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Abstract Reward is often employed as reinforcement in behavioral paradigms but it is unclear

how the visuospatial aspect of a stimulus-reward association affects the cortical representation of

visual space. Using a head-fixed paradigm, we conditioned mice to associate the same visual

pattern in adjacent retinotopic regions with availability and absence of reward. Time-lapse intrinsic

optical signal imaging under anesthesia showed that conditioning increased the spatial separation

of mesoscale cortical representations of reward predicting- and non-reward predicting stimuli.

Subsequent in vivo two-photon calcium imaging revealed that this improved separation correlated

with enhanced population coding for retinotopic location, specifically for the trained orientation

and spatially confined to the V1 region where rewarded and non-rewarded stimulus

representations bordered. These results are corroborated by conditioning-induced differences in

the correlation structure of population activity. Thus, the cortical representation of visual space is

sharpened as consequence of associative stimulus-reward learning while the overall retinotopic

map remains unaltered.

DOI: https://doi.org/10.7554/eLife.37683.001

Introduction
Involvement of sensory processing in perceptual and stimulus-outcome learning can alter stimulus

selectivity of neurons in the sensory cortex (Bao et al., 2001; Schoups et al., 2001; Ghose et al.,

2002; Fritz et al., 2003; Yang and Maunsell, 2004; Blake et al., 2006; David et al., 2012;

Xu et al., 2012; Goltstein et al., 2013; Jeanne et al., 2013; Poort et al., 2015). Even in the

absence of an explicit behavioral paradigm, repeated reward pairing can by itself already lead to an

improvement of stimulus processing in sensory cortex (Seitz et al., 2009). However, it is unclear

how visuospatial aspects of stimulus-outcome learning translate to changes in neuronal representa-

tions. The ecological relevance of this question is underscored by adaptive behaviors of rodents that

differentiate between segments of visual space, such as when coping with potential predators mov-

ing overhead (e.g. birds of prey; Zhang et al., 2012b; Shang et al., 2015; Wei et al., 2015), or

visual stimulus patterns at ground level, possibly associated with food and water (Furtak et al.,

2012). Specifically, it is unknown how neural coding in the retinotopically organized visual cortex is

affected by learning when adjacent locations in the visual field are differentially predictive of reward

or other outcomes.

Located early in the visual stream, the primary visual cortex (V1) has neurons that primarily seem

to act as low-level feature detectors, responding selectively to properties such as orientation, con-

trast, temporal and spatial frequency of bars and gratings, eye-specific inputs and retinotopic loca-

tion (Hubel and Wiesel, 1959; Hubel and Wiesel, 1962; Mrsic-Flogel et al., 2007; Niell and

Stryker, 2008; Smith and Häusser, 2010; Freeman et al., 2013). However, recent studies have
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shown that activity in mouse V1 is strongly modulated by non-visual factors such as other sensory

modalities, internal state, locomotion and anticipation of reward (Shuler and Bear, 2006; Niell and

Stryker, 2010; Bennett et al., 2013; Lee et al., 2014; Keller et al., 2012; Saleem et al., 2013;

Meijer et al., 2017). Widespread presence of feedback and neuromodulatory influences provide a

means for learning experiences to drive plasticity and alter V1 local circuitry (Gilbert, 1996;

Chubykin et al., 2013; Zhang et al., 2014; Ji et al., 2015).

Learning can affect neocortical function via a number of mechanisms. Neural responses in primary

visual cortex may change to increase bottom-up saliency of a stimulus (Zhang et al., 2012a), for

instance by a selective increase in amplitude of the response to conditioned stimuli (Fritz et al.,

2003; Blake et al., 2006; Andermann et al., 2010; Goltstein et al., 2013; Poort et al., 2015).

Alternatively, neurons can be recruited to become tuned to a conditioned stimulus

(Weinberger et al., 1993), which in case of the tonotopic map of auditory cortex leads to an

enlarged cortical region dedicated to this stimulus (Bao et al., 2001). Furthermore, the selectivity of

neuronal tuning curves may be altered (David et al., 2012; Goltstein et al., 2013), for example

amplifying small but relevant changes in stimulus properties to large changes in neuronal activity

(Schoups et al., 2001). Finally, some changes can only be observed in simultaneously recorded neu-

ronal populations, like changes in sparseness of population responses (Ghose et al., 2002;

Gdalyahu et al., 2012) or the correlation structure of ensemble activity (Averbeck et al., 2006;

Poort and Roelfsema, 2009; Jeanne et al., 2013; Montijn et al., 2015). While the effect of percep-

tual and reward learning in V1 is often restricted to smaller parts of the visual field (Gilbert et al.,

2009; Seitz et al., 2009), less is known about how such plasticity unfolds with respect to the neuro-

nal micro-architecture of V1’s retinotopic organization.

Here, we probe how visuospatial stimulus-reward learning affects the spatial cortical organization

of the conditioned stimulus representation. First, we chronically tracked the mesoscale neural repre-

sentation of the reward-predictive field location within the retinotopic map. Next, we used two-pho-

ton calcium imaging to test whether visuospatial information was processed more reliably and

efficiently by neurons located at the border between the cortical representations of the rewarded

and non-rewarded stimulus.

Results

Head-restrained classical conditioning using spatially confined stimuli
Adult male C57Bl/6 mice were conditioned to associate moving gratings of identical orientation, but

presented at different locations in the visual field, with upcoming reward or absence of reward

(Figure 1a,b,d and Figure 1—figure supplement 1a–e). Animals were exposed to the conditioning

paradigm for 10 to 17 daily sessions of 40 to 60 trials each (Figure 1e). In a conditioning paradigm

such as presented here (comparable to trace conditioning), anticipatory nasal and oral movements

(unconditioned response, for example licks and sniffs) can emerge in direct relation to the uncondi-

tioned stimulus (approach of the reward arm; DeBold et al., 1965; Balsam, 1984; Huerta et al.,

2000; Bensafi et al., 2003; Kehoe and Joscelyne, 2005; Drew et al., 2005; Joscelyne and Kehoe,

2007; Arzi et al., 2012; Raybuck and Lattal, 2014). Therefore, we detected and quantified such

movements offline (Online Materials and methods; Figure 1c and Figure 1—figure supplement 2a)

and plotted them as a function of time relative to arrival of the reward arm in the final position.

From the first conditioning session onwards, putative licks and sniffs emerged aligned to stimulus

onset (�6 s), offset (�2 s), reward arm movement onset (�0.5 s) and reward delivery (0 s; Figure 1f,

left panel and Figure 1—figure supplement 2b). Initially there were no differences in behavioral

responses between rewarded trials and non-rewarded trials, up to the time of reward consumption

(Wilcoxon Matched-Pairs Signed-Rank (WMPSR) test; Nasal movement: p=0.32; Oral movement:

p=0.90, n = 10 mice; Figure 1f–g and Figure 1—figure supplement 2d). From the second condi-

tioning session onwards, however, a difference in anticipatory oral and nasal movements began to

emerge between rewarded and non-rewarded trials in the period of reward-arm movement, defined

from �0.4 s to �0.16 s before (non-) reward time (Figure 1f and Figure 1—figure supplement 2c).

During this brief time window before reward delivery, no distinction between rewarded and non-

rewarded trials could yet be made by anything other than the conditioned stimulus alone, as

reward-arm movement trajectory and speed were identical in rewarded and non-rewarded trials up
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Figure 1. Classical conditioning in head-restrained mice. (a) Schematic depiction of the setup used for classical

conditioning. Head-restrained mice faced a computer screen at a 45˚ angle. Reward (Vanilla dessert) was delivered

through a tube on a movable arm (Reward arm). Cameras recorded putative sniffs and licks (Behavior tracking) and

eye movements (Eye-tracking). Right: Example of compound stimuli used for conditioning; location (‘top’ or

‘bottom’) predicted reward, orientation of drifting gratings was identical in both locations during conditioning. (b)

Outline of the mouse head (arrow, top panel). Reward-delivery (arrow, bottom panel). (c) Example of putative sniff,

video-tracked in a small area surrounding the tip of the nose (red box). (d) Schematic showing the sequence of

events in a single conditioning trial. Upper line shows stimulus onset and offset. Middle line represents reward arm

position for rewarded (red) and non-rewarded (blue) trials. Lower line indicates time. Horizontal arrows indicate

jitter in timing. (e) Timeline of the full conditioning experiment in days (‘#d’ indicates number of days; IOS1, IOS2

and IOS3 indicate intrinsic optical imaging time points; Red indicates day of head-bar implantation; Green

indicates day of calcium imaging). (f) Peri-reward nasal movements in the first (left panel) and last (right panel)

conditioning session. A large peak in nasal movements can be seen during reward delivery (t = 0) and in response

to stimulus offset, 1.5 s before (non) reward. Reward-arm movement started at �0.4 s in both rewarded and non-

rewarded trials. Insets: Nasal movements in the anticipatory period, when the arm was en-route, but did not

exceed the non-reward position (gray box, �0.4 to �0.16 s before reward time). (g) Mean nasal movement in the

anticipatory period in the first (top panel) and last (bottom panel) conditioning session. Single lines represent

individual mice. (h) Mean anticipatory nasal movements on different days of the conditioning experiment. All

panels: Data represent mean ± SEM across mice. Red lines: rewarded trials. Blue lines: non-rewarded trials.

*p<0.05, **p<0.01, WMPSR test.

DOI: https://doi.org/10.7554/eLife.37683.002

The following figure supplements are available for figure 1:

Figure supplement 1. Operational procedures of the experimental apparatus for head-restrained conditioning.

DOI: https://doi.org/10.7554/eLife.37683.003

Figure supplement 2. Peri-reward oral-movement during visual conditioning.

DOI: https://doi.org/10.7554/eLife.37683.004

Figure supplement 3. Tracking of pupil diameter and movement during head-restrained conditioning of awake

mice.

DOI: https://doi.org/10.7554/eLife.37683.005
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to 55 ms before the time point at which reward was delivered or not (Online Materials and methods;

Figure 1—figure supplement 1f). On the last day, all but one mouse showed increased nasal and

oral movements during this reward-anticipation period (WMPSR test; Last day; Oral movements:

p=0.004; Nasal movements: p=0.004, n = 10 mice; Figure 1g,h and Figure 1—figure supplement

2e,f). No differences in oral and nasal behaviors were found during the period of visual stimulation,

which is not unexpected because reward was never available before the reward arm moved to the

reward position. Therefore, the conditioning related increases in anticipatory nasal and oral move-

ments during reward arm movement most likely reflect learned expectation of reward delivery.

