ACC was measured by the correlation between pre-
dicted and adjusted phenotypes in the five data sets 
each one with 20% of randomly assigned missing 
data. The h2 and ACC estimates were then averaged 
across the five cross-validation sets.

Statistical Analyses

The following general mixed model was 
employed for the estimation of variance and covari-
ance components for each trait:

	 yij ije= + +X Zuββ

where yij represents the phenotypic observa-
tions from the i-th individuals (I = 1 to 2,111 for BB 
or I = 1 to 2,550 for TC) at the j-th phenotype (j = 1 
to 5), X is the incidence matrix relating fixed effects 
in β with observations in yij, Z is the incidence ma-
trix that allocates records to breeding values in u for 
every individual in the relationship matrix, and eij is 
the random residual effect. Fixed effects included in 
the model were contemporary group (i.e., cohort, 
year of birth, and sex) and age as a linear covariate.

Finally, we used the procedure GLM of SAS 
9.4 (SAS Inst. Inc., Cary, NC) to identify the op-
timal λ value for maximum h2 and ACC in a linear 
model that contained both linear and quadratic re-
gression terms of λ, plus the main effects of breed, 
type of SNP used in G (four levels), phenotype 
nested within breed, and the interaction between 
breed and type of SNP used to compute each G.

RESULTS

Estimates of  kinship coefficients varied be-
tween A and G. For instance, based on Gw, the re-
lationship coefficient among individual pairs with 
a relationship coefficient of  0.5 in A (i.e., either 
full-sibs or parent-offspring) in BB cattle (TC in 
brackets) averaged 0.418 (0.332) and ranged from 
0.002 (0.000) to 0.694 (0.610). On the other hand, 
in both breeds, the correlation among diagonal and 
off-diagonal elements across the four alternative G 
matrices was high and greater than 0.7, except be-
tween diagonal elements of  Gw and Gc (r = 0.53) 
and between diagonal elements of  Gg and Gc 
(r = 0.55) in TC cattle (Supplementary Figure S1). 
Thus, the type of  SNP used to compute G resulted 
in a small difference in the realized additive gen-
etic covariance among individuals. The number of 
SNP in common to each Gg, Gp, and Gc (subsets of 
Gw) is showed in Supplementary Figure S2.

For all five traits and in the two populations, 
the WRM yielded higher estimates of  h2 and ACC 
with λ = 1 (marker-based information only) than 
with λ  =  0 (pedigree-based information only) 
(Supplementary Figure S3). However, the highest 
estimates were not always observed at the upper 
bound of λ. For instance, in BB cattle, the high-
est h2 (ACC) estimates were obtained with λ of  0.6 
(0.6), 0.2 (0.9), 0.6 (1.0), 0.6 (1.0), and 0.6 (0.8) for 
COAT, COLOR, COND, SHEATH, and YWT, 
respectively (Supplementary Figure S3). The same 
values in TC cattle were 0.7 (1.0), 0.8 (1.0), 0.7 
(0.6), 0.9 (1.0), and 0.6 (0.7). When all the results 
were examined by ANOVA and least-squares anal-
yses, we derived a general prediction model for h2 
or ACC (Figure 1). With that, we predicted an op-
timum λ for the highest h2 and ACC being λ = 0.7 
(Figure 1).

The value of genomic information was high-
lighted when pedigree errors were simulated as 
distorting A by setting to zero a random 1% of 
nonzero off-diagonal elements. In this situation, a 
value of λ  =  0.7 allowing contribution from gen-
omic information was need to compensate for the 
pedigree errors (Figure 2).
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Figure 2. Impact of weighting factor (λ) on average heritability (h2, solid filled symbols) and accuracy estimates (ACC, empty filled symbols) 
across the five traits and two breeds for the original A (panel A) and the distorted A matrix (panel B, Gw = all SNP, Gg = coding region SNP, 
Gp = pleotropic SNP, and Gc = correlated SNP).

