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Abstract

A critical factor in the maturation of influenza vaccine responses is the nearly inevitable binding of 

vaccine antigens by exiting anti-influenza IgGs. These antigen-IgG immune complexes direct the 

response to immunization by modulating cellular processes that determine antibody and T-cell 

repertoires: maturation of dendritic cells, processing and presentation of antigens to T cells, 

trafficking of antigens to the germinal center, and selection of B cells for antibody production. By 

focusing on the recent advances in the study of the immunomodulatory processes mediated by IgG 

immune complexes upon influenza vaccination, we discuss a pathway that is critical for 

modulating the breadth and potency of anti-HA antibody responses and has previously led to the 

development of strategies to improve influenza vaccine efficacy.

This year marks the 100-year anniversary of the 1918 influenza pandemic, one of the 

deadliest natural disasters in the history of mankind, accounting for 100 million deaths and 

infecting over half billion of the global population. Although pandemic influenza outbreaks 

occur on a periodic basis (the most recent being the 2009 H1N1 pandemic), every year 

seasonal influenza epidemics cause hundreds of thousands of deaths and account for over 5 

million cases of severe illness worldwide, having a tremendous socioeconomic impact on 

global health. For over half a century, vaccination has been the main approach for the 

prevention of influenza outbreaks; however, licensed influenza vaccines commonly provide 

sub-optimal protection (typically ranging from as low as 10% to 60%), as they largely elicit 

strain-specific immunity against circulating influenza strains, necessitating annual 

reformulation to provide adequate protection. More importantly, conventional influenza 

vaccines provide little or no protection against antigenically drifted strains, which have the 

capacity to cause pandemic outbreaks with devastating effects on global public health. 

Intensive research efforts over the past recent years focusing on influenza immune evasion 

mechanisms and the immune responses elicited against influenza have led to exciting new 

findings that could guide strategies for the optimization of the influenza vaccine efficacy to 

elicit universal protection against diverse influenza strains that would minimize morbidity 

and mortality caused by seasonal influenza and prevent potential pandemic outbreaks in the 

future. Indeed, these studies have renewed optimism in the field and made the development 

of a universal influenza vaccine a more realistic prospect.
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By focusing on the study of B-cell responses against influenza, a number of key immune 

determinants of antibody-mediated immunity against influenza have been identified. For 

example, recent epidemiologic studies on the immune responses against influenza revealed 

that circulating influenza strains that are dominant during childhood shape immunological 

memory and impact future responses against influenza during adulthood [1], supporting a 

clear role for pre-existing influenza immunity in modulating the magnitude and quality of 

the antibody responses against future antigenic encounters [2–5]. Additionally, systematic 

characterization of the B-cell responses against influenza resulted in the discovery of panels 

of monoclonal antibodies (mAbs) that specifically recognize influenza hemagglutinin (HA) 

and neuraminidase (NA) proteins and exhibit broadly protective activity against diverse 

influenza strains [6–11]. Indeed, the isolation and pre-clinical evaluation of anti-influenza 

antibodies capable of neutralizing a broad range of influenza viruses –with some even 

recognizing both group 1 and group 2 hemagglutinins (HAs) – has led not only to the 

development of novel mediators that could potentially be used for the prevention or 

treatment of pandemic influenza infections, but also provided evidence on the capacity of 

the human immune system to elicit specific IgG responses to target highly conserved viral 

epitopes [6–11]. These studies have, in turn, provided useful insights into the functional 

properties and immunogenicity of influenza antigens, leading to the identification and 

characterization of highly conserved epitopes that have guided the design of novel influenza 

immunogens to elicit immune responses with broadly protective activity against diverse 

influenza strains [12–15]. These findings clearly illustrate that the in-depth study of the 

capacity of anti-influenza antibodies to specifically recognize highly conserved epitopes on 

HA and NA could lead to the development of novel vaccination strategies to elicit broadly 

protective responses. However, in addition to the study of the Fab-mediated antigenic 

recognition of broadly protective anti-influenza IgG antibodies, improved influenza vaccine 

efficacy could be achieved through the systematic characterization of the effector activities 

mediated through the Fc domain of antibodies elicited upon influenza infection.