Eye movements during head-restrained conditioning
Awake behaving rodents display eye movements despite the absence of foveal vision (Sakatani and

Isa, 2004; Sakatani and Isa, 2007; Zoccolan et al., 2010; Adesnik et al., 2012; Keller et al., 2012;

Wallace et al., 2013; Reimer et al., 2014; Vinck et al., 2015). Although mice track the movement

of bars at low temporal frequencies (<1 Hz; van Alphen et al., 2010), it is not known whether they

preferentially orient their eyes towards behaviorally relevant stimuli. Large-amplitude eye move-

ments could, in our experiments, deteriorate retinotopic selectivity of visual stimuli. Therefore, pupil

location and pupil diameter were tracked in six animals over the entire course of the behavioral

experiment (Figure 1—figure supplement 3a). This revealed a slight but systematic bias of pupil ori-

entation towards the location of a presented stimulus along the vertical axis (Data combined across

last 4 days, WMPSR test, Vertical: p=0.00091, Horizontal: p=0.39, n = 6 mice; Figure 1—figure sup-

plement 3b–g). Nonetheless, the amplitude of the shift in vertical eye position did not differ by

more than 1.0 retinal degrees (Online Materials and methods; Figure 1—figure supplement 3c,d).

Given that V1 receptive fields in the mouse cover much larger regions (i.e. diameter ^10 retinal

degrees; Smith and Häusser, 2010; Bonin et al., 2011) and that the conditioned stimulus size was

30 retinal degrees (Azimuth and Elevation), this subtle variation in eye position did not strongly

reduce the retinotopic specificity of the visual stimulus during conditioning.

During the reward delivery period, eye movements and pupil dilations were more pronounced.

The eye position showed a downward gaze-shift, potentially to the incoming reward spout (Fig-

ure 1—figure supplement 3c). Dilation of the pupil may have indicated arousal as a consequence of

reward consumption (Data combined across last 4 days: WMPSR test, p=7.1�10�5, n = 6 mice; Fig-

ure 1—figure supplement 3i,j; Bradley et al., 2008). Thus, despite the lack of foveal vision, head

restrained mice make eye-movement responses and show pupillary reactions to behaviorally relevant

stimuli, like rewards. Differences in these behaviors between rewarded and non-rewarded trials were

large during the reward delivery phase, while during stimulus presentation differences between the

upper and lower visual field were negligible.

Mesoscopic shifts in cortical representations of trained stimuli
To follow the cortical retinotopic organization throughout learning, we used repeated transcranial

imaging of intrinsic optical signals in area V1 of anesthetized mice. The retinotopic pattern of the

mesoscale cortical response was quantified by reducing the spatial dimensionality of the intrinsic

response maps to the axis that maximally separated the two stimulus locations (Online Materials and

methods; Figure 2a–b and Figure 2—figure supplement 1a). To account for variation between ses-

sions, the response to trained stimuli was referenced to the response to control stimuli that were

presented in the same retinotopic location (and had an orientation that was not presented in the

conditioning sessions; for example gray curves in Figure 2d and Figure 2—figure supplement 1b).

Using this method, we observed that the response amplitude to the non-rewarded, trained stimulus

was decreased after conditioning when compared to before conditioning (amplitude of non-

rewarded minus orthogonal, across time points: Kruskal-Wallis, normalized per mouse, H(2,

24)=13.15, p=0.0014, post hoc WMPSR test, Before vs. After, p=0.0039; n = 9 mice; Figure 2d,g and

Figure 2—figure supplement 1b). The response amplitude to the rewarded conditioned stimulus

was not significantly reduced at the time point after conditioning (amplitude of rewarded minus

orthogonal, mouse-normalized, across time points: Kruskal-Wallis, normalized per mouse, H(2,

24)=6.39, p=0.041, post hoc WMPSR test, Before vs. After, p=0.57, n = 9 mice).

The change in response amplitude was associated with an altered spatial distribution of the intrin-

sic signal response to the trained stimuli (see Figure 2d). In order to further quantify this, we
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calculated how much the intrinsic response to visual stimulation in each of the two adjacent locations

of the trained stimuli overlapped with the other on the cortical surface (Figure 2c,e) and compared

this with how much the response to the orthogonal control stimuli overlapped (difference between

gray and colored lines in Figure 2f). This difference between spatial overlap of trained and spatial

overlap of control stimuli (IOS DOverlap) inversely reflects how well the intrinsic responses to trained

stimuli are segregated in cortical space, as compared to the control stimuli. After conditioning (i.e.,

on day 11–18), the IOS DOverlap was significantly reduced in the cortical region that responded to

the rewarded stimulus (Kruskal-Wallis test, normalized per mouse, H(2,24) = 10.00, p=0.0067, post

hoc WMPSR test, Before vs. After, p=0.020, n = 9 mice; Figure 2f,h). In the region responding to

the non-rewarded stimulus, the IOS DOverlap was not significantly reduced as a function of training
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Figure 2. Repeated imaging of intrinsic optical signals in V1 of mice subjected to conditioning. (a) Visual stimuli (left panels) and average stimulus-

induced intrinsic optical signal (IOS; right panels), showing strong retinotopically selective responses to the rewarded and non-rewarded location in

area V1 (within red boundary) and weaker responses in the lateral supplementary visual areas LM and AL (to left of red box). Orth, orientation

orthogonal to trained orientation (Cond). (b) Left panels: Example of 11-pixel wide cutout from the red box in a, that was automatically rotated so as to

include the cortical area of maximal activation for both the top and bottom stimulus location. Right panels: The IOS response to each stimulus as a

function of cortical space (maximally separating the top and bottom stimulus) and time (derived from the 11-pixel wide cutouts by collapsing the ‘x’

dimension per imaging frame and concatenating time points). Upper panels: Response to rewarded location and orientation. Lower panels: Response

to non-rewarded location and orientation. (c) Schematic showing quantification of the response amplitude and overlap of cortical responses to visual

stimuli in adjacent retinotopic locations. (d) Mean ± SEM z-scored amplitude of the IOS response (across the period of maximum activation, 7 to 11 s)

as a function of cortical space along the axis that maximally separates the rewarded and non-rewarded stimulus. Red: Rewarded stimulus; Blue: Non-

rewarded, trained stimulus; Grey: Orthogonal orientations at the rewarded or non-rewarded location respectively. Left panel: Data acquired before the

first conditioning session (day 0; IOS1, see also Figure 1e). Middle panel: After five conditioning sessions (IOS2). Right panel: Data acquired after the

last conditioning session on the same day as, but before, calcium imaging (IOS3). (e) Mean overlap (across all mice) between the response to the

orthogonal or trained stimuli in the rewarded and non-rewarded locations as a function of cortical space (y-axis) and time (x-axis). Scale bar above

applies for both panels. (f) As in d), but for the overlap between the response to the rewarded and non-rewarded trained stimulus (plotted in Violet). (g)

DResponse amplitude (difference between trained and control orientations) in the cortical region that responded to the rewarded location (red) and

non-rewarded location (blue) separately, across imaging time points (**p=0.0039, Kruskal-Wallis, post hoc WPMSR test). (h) As in g), but for DOverlap

per region and across imaging time points (*p=0.039, WMPSR test; **p=0.011, Kruskal-Wallis test, post hoc WMPSR test). (i) As in g), but for DSpatial

selectivity (Rewarded vs. Non-rewarded: *p=0.039, WMPSR test; Before vs. After: *p=0.046, Kruskal-Wallis test). (j) Distance between the peak

responses to the spatially segregated stimuli (difference between trained and orthogonal control stimuli, positive values indicate larger distance

between trained stimulus representation peaks).

DOI: https://doi.org/10.7554/eLife.37683.006

The following figure supplement is available for figure 2:

Figure supplement 1. Repeated intrinsic optical signal imaging in V1 of a mouse subjected to conditioning.

DOI: https://doi.org/10.7554/eLife.37683.007
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(Kruskal-Wallis test, normalized per mouse, H(2,24) = 0.98, p=0.61, n = 9 mice; Figure 2f,h). After

training, the IOS DOverlap in the cortical region representing the rewarded stimulus was significantly

reduced compared to the region mostly responsive to the non-rewarded stimulus (WSRMP test,

p=0.039, n = 9 mice; Figure 2f,h).

Because the measure of overlap is sensitive to the absolute response amplitude, we also quanti-

fied the mesoscopic segregation of intrinsic cortical responses using a ratiometric index, the spatial

selectivity index. This showed a similar effect of sharpened spatial selectivity for the rewarded condi-

tion and location (Kruskal-Wallis test, mouse-normalized, H(2,24) = 6.16, p=0.046, WMPSR test,

rewarded vs. non-rewarded, p=0.039, n = 9 mice; Figure 2i). The magnitude of these above-men-

tioned effects (‘IOS-DOverlap’, ‘selectivity for stimulus location’ and ‘response amplitude to the non-

rewarded trained stimulus’) correlated strongly within individual mice (IOS-DOverlap � Selectivity: r

= �0.94, p=0.0002, n = 9 mice; Amplitude � Selectivity: r = 0.81, p=0.008, n = 9 mice; Amplitude �

DOverlap: r = �0.65, p=0.058, n = 9 mice), which suggests that they resulted from closely related

mechanisms that operated on the rewarded as well as the non-rewarded side of the stimulus

representation.

Finally, to test whether the representation of the rewarded and non-rewarded trained stimuli

drifted apart in cortical space, we quantified the distance between the peaks in the intrinsic response

profiles. Despite a trend, this measure of spatial distance between trained stimulus representations

did not significantly increase (Kruskal-Wallis test, normalized per mouse, H(2,24) = 0.57, p=0.75, n = 9

mice; Figure 2j). Hence, classical conditioning, using rewarded and non-rewarded stimuli that

occupy neighboring regions of visual space, selectively reshaped the retinotopic organization for the

trained stimuli compared to control stimuli, while the overall representations of the trained stimuli

did not significantly drift apart.