Figure 1. Overall predicted trend of weighting factor (λ) on heritability (black line) and accuracy (red line). The predicted maximum herit-
ability (0.60) and accuracy (0.21) occurred at λ = 0.7 (black and red arrow) based on quadratic regression analysis.
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The ANOVA revealed the main effects of 
breed, trait within breed, and type of SNP used 
to compute G to be significant sources of vari-
ation (ANOVA P-value < 0.0001) for both h2 and 
ACC. In addition, the interaction between breed 
and type of SNP was a significant source of vari-
ation (P-value < 0.0001) for ACC. Although signifi-
cant, the observed differences were not consistent. 
Across all traits, λ values, and two breeds, the high-
est and lowest ACC estimate was observed for Gp 
and Gg, respectively, and ACC difference of 7.15% 
between them was observed. However, the highest 
and lowest h2 estimates were observed for Gc and 
Gp, respectively, and with a difference of 5.12% be-
tween them (Figure 2).

DISCUSSION

Pedigree-based expected additive genetic covari-
ance assumes constant and categorical covariance 
between relatives, while the realized genomic relation-
ships capture the specific Mendelian sampling rela-
tionship between each pair of individuals, estimated 
by marker tracking of the alleles they share that are 
identical by descent or state. Thus, relationships esti-
mated from marker data can in principle provide more 
precise estimates of genetic covariance between rela-
tives. However, genetic parameter estimates from the 
combination of both sources of information could be 
more reliable (Momen et al., 2017).

Our results show that an optimal WRM is more 
efficient at capturing genetic variance than either A 
or G alone. The weight for maximum h2 and ACC 
was trait-dependent, which agrees with a previous 
report (Rodríguez-Ramilo et  al., 2014), but also 
breed-dependent. Higher h2 estimates are preferred 
as they capture more genetic variation resulting in 
more genetic progress. However, averaged across all 
scenarios, 0.7 was established as the optimum value 
for λ. Rodríguez-Ramilo et al. (2014) observed that 
in dairy cattle, emphasis placed on genomic infor-
mation was larger in production traits than in con-
formation traits, suggesting that most of the additive 
genetic variability in production traits was captured 
by G. Momen et al. (2017) evaluated the λ from 0 to 
1, at 0.2 intervals on h2 and ACC of BW, ultrasound 
area of breast meat (BM), and hen-house egg pro-
duction in chickens (HHP). The highest h2 estimates 
were obtained with λ of 0.4, 1, and 0 for BW, BM, 
and HHP, respectively. Thus, the result obtained 
in this paper and those published by Rodríguez-
Ramilo et al. (2014) and Momen et al. (2017) suggest 
that trait specific λ could be used to recover higher 
amount of additive genetic variance; alternatively, 

the optimal λ for different traits could be tested in 
multiple-trait analysis (Gao et al., 2012).

In all cases explored in the present study, the 
smallest estimates of h2 and ACC were obtained 
with λ  =  0 (pedigree information only). Also, at 
λ > 0.4 only slight differences in accuracy estimates 
were observed. In agreement with our results, Gao 
et  al. (2012) showed that the λ value used in sin-
gle-step blending methods had a small effect on re-
liability. These authors showed that at λ = 0.8 the 
average reliability of genomic predictions for 16 
traits in a Nordic Holstein population was slightly 
higher (0.3%) than the average reliability from the 
simple GBLUP (λ = 1).

In our study alternative G, using either cod-
ing region or pleotropic SNPs impacted on par-
ameter estimates. Ni et al. (2017) reported similar 
findings when evaluating a trait-specific genomic 
relationship matrix for eggshell strength and feed 
intake in laying chickens, where the highest ACC 
was obtained with λ = 0.1 and G using coding re-
gion SNPs. It is also worth mentioning that multi-
ple-trait GBLUP analyses are expected to increase 
the accuracy of predictions via “borrowing” infor-
mation such as pleiotropy, marker-QTL and linkage 
disequilibrium relationships among markers (Gao 
et  al., 2012). Thus, the increase in ACC obtained 
from using WRM in multi-trait models could be 
greater than those obtained in single-trait models.

To conclude, while the optimal λ value was 
trait-dependent, a value of λ = 0.7 may be a useful 
recommendation for identification and selection of 
sires and dams in breeding programs, to overcome 
pedigree errors and to estimate genetic parameters 
without loss in accuracy.
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