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Abstract

A more effective vaccine to control tuberculosis (TB), a major global public health problem, is 

urgently needed. Current vaccine candidates focus predominantly on eliciting cell-mediated 

immunity but other arms of the immune system also contribute to protection against TB. We 

review here recent studies that enhance our current knowledge of antibody-mediated functions 

against M. tuberculosis. These findings, which contribute to the increasing evidence that 

antibodies have a protective role against TB, include demonstrations that i) distinct human 

antibody Fc glycosylation patterns, found in latent M. tuberculosis infection but not in active TB, 

influence the efficacy of the host to control M. tuberculosis infection, ii) antibody isotype 

influences human antibody functions, and iii) that antibodies targeting M. tuberculosis surface 

antigens are protective. We discuss these findings in the context of TB vaccine development and 

highlight the need for further research on antibody-mediated immunity in M. tuberculosis 
infection.
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Introduction

Active tuberculosis (TB) is a transmissible respiratory disease that is caused by uncontrolled 

Mycobacterium tuberculosis (Mtb) infection. It is one of the top 10 causes of death globally, 

and the leading cause of death from a single pathogen worldwide, surpassing HIV [1]. To 

control this major global public health problem, more effective vaccines are urgently needed 

[2]. Recent estimates suggest that a quarter of the world’s population, approximately 1.7 

billion people, has asymptomatic controlled latent Mtb infection (LTBI) [3]. However, only 

~10% of ostensibly healthy people develop TB during their lifetime [1]. The immune 

components preventing and controlling Mtb infection remain incompletely understood [4,5]. 

It has long been known that cell-mediated immunity (CMI) plays a pivotal role (reviewed in 

[6]), but there is increasing evidence that the innate immunity (reviewed in [7-9]), and other 

arms of the adaptive immune response (reviewed in [10,11]) contribute to protection against 

the disease. While it becomes increasingly apparent that all arms of the immune response 

and their interplay are important in the effective prevention of TB development, their 

detailed discussion is beyond the scope of this review. We focus here on the humoral 

immune response, and review recent studies providing further evidence for a role for 

antibodies (Abs) in protecting against Mtb infection. We discuss the relevance of these 

findings for TB vaccine development, highlight the need for further research on Ab-

mediated immunity in Mtb infection, and discuss the challenges involved in such 

investigations.

The ideal TB vaccine would both prevent Mtb infection, and, in the already infected, the 

development of the disease (Figure 1A). While the Bacillus Calmette–Guerin (BCG) 

vaccine, the only TB vaccine in clinical use, prevents disseminated TB in young children, it 

has limited efficacy in preventing transmissible disease in adolescents and adults in its 

present version (reviewed in [12,13]). Current TB vaccine candidates predominantly target 
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the enhancement of CMI [4,5,12-15]. However, the only recent large human TB vaccine trial 

targeting CMI (MVA85A) showed no enhanced protection [16]. This trial was run in infants 

and the efficacy of several MVA85A trails, currently being performed in adolescents or 

adults, may differ. The observation that elevated IgG titers to Ag85A were associated with a 

decreased risk for TB development in a post hoc analysis [17], and other data from the TB 

vaccine and pathogenesis fields discussed below, argue for a more unbiased approach to TB 

vaccine development [4,5] (Box 1 and 2).

Knowledge of the epitopes and Ab constant region (Fc) structure–function relationships 

most relevant for protection against Mtb infection in humans would have important 

implications in TB vaccine development. However such information remains quite limited 

(reviewed in [18] and [19-24]; Figure 1B). The reasons are manifold and some have been 

discussed in detail in prior reviews [10,25]. They include: i) the conviction that extracellular 

Ab is less relevant for immunity to a predominantly intracellular pathogen like Mtb; ii) 

inconsistent results of passive transfer studies (many decades to a century ago) using horse 

and other animal immune sera in various Mtb infected animal models including rabbits and 

guinea pigs animals, as well as in humans with TB (reviewed in [26]); and iii) the highly 

heterogeneous and tremendously diverse Ab responses to Mtb antigens in humans and non-

human primates [20,27-29]. The latter issue is influenced by immune competency, age and 

Mtb infection states spanning the continuum from primary to controlled and uncontrolled 

infection [28,30-33] (Box 1). Other contributing factors are likely the infecting organism and 

host genetics.

We know that Abs contribute to the defense against many intracellular pathogens, including 

Mtb, through various functions (reviewed in [10,34]). These include interactions with Fc-

gamma receptors (FcyR; reviewed in [35]), the modulation of innate and adaptive immune 

responses (reviewed in [35,36]), and the more recently demonstrated direct effects on the 

physiology of intracellular pathogens while residing both outside and inside host cells 

[24,37,38] (Figure 1C). Furthermore, recent studies in humans and non-human primates 

suggest the importance of direct B cell involvement in the defense against Mtb infection, at 

both the systemic and local granuloma level [39-41]. Collectively, these data highlight the 

need for a thorough, detailed, and unbiased profiling and characterization of both systemic 

and mucosal Ab responses in Mtb infection states spanning the continuum from primary 

infection to controlled and uncontrolled infection (Box 1).