Spatial organization of neuronal population activity for trained stimuli
To understand how formation of a visuospatial stimulus-reward association affects neuronal response

properties within the retinotopic representation, we performed OGB1-calcium imaging

(Stosiek et al., 2003) after the final conditioning session (Figure 3a). Recordings were made in mul-

tiple V1-subregions per animal, positioned along the rewarded/non-rewarded axis within V1

(Figure 3b). Every field-of-view was assigned to a cortical location group; Full non-rewarded, Border

non-rewarded, Border rewarded and Full rewarded, based on the population response amplitude to

visual stimulation in each of the retinotopic locations using moving gratings of non-trained orienta-

tions (Online Materials and methods; Figure 3b and Figure 3—figure supplement 1).

Using this location on the rewarded/non-rewarded axis, we compared findings obtained using

intrinsic signal imaging with calcium imaging data. First, we calculated the measure Ca2+ DOverlap,

which was defined as the overlap between the rewarded- and non-rewarded stimulus-evoked cal-

cium response, using mean cellular calcium responses to the trained orientations for each imaging

field. These overlap values were averaged across imaging fields per cortical location bin and sub-

tracted by the (identically calculated) overlap of the orthogonal control stimuli. The Ca2+ DOverlap

was significantly lower for imaging fields in the full rewarded region and at the rewarded/non-

rewarded location border, compared to field-of-views that were located fully in the non-rewarded

stimulus region (Kruskal-Wallis test, H(3,45) = 11.6, p=0.0088, n = 49 imaging fields; Figure 3c). The

pattern of overlap in location selective responses based on calcium imaging data resembled the

results obtained using intrinsic signal imaging (Gray line in Figure 3c indicates IOS DOverlap as in

Figure 2d), showing the strongest reduction in Overlap (as compared to control) in the Border

rewarded and Border non-rewarded regions. Also selectivity for retinotopic location, now calculated

using calcium imaging data, was larger in the Full rewarded and Border rewarded regions, as com-

pared to the Full non-rewarded region (Kruskal-Wallis test, H(3,45) = 19.3, p=0.0024, n = 49 imaging

fields). The measured DOverlap in the rewarded stimulus location correlated strongly and signifi-

cantly across methods (IOS vs. Ca2+, r = 0.81, p=0.016, n = 8 mice) and a weaker, but similarly posi-

tive correlation was found for retinotopic location selectivity (r = 0.69, p=0.058, n = 8 mice).

If the spatial segregation of the cortical population responses was driven by local map expansion,

this would predict a larger fraction of neurons being tuned to rewarded or non-rewarded stimulus

orientations compared to orthogonal orientations. The fraction of responsive neurons per stimulus

orientation and location can be estimated only from the calcium imaging data acquired at single cell

resolution and cannot be directly compared to intrinsic imaging data. Interestingly, the fraction of
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responsive cells per stimulus orientation was significantly reduced in the Full rewarded location and

did not differ significantly between the Border rewarded and Border non-rewarded locations (2-way

Anova, interaction effect of Location bin versus Preferred orientation, F(3,90) = 3.99, p=0.010; n = 49

recordings; Post hoc, Trained versus Orthogonal orientation for full-rewarded location: p<0.05;

Figure 3d). Instead, we observed that the population response amplitude to rewarded stimuli

increased more steeply from Border non-rewarded locations to Border rewarded locations com-

pared to the increase of the population response to non-rewarded stimuli from Border rewarded to

Border non-rewarded locations (2-way Anova, interaction effect of location vs. population response

difference, Trained stimuli: F(3,85) = 3.59, p=0.017, Untrained stimuli: F(3,85) = 1.48, p=0.23; n = 49

recordings; Figure 3e). While the response amplitude to the non-rewarded trained orientation

appeared also smaller compared to the non-rewarded control orientation, similar to what we

Figure 3. Two-photon imaging of orientation-tuned responses in different retinotopic regions of V1. (a) Example of calcium imaging in a field of view

that was located in the Border non-rewarded region. Left: Overview image and inset showing neurons loaded with the calcium indicator OGB1-AM

(green) and double-labeled astrocytes (yellow). Right panels 1–4 correspond to ROI’s 1–4 in inset a. Left columns of all 4 ROI response panels: Fitted

tuning curves for movement orientation/direction (Red: visual stimulus in rewarded visual field; Blue: visual stimulus in non-rewarded visual field) and

mean (±SEM) response to each of the eight directions (black vertical bars). Traces on right: Average DF/F time courses for each of the eight movement

directions separately (Grey shaded columns: trained orientation). (b) Top-view scheme of the imaging locations on the visual cortex. The dashed purple

line represents the ‘rewarded/non-rewarded axis’. The boundary between the rewarded and non-rewarded stimulus representations is at location index

value ‘0’ and marked with a dashed purple arrow (see Online Materials and methods). ‘A’ indicates the approximate location of the field of view in a. (c)

Calcium-imaging derived DOverlap in each of the location bins. Overlaid gray line represents mean (±SEM, shaded region) of the overlap measured

after conditioning using intrinsic imaging (*p<0.05, **p<0.01, Kruskal-Wallis, post-hoc Mann-Whitney U test). This overlap was computed as in Figure 2.

(d) Fraction of orientation-tuned neurons preferring the rewarded (red), non-rewarded (blue) or orthogonal (lighter shaded colors) stimuli (*p<0.05,

Anova, post-hoc t-test). (e) Average response amplitude in DF/F (%) of significantly orientation-tuned neurons to their respective preferred orientations,

per location bin. Red: Cells preferring the rewarded orientation. Light red: Cells preferring the orthogonal stimulus in the rewarded location. Blue and

light blue: The same, but for the non-rewarded stimulus location. Crossed arrow indicates Anova interaction effect,+P < 0.05. Inset on the right shows

the mean (±SEM) response amplitude as measured in the last intrinsic imaging session (see Figure 2d).

DOI: https://doi.org/10.7554/eLife.37683.008

The following figure supplement is available for figure 3:

Figure supplement 1. Binning of recording location into discrete groups.

DOI: https://doi.org/10.7554/eLife.37683.009
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observed in the intrinsic imaging data (see Figure 3e, inset right), this difference was not significant.

Nonetheless, the reduction in response amplitude (trained orientation minus orthogonal control), as

obtained using calcium imaging, did covary with the reduction in response amplitude that was

observed in the intrinsic imaging data (IOS vs. Ca2+, r = 0.92, p=0.028, n = 5 mice for which we had

both intrinsic imaging data and calcium imaging recordings from the non-rewarded location).

These results suggest that the observed mesoscopic disambiguation of the representation of the

rewarded and non-rewarded stimulus (as observed using intrinsic imaging) is expressed at the single

neuron level (as observed using calcium imaging) and is potentially mediated by a spatially restricted

change in response patterns of a select population of neurons, rather than an overall expansion of

the cortical map for rewarded or non-rewarded stimuli.

The rewarded conditioned stimulus drives a smaller population of
orientation-tuned neurons with larger response amplitudes
To investigate how response patterns of orientation-tuned neurons were altered after conditioning,

we quantified tuning curve parameters for individual neurons as a function of their imaging location

(Full vs Border, with rewarded/non-rewarded pooled), whether the cell responded to the rewarded

or non-rewarded stimulus location (rewarded vs non-rewarded, with Full/Border pooled), and the

similarity of the neuron’s preferred orientation to the trained orientation. While the populations of

orientation-tuned cells located in Border- and Full imaging regions did not show significant differen-

ces in fraction of neurons being tuned to trained and other orientations, response amplitude and

tuning curve bandwidth (Kruskal-Wallis test, p>0.05; n = 11 mice; Figure 4—figure supplement 1),

we observed significant differences between these parameters for cells that responded to the

rewarded and non-rewarded stimulus location.

On average, the percentage of cells that preferred the rewarded and non-rewarded stimulus loca-

tion was similar, although not identical (total: 32.2%, see Table 1 for fraction per mouse; rewarded:

17.8%, non-rewarded: 14.5%; WMPSR-test, p=0.58, n = 11 mice; Figure 4a). However, the relative

fractions of cells preferring trained and other orientations differed significantly between groups that

were tuned to rewarded and non-rewarded locations (these fractions were normalized to the overall

fraction of responsive neurons per mouse, across all preferred orientations and locations and

adjusted for relative bin width so that the expected fraction given a flat distribution of preferred ori-

entations was 1.0; Figure 4b,c). Specifically, for cells tuned to the rewarded location there was a rel-

atively smaller fraction of cells preferring the trained orientation, compared to the set of cells that

responded to the non-rewarded (i.e. orthogonal) orientation (Kruskal-Wallis test, ‘Rewarded�Non-

rewarded’ vs. ‘DOri. from trained’, H(4,50) = 9.76, p=0.045; post hoc WMPSR-test, ‘0˚–10˚’ vs. ‘50˚–
70˚’, p=0.042, n = 11 mice; Figure 4d). This effect corresponds to what is shown in Figure 3d, in

which we observed fewer neurons being responsive to the trained stimulus in the Full rewarded cor-

tical region compared to the orthogonal control orientation.

Although the fraction of cells tuned to the conditioned orientation at the rewarded stimulus loca-

tion was reduced, their response amplitude to the trained orientation was increased compared to

cells responding to the non-rewarded location (Kruskal-Wallis test, ‘Rewarded�Non-rewarded’ vs.

‘DOri. from trained’, H(4,48) = 11.6, p=0.020; n = 11 mice; Figure 4e). Moreover, neurons with tuning

curves that flanked the preferred orientation (DOri. from trained between 10˚ and 30˚) had broader

tuning curves (Kruskal-Wallis test, ‘DOri. from trained’, H(4,48) = 14.1, p=0.0068; Post hoc WMPSR

test, ‘0˚–10˚’ vs. ‘10˚–30˚’, p=0.0039; n = 11 mice; Figure 4f). The latter effect indicates that neurons

with preferred orientations that slightly differ from the trained orientation increased their response

to the trained orientation (regardless of the reward-location association), rendering their orientation

tuning curves broader (Goltstein et al., 2013). The orientation selectivity index did not significantly

differ between rewarded and non-rewarded tuned neurons, or as function of angle between pre-

ferred orientation and the trained orientation (Kruskal-Wallis test, p>0.16; n = 11 mice). When we

performed these analyses on tuning curves of the neurons that were not significantly tuned, we did

not observe any of the above-described differences.