IgG Fc domain effector functions

The protective activity of an IgG molecule is mediated through its two functional domains: 

(i) the Fab domain that facilitates highly specific antigenic recognition and (ii) the Fc 

domain that contributes to the IgG effector activity through specific interactions with Fcγ 
receptors (FcγRs) expressed by several leukocyte types [16]. FcγRs comprise a family of 

immunoreceptors and are broadly divided into two main types: Type I and II, with each type 

having unique structural and functional characteristics [17](Figure 1). Upon crosslinking by 

the Fc domains of IgG immune complexes, FcγRs trigger signaling events through their 

intracellular signaling motifs, inducing diverse immunomodulatory processes that readily 

influence the functional activity of effector leukocytes and consequently several aspects of 

the innate and adaptive immune response [17]. For example, ITAM (immunoreceptor 

tyrosine-based activation motif)-containing, Type I FcγRs induce the activation of signaling 

pathways with pro-inflammatory biological consequences, including cellular activation, 

antibody-dependent cellular cytotoxicity (ADCC), phagocytosis, as well as expression and 

release of inflammatory cytokines and chemokines. These activities are counterbalanced by 

the inhibitory Type I FcγR, FcγRIIb, which limits ITAM-mediated signaling in effector 
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leukocytes [17]. Likewise, engagement of Type II FcγRs by the IgG Fc domain has 

pleiotropic immunomodulatory effects. For example, DC-SIGN engagement on regulatory 

macrophages leads to the induction of Th2-polarizing immunity that suppresses Th1 and 

Th17 responses and limits IgG-mediated inflammation through upregulation of FcγRIIb 

expression on myeloid effector leukocytes [18,19]. On the other hand, engagement by IgG 

immune complexes of the other Type II FcγR, CD23 on B-cells modulates FcγRIIb 

expression in an autocrine manner, influencing B-cell selection and the development of 

high-affinity IgG responses [20].

Given the capacity of Type I and Type II FcγRs to activate diverse immunomodulatory 

pathways upon engagement, Fc-FcγR interactions are dynamically regulated through 

specific modulation of the Fc domain structure, either in the primary amino acid sequence 

(IgG subclasses) or in the Fc-associated glycan composition [17,20,21]. Such differences in 

the IgG subclass and Fc domain glycan structure contribute to substantial Fc domain 

heterogeneity and it is estimated that over 103 Fc domain variants exist, each with 

differential FcγR affinity and immunomodulatory potential. For example, IgG glycan 

variants lacking the branching fucose residue (afucosylated) exhibit improved cytotoxic 

activity compared to their fucosylated counterparts through enhanced capacity to interact 

with and activate FcγRIIIa-expressing effector leukocytes [17,22,23]. Likewise, the 

presence of terminal sialic acid residues at the Fc-associated glycan structure determines the 

binding specificity of the Fc domain for Type I and Type II FcγRs [17]. Upon sialylation, 

the IgG Fc domain acquire the capacity to interact with Type II FcγRs (DC-SIGN and 

CD23), thereby inducing immunomodulatory activity with a profound impact on immune 

responses [24–27].