In order to test whether the differences described above reflected an overall sparser population

response to rewarded conditioned stimuli, we quantified population sparseness (ap, lower values

indicate a sparser population response; Rolls and Treves, 2011) for the tuning curve response of all

neurons. The population response to trained stimuli in the rewarded location did not show a signifi-

cantly lower sparseness compared to the population response to visual stimulation in the non-
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rewarded location (Kruskal-Wallis test, ‘DOri. from trained’, H(4,50) = 0.23, p=0.99; n = 11 mice;

Figure 4g).

These differences in response properties of orientation-tuned neurons indicate that, although

fewer neurons were significantly responsive to the conditioned stimulus orientation, the individual

neurons that responded to the rewarded stimulus did so more strongly.

Improved neuronal population coding for trained stimulus location
Thus far our data obtained using intrinsic signal imaging as well as calcium imaging indicate that,

after training, the cortical map for trained stimulus location and orientation became more selective

for retinotopic position. We therefore hypothesized that populations of simultaneously recorded sin-

gle neurons would show an improved ability to discriminate the location of trained stimuli as com-

pared to the (same) locations of untrained control stimuli. To test this, we used a Bayesian algorithm

with cross-validation to decode stimulus location from single trial responses to the very stimuli that

were used in the conditioning paradigm. Performance of the decoding algorithm for those stimuli

was compared with that for stimuli having orientations differing 45 or 90 degrees from the trained

orientation (untrained stimuli).

First, we decoded calcium responses recorded in field-of-views located around the rewarded/

non-rewarded border on the cortical surface (see Figures 3b and 5a, inset left). In this population of

significantly tuned Border neurons, decoding of stimulus location was significantly better for the

trained orientation as compared to the orthogonal orientation (WMPSR test, difference between

‘trained’ and ‘orthogonal orientation’ averaged across all sample sizes per mouse, p=0.0078; n = 9

mice; Figure 5a, left panel). Decoding of activity patterns from cells recorded in regions further

away from the border (see Figure 5a, right panel) did not differ between trained and untrained

Table 1. Overview of mice included in behavioral and imaging analyses

Each row lists the following information for the mouse that can be identified by the number in the column Mouse. Rew: Location of

the rewarded stimulus. nRw: Location of the non-rewarded stimulus. Dir: Direction of the moving grating used in the conditioning par-

adigm. Beh-track: Data for which behavior was video-tracked and included in behavioral analysis (Figure 1 and Figure 1—figure sup-

plement 2). # trials: Total number of trials that a mouse performed across all conditioning sessions. Eye: Data included in analysis of

eye-movements (Figure 1—figure supplement 3). IOS: Data included in analysis of intrinsic optical signals (Figure 2 and Figure 2—

figure supplement 1). Ca2+ Full: Data included in calcium imaging analysis, ’Full imaging locations’. Ca2+ Border: Data included in cal-

cium imaging analysis, ’Border imaging locations’. (Figures 3–6, Figure 3—figure supplement 1, Figure 4—figure supplement 1). %

tuned: Overall fraction of orientation tuned neurons per mouse.

Mouse Rew nRw Dir Beh- track # trials Eye IOS
Ca2+

Full
Ca2+

Border % tuned

#02 Bottom Top 180˚ * * 30.9

#03 Top Bottom 0˚ * * 10.9

#05 Bottom Top 0˚ * * 68.8

#07 Top Bottom 90˚ * 613 * * * 20.2

#08 Top Bottom 270˚ * 378 *

#09 Bottom Top 180˚ * 640 * * * 36.9

#10 Bottom Top 180˚ * 575 * * 40.6

#11 Top Bottom 180˚ * 436 * * * * 32.8

#12 Top Bottom 0˚ * 520 * * * * 36.9

#13 Bottom Top 90˚ * 595 *

#14 Bottom Top 270˚ * 640 * * * * 40.7

#15 Top Bottom 0˚ * 520 * * * * 40.5

#16 Bottom Top 0˚ * 480 * * * 7.2

Total 10 6 9 11 9

DOI: https://doi.org/10.7554/eLife.37683.012
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orientations (WMPSR test, difference between ‘trained’ and ‘orthogonal orientation’ averaged across

all sample sizes per mouse, p=0.46; n = 11 mice; Figure 5a, right panel).

Data from six separate animals contributed both behavioral measurements and Border-region

imaging fields of view. Of these, five mice showed better decoding of trained stimulus location com-

pared to untrained orientations, while a single animal did not show a difference. Moreover, the mag-

nitude of the difference in decoding performance between trained and other (45˚ and 90˚)
orientations correlated significantly with the magnitude of the difference in anticipatory nasal and

oral movements in the behavioral paradigm (Nasal movements: r = 0.83, p=0.041; Oral movements:

r = 0.96, p=0.003; n = 6 mice; Figure 5b). Decoding performance did not correlate significantly with
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Figure 4. Parameters describing orientation-tuned neurons preferring the rewarded or non-rewarded stimulus

location. (a) Left panel: Mean ± SEM percentage of significantly orientation-tuned cells per mouse. ‘A’: All

locations. ‘R’: Rewarded location. ‘N’: Non-rewarded location. (b) Absolute fraction of orientation-tuned neurons

responding to the rewarded (red) and non-rewarded (blue) location separately, and relative to the trained

orientation (e.g. neurons with a preferred orientation nearly identical to the trained orientation were in bin 0˚�10˚).
Bars above data points indicate relative bin-widths. Note that because the left-most bin (0–10 degrees) is only half

the width of the other bins, it is expected to contain half of the fraction of the other bins. (c) Distribution

(normalized per mouse and bin-width) of preferred orientations relative to the trained orientation (given a flat

distribution of preferred orientations, the expected fraction of each bin would be 1.0). (d) Difference in fraction of

orientation tuned neurons to the rewarded minus the non-rewarded location (positive values indicate a larger

fraction of neurons tuned to the rewarded stimulus location; *p=0.042, Kruskal-Wallis test, post hoc WMPSR test).

(e) The mean (±SEM) DF/F response to the preferred direction as a function of the preferred orientation relative to

the trained orientation for rewarded and non-rewarded location-tuned neurons separately (*p<0.05, WMPSR test).

The lines that fall between 0% to 0.5% DF/F show the response amplitude of the same neurons, but to the

orientation that was orthogonal to the preferred orientation. We note that the sequence of bins is thus not

representative of the entire tuning curve but shows the response amplitude to a specific (preferred or orthogonal)

direction. (f) Same as e), but for bandwidth (*p<0.05, WMPSR test). (g) As in e), but for sparseness of the tuning

curve response calculated across the population all neurons. For all panels: Red colors indicate groups of cells

preferring ‘rewarded’ conditioned orientations, while blue colors indicate groups of cells preferring ‘non-

rewarded’ trained orientations. Both colors fade to gray, indicating that the preferred orientation of the cells

becomes more dissimilar from the trained orientation.

DOI: https://doi.org/10.7554/eLife.37683.010

The following figure supplement is available for figure 4:

Figure supplement 1. Comparison of orientation tuning parameters between cells located close and far away

from the rewarded/non-rewarded border.

DOI: https://doi.org/10.7554/eLife.37683.011
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the total number of conditioning trials that the mice were exposed to (Total number of trials:

r = �0.18, p=0.73; n = 6 mice). The single mouse that did not show a significant improvement in
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Figure 5. Population coding of visual field location by visual cortex neurons. (a) Left panel: Performance of

decoding retinotopic location using activity of simultaneously recorded neurons in regions close to the rewarded/

non-rewarded location border as a function of increasing population size. Chance level is 50%. Inset illustrates

which field-of-view locations were included in these data. Dark purple curves are data from the population with a

preferred orientation similar to the trained orientation. Light purple curves are data from neurons preferring

orientations differing 45˚ from the trained orientation. Gray curves are for the data from cells preferring

orientations orthogonal to the trained orientation. Data are shown as mean ± SEM averaged across 9 mice.

**p<0.01, WMPSR test. Right panel: Same, but for neurons recorded in regions further away from the rewarded/

non-rewarded location border. (b) Per mouse, the mean conditioning related-improvement in coding for visual

field location was plotted against the behavioral difference in nasal (upper panel) and oral movement (lower panel)

to the rewarded (Rew) and non-rewarded (nRw) stimulus location.
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Figure 6. Conditioning related interactions of signal and noise correlations. (a) Signal- and noise correlations for

pairs of simultaneously recorded neurons as a function of the difference between the preferred orientation of the

neurons and the trained orientation. Left panel: Data from pairs that were located further away from the region

where the rewarded and non-rewarded stimuli bordered. Right panel: As left, but from pairs located in the cortical

region where the representations of the rewarded and non-rewarded stimuli bordered. Solid lines: Signal

correlations. Dashed lines: Noise correlations. Data are shown as mean ± error bars that indicate 95% confidence

intervals. (b) Noise correlations for the selection of simultaneously recorded pairs that exhibited the 10% highest

signal correlations (solid lines) and the pairs having the 10% lowest signal correlations (dashed lines). Left panel:

data from the Full rewarded and Full non-rewarded regions. Right panel: data from Border rewarded and non-

rewarded regions. Data are shown as mean ± error bars that indicate 95% confidence intervals (*p<0.05, **p<0.01

multiple comparison corrected bootstrap confidence intervals).
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decoding performance also failed to show an increase of both anticipatory nasal- and oral-move-

ments in the behavioral paradigm, while it was still exposed to 640 conditioning trials (see Table 1,

mouse #09).

Conditioning-related suppression of noise correlations in high signal
correlation pairs
Effects of conditioning were observed in a subset of similarly tuned neurons within the overall het-

erogeneously tuned group of V1 neurons. We assessed the degree to which cells in these subgroups

can be seen as functional units by comparing similarity of tuning curves (signal correlation) and stim-

ulus-independent covariations (noise correlation; see for example Averbeck et al., 2006;

Montijn et al., 2016). Signal and noise correlations were calculated on tuning curves of all simulta-

neously recorded pairs of cells that were either responsive to the rewarded or non-rewarded loca-

tion and grouped according to the similarity of their preferred orientations relative to the trained

orientation, and whether they were located in the Full or Border stimulus region. However, there

were no significant differences in average signal correlations and noise correlations between the

trained and control orientations (Bootstrap confidence intervals, p>0.05; Figure 6a).

Interactions between signal and noise correlations can hamper or facilitate efficient population

coding. For instance, population coding benefits when cells with high signal correlations have low

noise correlations and vice versa (Oram et al., 1998; Averbeck et al., 2006; Poort and Roelfsema,

2009; Jeanne et al., 2013). To investigate whether such an effect occurred in our data, we selected

pairs of cells that displayed the 10% highest and 10% lowest signal correlations and calculated noise

correlations for these pairs separately (Jeanne et al., 2013). In the border imaging regions, high sig-

nal correlation pairs that were tuned to the trained orientations exhibited significantly lower noise

correlations compared to pairs preferring other orientations (Bootstrap confidence intervals, p<0.01;

nborder = 20 imaging fields of view; Figure 6b, right panel, solid lines). In addition, in the Full imaging

regions, we observed that low signal correlation pairs had stronger noise correlations when they

were tuned to the trained orientations as compared to the control orientations (Bootstrap confi-

dence intervals, p<0.05; nfull = 24 imaging fields of view; Figure 6b, left panel, dotted lines). Thus,

the effect of classical conditioning on noise correlations depends on the signal correlation of the pair

of neurons, which can have the overall effect of enhancing the discriminability of trained stimuli in

the population.

Discussion
Associative learning is known to affect neural responses across a range of spatial scales

(Jehee et al., 2012; Bao et al., 2001; Goltstein et al., 2013), but how learning affects the spatial

dimension of sensory cortical maps has remained elusive. Our results indicate how associative learn-

ing (by coupling a visual stimulus to reward) affects orientation-specific coding of single neurons in a

retinotopically restricted fashion but fails to lead to an overall expansion of the cortical region repre-

senting the trained visual space, thus leaving the retinotopic map intact. These data demonstrate

that learning-induced changes in single neurons emerge in concert with enhanced stimulus represen-

tations at the population level increasing location discriminability within the V1 cortical map.

Considerations regarding imaging methodology
The central finding in this study is improved coding for stimulus location by a population of neurons

that preferred the trained orientation and was located within the cortical retinotopic region where

the trained stimuli bordered. This enhanced selectivity for retinotopic location was observed using

both a mesoscale (intrinsic imaging) and a microscale (calcium imaging) method. The data acquired

using intrinsic imaging suggested that this effect was mediated by a reduction in response amplitude

to the non-rewarded trained stimulus (Figure 2d,g). While visibly present, this reduction was less

pronounced when observed at the single cell resolution using calcium imaging (Figure 3e). The dif-

ference in results may be inherent to the difference in methods, with intrinsic signal imaging picking

up a widespread mixed, metabolic signal across cortical neurons (including dendrites, axons and syn-

apses) and layers, and with calcium imaging focusing on somatic spiking activity in layer 2/3 neurons

selectively. That the magnitude of reduction in trained stimulus-representation Overlap, as measured

with each method (Figure 2f and Figure 3c), was correlated across mice suggests that the effects
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are related. What was observed at the mesoscale as an overall change in response amplitude, may

in part reflect a subtler change in stimulus selectivity or jointly orchestrated activity patterns at the

single neuron, somatic level within cortical layer 2/3.

It is of note that the results obtained with calcium imaging, such as differences in fraction and

amplitude of responsive neurons and changes in population decoding for retinotopic location, were

observed in comparison to untrained control orientations or control regions, and not compared to a

hypothetical time point before learning. Therefore, it cannot be fully excluded that these effects

were mediated, in part, by changes of the opposite sign in neurons that were tuned to untrained

control orientations. However, some effects of conditioning were quite selective for the trained ori-

entation as compared to different untrained control (i.e. oblique and orthogonal) orientations (see

e.g. Figures 4e and 5). While this does not fully confirm that learning effects were only present in

neurons tuned to the trained orientation, it indicates that, at least, the trained orientation stood out

from the way the broader population of untrained stimuli was processed.

Sharper spatial tuning within the V1 retinotopic map
Cortical representations, as also found in the auditory cortical tonotopic map or the somatosensory

homunculus, have been known to exhibit plasticity (Bakin and Weinberger, 1996; Buonomano and

Merzenich, 1998; Bao et al., 2001). An example of map plasticity like observed here, however, has

not been found before in visual cortex, where shifts in retinotopic organization were, until now,

described as a consequence of selectively depriving cortical input only (Heinen and Skavenski,

1991; Gilbert and Wiesel, 1992; Keck et al., 2008). The kind of refinement of the retinotopic map

as shown in our experiments—a sharper retinotopic gradient (Figure 3e) in calcium response pat-

terns coupled to a reduced overlap in intrinsic optical responses (Figure 2e,f,h) and better location-

decoding performance (Figure 5a)—is somewhat comparable to emerging discontinuities in the cor-

tical digit representation after separation of webbed fingers (Mogilner et al., 1993) or fading dis-

continuities in the somatosensory map after surgical syndactyly (Allard et al., 1991). However, map-

plasticity in these studies emerged by self-organizing plasticity, while in our study, appetitive condi-

tioning directed the alterations in the retinotopic map. Not only is the treatment (learning paradigm)

more subtle than the interventions in the studies mentioned above, but the observed map-plasticity

underscores that also under naturalistic conditions stimulus-reward learning can direct functional

changes in cortical maps, expressed in the way the cells in these maps encode sensory information.

The changes in neuronal tuning observed in our study can also be considered in the context of

perceptual learning. Training to discriminate small differences in stimulus parameters can result in

sharpening of tuning curves in the primary visual cortex (Schoups et al., 2001), an effect that has

been suggested to help disambiguate fine differences in stimulus orientation. The presently

reported learning-induced reduction in overlap of the population response to trained stimuli resem-

bles such a mechanism of tuning curve sharpening, but now pertains to the cortical mapping of

visual space. While our study did not directly compare the conditioned group with a sham-trained

(randomly rewarded) group, we did observe a correlation between the amount of anticipatory

behavior and changes in neuronal population coding (Figure 5), but no correlation to the number of

trials. This argues that the observed effects are not merely the result of stimulus exposure but are

associated with behavioral learning in the conditioning paradigm.

Mechanisms underlying learning-induced map plasticity in V1
Neuronal learning mechanisms underlying classic forms of map plasticity are generally thought to be

Hebbian in nature (Buonomano and Merzenich, 1998), functioning through rapid induction of LTP

and LTD for spared and deprived inputs respectively or via competition between inputs

(Feldman and Brecht, 2005). Additionally, local secretion of neurotransmitters like acetylcholine

and noradrenaline plays a role (Bear and Singer, 1986). In auditory cortex for instance, large shifts

in tonotopic representations have been observed after pairing a tone with basal forebrain stimula-

tion (Bakin and Weinberger, 1996; Kilgard and Merzenich, 1998). In the current study, we did not

observe such a large-scale expansion of the conditioned stimulus representation, but rather an

increase in selectivity of the cortical map. Recent work in the primary visual cortex of the mouse has

established that cholinergic neuromodulation can act to improve neuronal selectivity and perception

in a rapid and task specific way (Pinto et al., 2013). Moreover, during an appetitive conditioning
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paradigm, cholinergic input from basal forebrain to V1 induced strong local activity patterns leading

up to the time of reward delivery (Liu et al., 2015), which may drive stimulus-selective plasticity

(Chubykin et al., 2013). The plasticity in V1’s retinotopic map, which we induced here using appeti-

tive conditioning, may therefore have been mediated by local release of acetylcholine. However, the

strengthening of feedback connections from higher visual or other cortices (Pennartz, 1997;

Makino and Komiyama, 2015) could provide an alternative or additional mechanism by which learn-

ing leads to changes in cortical maps. In addition, the observed reduction in response amplitude to

the non-rewarded trained stimulus could indicate a role for an LTD type mechanism reducing excit-

atory drive of non-rewarded stimulus representation (Nabavi et al., 2014). Alternatively, it could

reflect strengthening of long-range lateral connections from for example the rewarded retinotopic

location, or feed-back from higher visual areas, onto inhibitory neurons in the non-rewarded retino-

topic location to increase local inhibitory drive of the non-rewarded stimulus representation

(Makino and Komiyama, 2015).

While neuromodulation and long-range connectivity are strong candidates to mediate learning in

our behavioral paradigm, the conditioning-related improvement in retinotopic selectivity was

observed under anesthesia, which makes it likely that these results depend to some degree on

changes in feedforward or local recurrent synaptic connectivity. We hypothesize that these cells

increase their local connectivity with neurons that are tuned to the same retinotopic location,

thereby strengthening their spatial selectivity (see Figures 2f,h and 3c–e) but reducing precise selec-

tivity for stimulus orientation (see Figure 4f). From this point of view, it will be interesting to perform

an experiment studying the exact receptive field position and structure for each neuron along with

its precise local synaptic connectivity. Such an experiment could also reveal whether the receptive

field centers of certain subsets of neurons (e.g. cells tuned to the trained orientation) drift away from

the border region, or whether the spatial extent of receptive fields selectively shrinks so that it is less

likely to cross the trained stimulus border. That receptive fields may have shifted should not be con-

sidered a potential confounder, but rather as a part of the underlying mechanism improving discrimi-

nability of spatially adjacent cortical representations.

Learning-related interactions between signal and noise correlations
Several theoretical studies have shown that reduction of noise correlations between cells exhibiting

high signal correlations can improve population coding (Zohary et al., 1994; Oram et al., 1998;

Shadlen and Newsome, 1998; Abbott and Dayan, 1999; Averbeck et al., 2006; but see

Montijn et al., 2016), but experimental evidence in support of these mechanisms being employed

during learning is only sparsely available (Jeanne et al., 2013). Here, we show a decrease of noise

correlations within high signal correlation pairs that was strongest at the V1 location where the

trained stimuli bordered (Figure 6b). This provides support for the theoretical notion of how interac-

tions between signal- and noise correlations can facilitate coding of stimulus information, and also

shows that these effects can arise in the primary visual cortex as a result of associative learning. In

addition, groups of cells exhibiting low (negative) signal correlations may improve population coding

by increasing noise correlations, even without transmitting information in the structure of the noise

correlation itself (Oram et al., 1998; Abbott and Dayan, 1999; Averbeck et al., 2006). Addition-

ally, in imaging regions further away from the border of the trained stimuli, we observed stronger

noise correlations in groups of trained orientation tuned cells with relatively low signal correlations.