A series of recent studies have provided novel insights into the mechanisms by which Fc-

FcγR interactions contribute to the antiviral activity of protective anti-influenza IgGs 

[20,28]. Systematic comparison of the in vivo protective activity of a panel of anti-influenza 

mAbs with differential neutralizing potency and breadth revealed that strain-specific, 

neutralizing mAbs directed against the globular head of the influenza HA confer protective 

activity without a requirement for FcγR engagement [29–31]. In contrast, broadly protective 

mAbs that target highly conserved influenza epitopes rely on interactions with activating 

Type I FcγRs to mediate antiviral activity in vivo [29–33]. These findings clearly highlight 

that the broad antiviral activity of these IgG antibodies is achieved not only through the 

targeting of specific, highly conserved epitopes on HA, but also through their capacity to 

engage and activate distinct FcγR pathways to confer protective effector functions. In 

addition to contributing to the antiviral activity of protective IgG antibodies by modulating 

the functional activity of innate effector leukocytes, Fc-FcγR interactions influence several 

aspects of adaptive immune responses, including antigen presentation, dendritic cell 

maturation, IgG affinity maturation, as well as B-cell selection and plasma cell survival 

[17,20,34–36]. These functions are regulated through the specific modulation of the Fc 

domain structure, which determines the affinity of the Fc domain for the various FcγR 

types. Analysis of the IgG subclass distribution and Fc glycan composition of antigen-

specific IgGs elicited upon influenza vaccination in humans revealed that specific Fc 

glycoforms with differential FcγR binding affinity become enriched at different time points 

following vaccination [20]. Although a number of previous studies have also reported that 
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the Fc domain structure is dynamically regulated in health and disease [20,21,37–41], 

analysis of the influenza vaccine-elicited IgG responses revealed that the observed 

heterogeneity in the Fc domain structure has significant biological consequences in shaping 

adaptive immune responses against influenza, as the abundance of specific Fc glycoforms 

correlated with the affinity and breadth of vaccine-elicited IgG responses, thereby predicting 

vaccine efficacy [20,28]. These findings are discussed in detail in the next section and have 

been instrumental for the rational design and selection of novel influenza immunogens to 

elicit broadly protective anti-influenza immunity through modulation of the activity of 

specific FcγR pathways.

IgG immune complex immunogens

The role of immune complexes (ICs) in the ontogeny of adaptive immune responses is of 

particular relevance in the context of influenza immunity. This is because a majority of 

individuals who receive the seasonal influenza vaccine have serum IgGs that will bind to 

influenza antigens upon vaccination. Vaccine ICs, in turn, engage FcγRs on immune cells, 

triggering cellular processes that can promote maturation of high affinity antibody 

responses, such as promoting the maturation of dendritic cells, enhanced processing and 

presentation of antigens by antigen presenting cells to T cells, increasing trafficking of 

antigens to the germinal center (in the form of ICs), and modulated selection of B cells 

[20,42–46]. Which immune cells will be engaged by an IC, and the effector functions that 

will be triggered depends entirely on the composition of IgGs within the IC. For example, 

anti-HA Fab specificity, IgG binding density, and the Fc domain repertoire (IgG subclasses 

and Fc glycoforms) all impact Fc-FcγR interactions [18,20,29,47].

Recent studies have identified a specific determinant - sialylated Fc glycoforms - within HA 

ICs that trigger maturation of antibody responses with increased anti-HA affinity. This 

increased affinity, in turn, confers increased potency and breadth of protective activity 

against distinct influenza strains. This discovery was made through characterization of the 

natural anti-HA Fc domain repertoire after seasonal vaccination in adults. It was observed 

that baseline levels of anti-HA IgG Fc sialylation correlated with the quality of response 

(affinity and hemagglutination inhibition titer) to the seasonal influenza virus vaccine 

[20,48]. This finding suggested a feedback mechanism for regulation of B cell selection after 

vaccination by sialylated ICs. Subsequent in vitro studies showed that B cells incubated with 

sialylated HA immune complexes increased expression of the inhibitory FcγRIIb. This 

finding was intriguing as FcγRIIb is known to play a major role in fixing the threshold for B 

cell survival based on the affinity of the B cell receptor (BCR)(Figure 2). The expression of 

the inhibitory Type I FcγRIIb is nearly always coupled to expression of activating Type I 

FcγRs, which ensures balanced signaling and specificity of cellular maturation and effector 

functions [49,50]. B cells represent an important exception to this rule as they express 