Possibly this effect depends on how heterogeneously a population of neurons is tuned to the behav-

iorally relevant stimulus and therefore only manifested in the Full imaging regions where the majority

neurons might have been synchronously driven by a single (rewarded or non-rewarded) stimulus.

A less dense, but more efficient cortical representation for reward-
associated stimuli
With or without stimulus awareness, stimulus-reward pairing can enhance feature detection in pri-

mary visual cortex (Shuler and Bear, 2006; Seitz et al., 2009; Frankó et al., 2010; Goltstein et al.,

2013). While we observed that visual conditioning resulted in a reduced fraction of neurons being

tuned to the trained orientation in the rewarded location (Figures 3d and 4d), those neurons that

remained to prefer the conditioned or similar orientations responded with larger DF/F amplitudes to

the reward associated stimulus (Figure 4e). This indicates that population coding for the conditioned
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orientation in the rewarded location, contained fewer neurons compared to their untrained orienta-

tion tuned counterparts, while maintaining the average population response amplitude, thus poten-

tially rendering their response more efficient by representing the same information using fewer cells

(see also Gdalyahu et al., 2012).

In summary, this study highlights a selective role for reward-dependent learning in refining the

primary cortical retinotopic map. It demonstrates how coordinated changes in neuronal tuning and

inter-neuronal correlations can result in a more optimal population code for trained stimuli and

improve the local representation of visual space while leaving the overall retinotopic map intact.

Materials and methods

Animals
Experiments were conducted with approval of the ethical committee for animal experiments of the

University of Amsterdam. Male C57BL/6 mice (for n, see Table 1; Harlan, The Netherlands) ranging

in age from 70 to 116 days at the start of the experiment were housed pair-wise in large cages (40

cm length �25 cm width �25 cm height) on a reversed day night cycle (9 AM light-off; 9 PM light-

on). Water and food were available ad libitum, except for a period of six to eight hours prior to

behavioral training, when food was not available. Non head-fixed habituation of the mice to the con-

ditioning environment and the frame for head-restraint spanned four to five days and included han-

dling in the behavioral lab and free access to the reward substance, a semifluid vanilla-flavored dairy

product (Figure 1—figure supplement 1a).

Visual conditioning of head-restrained mice
Mice were fitted with a stainless-steel cranial plate that allowed repeated head-restraint (Figure 1—

figure supplement 1a; Dombeck et al., 2007; Niell and Stryker, 2010). In brief, under surgical

anesthesia (Isoflurane inhalation, induction: 3% in O2; maintenance: 1.5% in O2) and analgesia

(Buprenorphine, 0.05 mg kg�1 bodyweight, injected subcutaneously 30 min before surgery), three

skull screws were placed, two in the frontal skull plates and one lateral-right in the occipital skull

plate. The head bar was positioned with the central opening over cortical area V1 and attached with

cyanoacrylate glue and black-pigmented dental cement to the skull and screws. The central opening

was closed with a transparent silicone elastomer (Quick-sil, World Precision Instruments, Germany)

and a cover glass. Mice were allowed to recover for four days, during which non head-fixed habitua-

tion was continued. In the next four to five days, animals were head-fixed in the behavioral apparatus

while given free access to the vanilla-flavored reward through the feeding tube for 15 to 20 min per

day.

Appetitive conditioning with retinotopically selective visual stimuli was done in 8 to 17 sessions.

The number of conditioning sessions (8 to 17) before two-photon imaging depended on the order in

which animals were used for calcium imaging, which was determined by chance. The number of trials

ranged from 8 to 12 trials in the first training session to 20–35 in subsequent training sessions. The

amount of rewarded and non-rewarded trials in each training session was nearly equal; on a single

day, the number of rewarded and non-rewarded trials never differed by more than three trials and

the total number of rewarded and non-rewarded trials differed by only 0.5% (3.1 out of 539.7 trials).

The total number of conditioning trials that each mouse was exposed to is reported in Table 1. Con-

ditioning sessions lasted 20–30 min, during which the animal was head-restrained facing a 21’ com-

puter screen (Dell) at a distance of 20 cm (Figure 1a,b). The center of the screen was positioned 45˚
lateral (Azimuth) at the height of the eye of the mouse (0˚ elevation). Stimuli were oriented gratings

(100% contrast square wave; spatial frequency: 0.05 cycles degree�1; temporal frequency: two cycles

second�1) moving in a single direction, presented either in an area of 30 by 30 retinal degrees

above, or below the horizontal meridian (Figure 1a, right panels). For each mouse, the rewarded

stimulus was randomly assigned to one visual field location and the non-rewarded to the other (see

Table 1). This assignment was varied across mice, with the rewarded stimulus being as often above

the meridian as below it. Stimulus orientation and direction of the rewarded and non-rewarded stim-

uli were the same and all parameters remained unchanged during the entire behavioral experiment.

Each rewarded or non-rewarded trial started with a click, followed by 4 to 6 s of stimulus presenta-

tion against a background with equal luminescence. Next followed a pre-reward delay of 1.5 to 2 s.
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In the last 0.4 s of the pre-reward delay a servo-controlled arm moved a small plastic tube to a posi-

tion within licking distance of the mouse in rewarded trials, while the arm stopped just out of range

of the mouse in non-rewarded trials (Figure 1b,d and Figure 1—figure supplement 1b–e). By

applying back-pressure on the tube using a syringe pump (RE-S, RAZEL, United Kingdom), an

amount of 20–40 ml reward substance was delivered in each rewarded trial. After a reward consump-

tion period of 4 s, the arm moved back and an inter-trial interval of 20 to 30 s was inserted between

subsequent trials. The temporal offset between reward delivery and visual stimulation was imple-

mented to prevent consumption-related eye-movements or other motion artifacts during visual stim-

ulus presentation.

Behavioral parameters were monitored using a standard visible light CCD camera fitted with a

wide-field low-magnification lens at a frame rate of 25 Hz (Figure 1, ‘Behavior tracking’). This camera

was positioned on the left side of the mouse to record its silhouette and that of the reward arm

against the grey background of the screen, as well as to record the rewarded and non-rewarded

stimulus presentation (Figure 1b and Figure 1—figure supplement 1b,d). Behavioral parameters

were aligned to stimulus onset and (non-) reward delivery time, which was determined by the arm

arriving at the endpoint (Figure 1b and Figure 1—figure supplement 1c,e). The trajectory and

speed of the arm was identical in rewarded and non-rewarded trials up to the point where, in

rewarded trials, the arm exceeded the non-reward endpoint. The traversal from the non-reward end-

point to the reward endpoint happened within a single 40 ms image frame (Figure 1—figure sup-

plement 1f). The measured time-difference between detection of the arm arriving at the non-reward

endpoint and detection at the reward endpoint across all trials was on average 55 ms, implying a

movement speed between 0.5 and 1.0 m s�1. We added an extra margin of 100 ms to the 55 ms dif-

ference in end point arrival time to buffer possible variations in movement speed. As a result, we

excluded behavioral data in the period from 160 ms before the reward or non-reward endpoint in

the comparison of learning effects.

Nasal movements (putative sniffs) and oral movements (putative licks) were quantified by apply-

ing a threshold to each video frame at the mean intensity, resulting in a binary silhouette of the

mouse, and counting the number of pixels that changed intensity compared to the previous video

frame in the nasal or oral region (Figure 1c and Figure 1—figure supplement 2a, red box). Licks

are rapid, sparsely occurring events; therefore a threshold was applied to the number of pixels

changed in each frame, which resulted in ‘all or none’ detection of oral movement. Sniffs are slower

and more continuous events that are better reflected by a continuous measure. We therefore used

the mean number of pixels that changed intensity as a consequence of nasal-movement directly as a

measure for sniffing.

Eye-tracking
Position and diameter of the pupil was monitored using a near infrared CCD camera (Jai, United

States) through a high magnification long working distance lens (Thorlabs, Germany) with a frame

rate of 25 Hz (see Figure 1 for camera position at ‘Eye tracking’). Eye-tracking was done offline using

a custom written algorithm (Zoccolan et al., 2010). For each video frame, location of the center of

the pupil was estimated by applying a radial symmetry transform (Loy and Zelinsky, 2003). The

edge of the pupil was detected from this point of origin into all directions with 10˚ angular resolu-
tion. Outlier edge detection points (beyond mean ±3 SD) were removed and the remaining data

points were fitted with a circle (Figure 1—figure supplement 3a). This procedure provides esti-

mates for the X and Y position and diameter of the pupil in pixels. Using the estimated average

diameter of the mouse eye (3.3 mm; Jeon et al., 1998) and the field of view of our camera, a 1-pixel

displacement/enlargement in pupil-tracking data was estimated to correspond to approximately 2–

2.5 retinal degrees of visual field.

Transcranial optical imaging of intrinsic signals
Intrinsic optical imaging (Bonhoeffer et al., 1996) was performed using a commercially available

setup (Optical Imaging Ltd, Israel). The mouse was head-restrained while being under anesthesia

(isoflurane inhalation, induction: 3% in O2; maintenance: 1–1.5% in O2). This procedure kept the ani-

mal immobile, whereas the eye-blink reflex was just noticeable. The skull was illuminated through

the cover glass with 630 nm (bandpass filtered) light. Images were acquired at an effective sampling
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rate of 2 Hz. A screen was placed at the exact same position as in the behavioral setup (see

Figure 1a). Five stimuli (the rewarded stimulus, the non-rewarded stimulus, stimuli at the same loca-

tion but with orthogonal orientations, and an isoluminant grey screen, the null stimulus; Figure 2a,

left panels) were presented in 20 trials each. During the entire imaging experiment, the screen dis-

played the isoluminant null stimulus, except when a grating stimulus was presented. Each trial

started with the recording of a four-second baseline period, followed by four seconds of continuous

stimulus presentation and seven seconds of post-stimulus response time. The intertrial interval lasted

an additional five seconds.

Analysis of intrinsic optical signals
Intrinsic signal images were referenced per trial against the mean of the first 8 (baseline) frames,

resulting in a percentage signal increase per pixel. A region in the primary visual cortex, large

enough to contain the responses to both rewarded and non-rewarded stimuli, was selected manually

and within-trial signal drift was corrected for by subtracting the value of each pixel in this region by

the average intensity of a non-responsive image-region a few millimeters anterior. For each record-

ing, a single mean and standard deviation was calculated per pixel across all stimuli and repetitions

and each pixel was subsequently z-scored by subtracting the mean and dividing over the standard

deviation.

Within the region of V1, the location of maximum activation for the rewarded and non-rewarded

area was automatically detected by locating the largest activation in smoothed average response

images for visual stimulation by the orthogonal stimuli in the rewarded area and non-rewarded area.

Using this (untrained) template response map, we calculated the angle that aligned an imaginary

line, connecting peaks of maximal visual activity evoked by stimulation in the different visual fields,

parallel to the vertical axis of the template image (Figure 2a, red windows). In most mice this rota-

tion was around 25˚ clockwise. All further data from each recording was automatically rotated to the

calculated rotation angle. Next, cutouts of this 2-dimensional rotated image, from �5 to +5 pixels

centered on the vertical transection of the average peak responses in the (untrained) template, were

averaged to a 1-dimensional spatial response profile for each time point separately that represented

response strength as a function of cortical distance aligned to the Rewarded/Non-rewarded axis

(Figure 2b, left panels, cutout before averaging the x-dimension). Response profiles from different

time points (imaging frames) of the same trial were concatenated to cortical distance �time matrices

(Figure 2b, right panels). On a total of 10 mice, one mouse was removed from these analyses

because the peak location of the intrinsic response could not be (automatically) detected in both the

rewarded and the non-rewarded location due to blood vessel response artifacts in the imaging data.

Amplitude time courses (Figure 2—figure supplement 1b) of the intrinsic optical signal response

were calculated by averaging values of pixels in the spatial dimension over a range of �5 to +5 pix-

els around the maximum pixel in the cortical distance �time matrices. Amplitude-cortical space pro-

files (Figure 2d) were constructed similarly, by averaging intensity values in the period where the

response peaked (i.e. 3 to 7 s after stimulus onset) over the time dimension. Overlap of cortical

space profiles was calculated by, for each spatial point on the profile, subtracting the sum of the

individual profile data points from their maximum, resulting in the part of the response that was

shared (see Figure 2c and Figure 2f). DOverlap (Figure 2h) indicated the difference between over-

lap calculated for trained and for orthogonal stimulus orientations presented at the same location.

Spatial selectivity was calculated similarly by, for each spatial point on the profile, dividing the differ-

ence of the responses to the rewarded (Rrewarded) and non-rewarded (Rnon-rewarded) locations by their

sum (Rrewarded - Rnon-rewarded) / (Rrewarded + Rnon-rewarded).

Calcium imaging
Under surgical anesthesia (Isoflurane inhalation, induction: 3% in O2; maintenance: 1.5% in O2) and

analgesia (Buprenorphine, 0.05 mg kg�1 bodyweight, injected subcutaneously 30 min before sur-

gery), a craniotomy was performed over the area of V1 that was identified to respond to the trained

stimuli using intrinsic optical imaging. In these regions, cells were loaded with the fluorescent cal-

cium indicator Oregon Green BAPTA1-AM (OGB) and Sulforhodamine 101 (SR101; for staining

astrocytes/glial cells) using a protocol for multi-cell bolus loading (Stosiek et al., 2003;

Nimmerjahn et al., 2004; Goltstein et al., 2013; Goltstein et al., 2015). After surgical procedures
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were completed, the Isoflurane concentration was carefully lowered and maintained at 0.8% for the

entire course of the experiment (such that the mouse remained under anesthesia).

Two-photon laser scanning microscopy was performed with a Leica SP5 resonant scanner and a

Spectra-Physics Mai Tai High Performance Mode Locked Ti:Sapphire laser (wavelength 810 nm).

Fluorescence was collected in non-descanned photo-multiplier tubes, filtered at 525 nm (maximum

range 500–550 nm) for OGB and 585 nm (maximum range 565–605 nm) for SR101. Frame-averaged

images (eight frames, 512 � 512 pixels) from a square region of approximately 330 � 330 mm were

acquired at a scan speed of approximately 2.8 Hz. Visual stimulation was done with moving gratings

identical to those used for behavioral conditioning, but now 8 directions of movement (four orienta-

tions) were shown in either visual field (10 repetitions with a duration of 8 scan frames per stimulus).

Analysis of calcium imaging data
Images acquired with two-photon microscopy were realigned to compensate for small movement

artifacts in the x–y plane using an algorithm that relies on the cross-correlation between the two-

dimensional Fourier transforms of the to-be-aligned image and a reference image (Guizar-

Sicairos et al., 2008). Neurons were manually identified and outlined and the mean fluorescence

was calculated for each image frame. The fluorescence time series of each neuron was corrected for

possible contamination by non cell-specific fluorescence signals that originate from the neuropil

using previously described methods (Kerlin et al., 2010; Goltstein et al., 2015). Visual responses

were quantified per trial as DF/F, or in more detail: (F–F0)/F0. F was determined from the average

fluorescence in the 8-frame (~2.8 s) period during visual stimulation. F0 was calculated from the aver-

age fluorescence in the 8-frame period preceding visual stimulation, when a gray screen with equal

luminance was presented.

For each field of view, an imaging location index was calculated from the mean response of all

neurons to the orthogonal (untrained) orientations (Equation 1). This index approaches the value of

�1 for fields of view that have primarily cells tuned to the non-rewarded location and +1 when most

cells are tuned to the rewarded location. For fields of view where the fraction of cells responding to

the rewarded and non-rewarded location was similar the index has a value around 0:

Imaging location index¼
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Where N is the total number of neurons in a recording session and ROrth(RewLoc)n is the mean

response of the nth neuron to the orientation orthogonal to the trained orientation, presented in the

reward-predictive visual field.

Based on the imaging location index, the dataset was divided in four groups along the rewarded/

non-rewarded axis (Figure 3b). Two groups consisted of recordings that were made in regions that

were mostly driven by one retinotopic location; the ‘Full rewarded’ and ‘Full non-rewarded’ groups

(Imaging location index <�0.66 for Full-nRw and >0.66 for Full-Rew). The two other groups con-

sisted of recordings obtained from the region of cortex where the rewarded and non-rewarded reti-

notopic representations bordered; the ‘Border rewarded’ and ‘Border non-rewarded’ groups

(Imaging location index >�0.66 but <0 for Border-nRw and >0 but<0.66 for Border-Rew). The cut-

off of 0.66 was chosen such that only cortical regions that were strongly driven by one stimulus loca-

tion compared to the other stimulus location (~5 times stronger) would be classified as Full rewarded

or Full non-rewarded.

The number of recordings in each location group ranged from 8 to 14 (Figure 3—figure supple-

ment 1a) and the average within-group imaging-location index showed a linear increase across loca-

tion groups along the rewarded/non-rewarded axis (Figure 3—figure supplement 1b). The latter

indicates that each location-group represented a part of the visual space that was approximately

equally distant from the neighboring location groups in cortical space and thus validates the

approach. An important aspect here is that, as in the analysis of intrinsic imaging data, the imaging

location index was calculated using responses to untrained stimuli, which facilitates the comparison

between results obtained using these two imaging techniques.
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Neurons were classified as being orientation-tuned or non-tuned by testing for a difference in

their responses across eight directions in the upper or lower visual field separately using a 1-way

Anova against p<0.05. Neurons that displayed significant orientation tuning, but for which the DF/F

response to the preferred direction did not exceed 2%, were considered to be false positives, or to

have a low signal to noise ratio and were therefore discarded from the analysis. Tuning curves for

movement direction were constructed by fitting the mean responses across all directions in each

area separately by a two-peaked Gaussian function (Li et al., 2008). Tuning curve bandwidth was

calculated as the half-width of the fitted tuning curve at 1/H2 height (Ringach et al., 2002). Orienta-

tion selectivity (OSI) was calculated by dividing the difference between response to the preferred

orientation and the orthogonal orientation by the sum of these: (Rpref-ori - Rortho-ori)/(Rpref-ori + Rortho-

ori) (Niell and Stryker, 2008).

Population sparseness ap (Equation 2) was quantified as described in Rolls and Treves, 2011.

The vector y contains mean DF/F responses of all N neurons to a single stimulus and yn is the

response of a single neuron n to a single stimulus. Higher values of ap indicate that many neurons in

the population were responsive to the stimulus. Lower values of ap indicate a sparser population

response, with only few strongly responding neurons resulting in a more skewed distribution of DF/F

amplitudes:

ap ¼

PN
n¼1

yn=N
� �2

PN
n¼1

y2n
� �

=N
(2)

Population decoding of the stimulated visual field (rewarded or non-rewarded location), was

done using an algorithm based on Bayes theorem (Equation 3; Oram et al., 1998; Dayan and

Abbott, 2001). Single trial responses were decoded using a ‘leave one trial-block out’ (cross-vali-

dated) principle. One trial from each stimulus category (rewarded or non-rewarded location) was

removed from the dataset and each of the removed trials was decoded separately. The probability

for a single-trial calcium response r of an individual neuron to be observed in a certain stimulus con-

dition s, p(r|s), was calculated from a Gaussian probability distribution, estimated by the mean and

SD of all remaining responses of the decoded neuron in that stimulus condition. When multiple neu-

rons were used for decoding, probabilities of the individual neurons’ responses were multiplied. The

prior, p(s), was identical across stimuli and the overall probability of observing the decoded

response, p(r), was estimated from all remaining responses (Equation 3; Oram et al., 1998). This

procedure gave two probabilities per decoded trial; one for the stimulation delivered at the

rewarded location and one for the non-rewarded location. The highest probability was chosen as

decoder output. Performance for decoding single neuron or population (multiple simultaneously

recorded neurons) calcium responses was quantified by comparing the decoder output with actual

stimulus position and resulted in a fraction correct (the theoretical chance level of 50% correct was

experimentally confirmed).

p sjrð Þ ¼
p rjsð Þp sð Þ

p rð Þ
(3)

Signal correlations between pairs of cells were quantified by calculating the mean Pearson corre-

lation coefficient of the average responses of those cells to all 16 stimulus types (eight directions � 2

locations). Noise correlations were quantified by subtracting the average response to the preferred

orientation from the individual trial responses to that orientation (because of 8 repeats per stimulus

for the rewarded and non-rewarded location this resulted in a vector of 16 mean-subtracted single

trial responses), and subsequently calculating the Pearson correlation coefficient between the mean-

subtracted single trial responses of the pair of cells, but only for the preferred stimulus in the

rewarded and non-rewarded location (Hofer et al., 2011; Jeanne et al., 2013).