FcγRIIb throughout development, without expression of activating FcγRs. Rather than 

moderating the activity of activating FcγRs, FcγRIIb on B cells balances activating 

signaling that is triggered by antigen binding to the BCR. Signaling through FcγRIIb 

increases the requirement for activating signaling through BCR to enable B cell survival; 

thus, increasing the expression of FcγRIIb results in the selection of cells with BCR of 

higher affinity for the antigen.
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A key variable in the regulation of B cell activation is the expression level of FcγRIIb, 

which changes during the development of B cells, but is also inducible. Without FcγRIIb 

expression, or with low expression or signaling, B cells lack appropriate activation 

thresholds and produce low-affinity IgGs. Poor FcγRIIb expression is also linked to 

autoimmune antibody production in mice and in humans [50–53]. Because FcγRIIb is a 

critical determinant of B cell selection, regulation of its expression over time is essential. 

The findings described above, that sialylated ICs triggered upregulation of B cell FcγRIIb, 

revealed a mechanism for coupling B cell FcγRIIb expression and signaling with the 

presence of antigen [20,28]. Further experiments revealed that expression of the B cell Type 

II FcγR, CD23, was required for upregulation of FcγRIIb by sialylated ICs [20]. Thus, anti-

HA IgGs with sialylated Fc domains form ICs upon vaccination. These ICs signal through 

CD23 to trigger elevated FcγRIIb expression on B cells. Increased B cell FcγRIIb, in turn, 

results in the selection of higher affinity HA-specific B cells (Figure 2). While the primary 

purpose of the work described above was to investigate whether regulated changes in the Fc 

domain repertoire of antigen-specific IgGs might modulate the maturation of vaccine 

responses, the experiments ultimately revealed a mechanism that can be leveraged to 

increase the breadth and potency of the anti-HA response [20,28].

Concluding Remarks

An important area for further investigation is the role that different adjuvants can play in 

increasing the breadth of protection conferred by influenza vaccines – both seasonal 

vaccines and experimental universal influenza virus vaccines [54]. Studies showing the 

critical role of activating FcγRs in heterologous influenza immunity in vivo suggest that 

skewing the influenza vaccine antibody response away from IgG2 could significantly 

improve the breadth and potency of elicited IgGs [29,30,32]. This could potentially be done 

using adjuvants that have Th1-polarizing activity, such as those that trigger pattern-

recognition receptors. In-depth understanding of the mechanisms that determine Fc domain 

heterogeneity and regulate the immunomodulatory activity of FcγR pathways could have 

important implications for the development of novel vaccination strategies that would elicit 

broadly protective immunity with maximal effector function.
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Highlights

• IgG immune complexes are generated upon influenza vaccination

• Interactions of the IgG Fc domain with FcγRs induce immunomodulatory 

functions

• Influenza vaccine efficacy is modulated by the activity of specific FcγR 

pathways

• Engineered immune complex immunogens elicit responses with improved 

breadth
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Figure 1: Structure and properties of Type I and Type II FcγRs. FcγRs are divided into two 
main types: Type I and II.
Despite their common property of interacting with the Fc domain of IgG antibodies, FcγR 

types present distinct structural and functional differences and have differential capacity to 

induce diverse immunomodulatory consequences that affect several aspects of immunity.
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Figure 2: Overview of the coordinated activity of Type I (FcγRIIb) and Type II (CD23) FcγRs in 
the regulation of B cell activation and selection.
Development of high-affinity IgG responses is determined by the activity of the CD23-

FcγRIIb pathway. Engagement of CD23 by sialylated IgG immune complexes upregulates 

FcγRIIb expression on B cells, which in turn raises the threshold for the B-cell receptor 

(BCR)-mediated signaling and B-cell selection. Upon CD23 engagement, only B cells with 

high-affinity BCRs are selected due to the higher levels of FcγRIIb[20,28].
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