Statistics
All data are presented and tested as mean ± SEM across mice unless otherwise noted. Most parame-

ters that were reported in this manuscript were likely not-normally distributed and were therefore

tested with a Mann-Whitney U test or a Wilcoxon matched-pairs signed-rank test (WMPSR). When

multiple groups were involved, we applied a Kruskal-Wallis test, with posthoc Mann-Whitney U tests
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or WMPSR tests; or an Anova with posthoc t-tests if the data followed a normal distribution

(Figure 3d,e). When iterating comparisons between multiple groups without first using a test for

multiple groups (Anova/Kruskal-Wallis test), we corrected the P-value using Bonferroni’s method.

Signal- and noise correlations (Figure 6) were calculated per imaging field of view, on all simulta-

neously recorded pairs of neurons. Next, 95% and 99% confidence intervals were calculated using

bootstrap resampling on the resulting dataset with signal- or noise correlations from all fields of

view (resampling with replacement; Sample size of 250 pairs; 10000 resamples; Efron, 1979).

Acknowledgements
The authors thank Laura van Mourik-Donga for technical assistance and Lior Cohen, Jorrit Montijn,
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Frankó E, Seitz AR, Vogels R. 2010. Dissociable neural effects of long-term stimulus-reward pairing in macaque
visual cortex. Journal of Cognitive Neuroscience 22:1425–1439. DOI: https://doi.org/10.1162/jocn.2009.21288,
PMID: 19580385

Freeman J, Ziemba CM, Heeger DJ, Simoncelli EP, Movshon JA. 2013. A functional and perceptual signature of
the second visual area in primates. Nature Neuroscience 16:974–981. DOI: https://doi.org/10.1038/nn.3402,
PMID: 23685719

Fritz J, Shamma S, Elhilali M, Klein D. 2003. Rapid task-related plasticity of spectrotemporal receptive fields in
primary auditory cortex. Nature Neuroscience 6:1216–1223. DOI: https://doi.org/10.1038/nn1141, PMID: 145
83754

Furtak SC, Ahmed OJ, Burwell RD. 2012. Single neuron activity and theta modulation in postrhinal cortex during
visual object discrimination. Neuron 76:976–988. DOI: https://doi.org/10.1016/j.neuron.2012.10.039,
PMID: 23217745

Gdalyahu A, Tring E, Polack PO, Gruver R, Golshani P, Fanselow MS, Silva AJ, Trachtenberg JT. 2012.
Associative fear learning enhances sparse network coding in primary sensory cortex. Neuron 75:121–132.
DOI: https://doi.org/10.1016/j.neuron.2012.04.035, PMID: 22794266

Ghose GM, Yang T, Maunsell JH. 2002. Physiological correlates of perceptual learning in monkey V1 and V2.
Journal of Neurophysiology 87:1867–1888. DOI: https://doi.org/10.1152/jn.00690.2001, PMID: 11929908

Gilbert CD, Li W, Piech V. 2009. Perceptual learning and adult cortical plasticity. The Journal of Physiology 587:
2743–2751. DOI: https://doi.org/10.1113/jphysiol.2009.171488, PMID: 19525560

Gilbert CD, Wiesel TN. 1992. Receptive field dynamics in adult primary visual cortex. Nature 356:150–152.
DOI: https://doi.org/10.1038/356150a0, PMID: 1545866

Gilbert CD. 1996. Plasticity in visual perception and physiology. Current Opinion in Neurobiology 6:269–274.
DOI: https://doi.org/10.1016/S0959-4388(96)80083-3, PMID: 8725971

Goltstein PM, Coffey EB, Roelfsema PR, Pennartz CM. 2013. In vivo two-photon Ca2+ imaging reveals selective
reward effects on stimulus-specific assemblies in mouse visual cortex. Journal of Neuroscience 33:11540–
11555. DOI: https://doi.org/10.1523/JNEUROSCI.1341-12.2013, PMID: 23843524

Goltstein PM, Montijn JS, Pennartz CM. 2015. Effects of isoflurane anesthesia on ensemble patterns of Ca2+
activity in mouse v1: reduced direction selectivity independent of increased correlations in cellular activity. PloS
One 10:e0118277. DOI: https://doi.org/10.1371/journal.pone.0118277, PMID: 25706867

Guizar-Sicairos M, Thurman ST, Fienup JR. 2008. Efficient subpixel image registration algorithms. Optics Letters
33:156–158. DOI: https://doi.org/10.1364/OL.33.000156, PMID: 18197224

Heinen SJ, Skavenski AA. 1991. Recovery of visual responses in foveal V1 neurons following bilateral foveal
lesions in adult monkey. Experimental Brain Research 83:670–674. DOI: https://doi.org/10.1007/BF00229845,
PMID: 2026207

Hofer SB, Ko H, Pichler B, Vogelstein J, Ros H, Zeng H, Lein E, Lesica NA, Mrsic-Flogel TD. 2011. Differential
connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nature Neuroscience
14:1045–1052. DOI: https://doi.org/10.1038/nn.2876, PMID: 21765421

Hubel DH, Wiesel TN. 1959. Receptive fields of single neurones in the cat’s striate cortex. The Journal of
Physiology 148:574–591. DOI: https://doi.org/10.1113/jphysiol.1959.sp006308, PMID: 14403679

Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat’s visual
cortex. The Journal of Physiology 160:106–154. DOI: https://doi.org/10.1113/jphysiol.1962.sp006837,
PMID: 14449617

Huerta PT, Sun LD, Wilson MA, Tonegawa S. 2000. Formation of temporal memory requires NMDA receptors
within CA1 pyramidal neurons. Neuron 25:473–480. DOI: https://doi.org/10.1016/S0896-6273(00)80909-5,
PMID: 10719900

Jeanne JM, Sharpee TO, Gentner TQ. 2013. Associative learning enhances population coding by inverting
interneuronal correlation patterns. Neuron 78:352–363. DOI: https://doi.org/10.1016/j.neuron.2013.02.023,
PMID: 23622067

Jehee JF, Ling S, Swisher JD, van Bergen RS, Tong F. 2012. Perceptual learning selectively refines orientation
representations in early visual cortex. Journal of Neuroscience 32:16747–16753. DOI: https://doi.org/10.1523/
JNEUROSCI.6112-11.2012, PMID: 23175828

Jeon CJ, Strettoi E, Masland RH. 1998. The Major cell populations of the mouse retina. The Journal of
Neuroscience 18:8936–8946. DOI: https://doi.org/10.1523/JNEUROSCI.18-21-08936.1998, PMID: 9786999

Goltstein et al. eLife 2018;7:e37683. DOI: https://doi.org/10.7554/eLife.37683 22 of 25

Research article Neuroscience

https://doi.org/10.1037/h0021632
http://www.ncbi.nlm.nih.gov/pubmed/14282384
https://doi.org/10.1016/j.neuron.2007.08.003
https://doi.org/10.1016/j.neuron.2007.08.003
http://www.ncbi.nlm.nih.gov/pubmed/17920014
https://doi.org/10.1037/0097-7403.31.1.31
https://doi.org/10.1037/0097-7403.31.1.31
http://www.ncbi.nlm.nih.gov/pubmed/15656725
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1126/science.1115807
https://doi.org/10.1126/science.1115807
http://www.ncbi.nlm.nih.gov/pubmed/16272113
https://doi.org/10.1162/jocn.2009.21288
http://www.ncbi.nlm.nih.gov/pubmed/19580385
https://doi.org/10.1038/nn.3402
http://www.ncbi.nlm.nih.gov/pubmed/23685719
https://doi.org/10.1038/nn1141
http://www.ncbi.nlm.nih.gov/pubmed/14583754
http://www.ncbi.nlm.nih.gov/pubmed/14583754
https://doi.org/10.1016/j.neuron.2012.10.039
http://www.ncbi.nlm.nih.gov/pubmed/23217745
https://doi.org/10.1016/j.neuron.2012.04.035
http://www.ncbi.nlm.nih.gov/pubmed/22794266
https://doi.org/10.1152/jn.00690.2001
http://www.ncbi.nlm.nih.gov/pubmed/11929908
https://doi.org/10.1113/jphysiol.2009.171488
http://www.ncbi.nlm.nih.gov/pubmed/19525560
https://doi.org/10.1038/356150a0
http://www.ncbi.nlm.nih.gov/pubmed/1545866
https://doi.org/10.1016/S0959-4388(96)80083-3
http://www.ncbi.nlm.nih.gov/pubmed/8725971
https://doi.org/10.1523/JNEUROSCI.1341-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23843524
https://doi.org/10.1371/journal.pone.0118277
http://www.ncbi.nlm.nih.gov/pubmed/25706867
https://doi.org/10.1364/OL.33.000156
http://www.ncbi.nlm.nih.gov/pubmed/18197224
https://doi.org/10.1007/BF00229845
http://www.ncbi.nlm.nih.gov/pubmed/2026207
https://doi.org/10.1038/nn.2876
http://www.ncbi.nlm.nih.gov/pubmed/21765421
https://doi.org/10.1113/jphysiol.1959.sp006308
http://www.ncbi.nlm.nih.gov/pubmed/14403679
https://doi.org/10.1113/jphysiol.1962.sp006837
http://www.ncbi.nlm.nih.gov/pubmed/14449617
https://doi.org/10.1016/S0896-6273(00)80909-5
http://www.ncbi.nlm.nih.gov/pubmed/10719900
https://doi.org/10.1016/j.neuron.2013.02.023
http://www.ncbi.nlm.nih.gov/pubmed/23622067
https://doi.org/10.1523/JNEUROSCI.6112-11.2012
https://doi.org/10.1523/JNEUROSCI.6112-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/23175828
https://doi.org/10.1523/JNEUROSCI.18-21-08936.1998
http://www.ncbi.nlm.nih.gov/pubmed/9786999
https://doi.org/10.7554/eLife.37683
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