Human anti-mycobacterial Ab functions

Passive transfer studies, performed by independent groups mostly decades ago with murine 

monoclonal Abs (mAbs) against a handful of mycobacterial antigens, have shown variable 

protective efficacy in Mtb infected mice (reviewed [25]). However, little is known about the 

specific functions of these murine mAbs or about the protective efficacy and functions of 

antigen-specific human Abs. Recently published data provide compelling evidence for a 

functional role of human Abs to Mtb [19-23]. Importantly, Mtb infection-state-specific 

differences in IgG functions have been observed [21,23]. Using an unbiased approach for Ab 

profiling, Lu et al. provided evidence for protective in vitro functions of human polyclonal 

IgG in subjects with LTBI but not those with TB [21]. They demonstrated that the protective 
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LTBI IgG functions, including Ab-dependent cellular phagocytosis and cytotoxicity, were 

associated with distinct glycosylation profiles in the IgG Fc region. Such observations are 

important because IgG Fc–Fc R interactions have implications for vaccine development 

strategies (reviewed in [35]). However, the study was limited by analyzing total IgG and IgG 

to purified protein derivative (PPD), which contains many denatured Mtb proteins (>100–

200). Different preparations of PPD vary in the concentrations of these proteins and contain 

moderate and varying amounts of the mycobacterial cell wall glycolipid lipoarabinomannan 

(LAM) [42], thereby limiting any conclusions on antigen-specific Ab structures. On the 

other hand, Zimmermann et al. showed that anti-heparin-binding hemagglutinin (HBHA) 

IgA, but not IgG mAbs, generated from B cells isolated from healthy individuals exposed to 

Mtb, inhibit mycobacterial infection of epithelial cells in vitro [22]. This finding suggests 

that isotype might be another key variable in influencing Ab efficacy for specific host cells. 

These results could have relevance in airway mucosa but should be taken with caution 

because the beneficial properties of naturally occurring and induced human systemic anti-

Mtb IgGs have been demonstrated with human macrophages [19-21].

In passive intraperitoneal transfer experiments with mice infected with aerosolized Mtb, Li 

et al. demonstrated in vivo protective efficacy of total human serum IgG [23]. Serum from 

some LTBI and Mtb-exposed asymptomatic healthcare workers (7/48) were protective; 

however, that from 12 TB patients was not. The protective effects were reversed by pre-

absorbing IgG against heat-killed Mtb but not against soluble Mtb antigens, thereby 

suggesting that the protective Abs targeted the Mtb surface. Similar to Lu et al. [21], this 

study investigated total serum IgG, thus limiting conclusions about specific protective 

antigens or relevant antigen-specific Ab structures. Nevertheless, both studies demonstrate 

differences in functions and efficacy between Abs from Mtb exposed but uninfected and/or 

individuals with controlled LTBI compared to Abs from individuals with uncontrolled 

infection (TB). In line with infection state-specific differences, Joosten et al. recently 

described the impairment of general human B-cell functions (e.g., proliferation, cytokine 

production and activation) during TB disease and recent Mtb infection, which resolved 

following TB treatment [39]. They further found that the B-cell dysfunction also 

compromised cellular immunity [39]. Collectively, these findings provide evidence of the 

diversity of functions of Mtb-specific Abs and B cells found in different infection contexts. 

These include patients with advanced disease despite high levels of Abs to many Mtb 

antigens and individuals who successfully resist or control Mtb infection with lower levels 

of Abs.

Relevance of Abs targeting the mycobacterial surface

Abs to capsular and other surface polysaccharides (PS) are protective against several 

microbial pathogens, including those with intracellular location [10,34]. Some of our most 

successful vaccines are based on inducing Abs to capsular PS [43,44]. Mycobacteria have a 

capsule, an important virulence factor consisting largely of PS, proteins, and, to a smaller 

extent, glycolipids [45,46]. The major capsular PS are α-glucan and arabinomannan (AM), 

accounting for 70–80% and 10–20% of PS content, respectively [47,48]. The lipidated 

counterpart of AM (LAM) is a component of the mycobacterial cell wall and membrane, but 

not of the capsule [45,49]. The Mtb capsule has antiphagocytic properties [46] but surface 
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glycans can also mediate adhesion and promote Mtb uptake and intracellular survival via 

direct interaction with mannose host cell receptors [45,50,51]. Thus, targeting mycobacterial 

surface glycans with Abs could interfere with Mtb virulence by preventing macrophage 

uptake through mannose receptors, and instead promoting Fc R-mediated phagocytosis and 

intracellular growth inhibition.

Little is known about the relevance of specific potentially protective Mtb antigens. Our 

groups are especially interested in Abs targeting AM. Although α-glucan is the major 

mycobacterial capsular PS, it has not generated as much interest as AM. Early studies 

showed that Mtb produces α-glucan during experimental infection in mice, in which Abs to 

this PS can be elicited [52]. However, humans infected with Mtb have low levels of Abs to 

α-glucan [53]. This is presumably because α-glucan is very similar in structure to glycogen 

and starch [52], staples of the human diet. Passive murine transfer studies have demonstrated 

that some, but not all, murine mAbs to AM and LAM have protective efficacy in Mtb 

infected mice [54,55]. Similar effects have not been seen with Abs recognizing the α-

glucan. This, together with the low levels anti-a-glucan Abs in humans, could explain the 

lack research on protective effects of Abs recognizing this PS. On the other hand, Mtb-

infected humans have high titres of anti-AM Abs; immunization with AM/LAM-protein 

conjugates has been shown to improve the outcome of Mtb infected mice ([24,56-58]; 

discussed in more detail below). These studies provide important in vivo evidence. However, 

they are limited in capturing the tremendous complexity and heterogeneity of protective Mtb 

epitopes, as well as infection-specific Ab functions and structure–function Ab-antigen 

relationships encountered in humans [18]. We, and others, have demonstrated that Abs to 

AM and LAM are elicited in human Mtb infection and through BCG vaccination 

[19,20,53,59-61], and that reactivity to both correlates strongly (p<0.001) [20,53]. 

Importantly, IgG titers to AM/LAM were significantly associated with enhanced 

mycobacterial opsonophagocytosis and intracellular macrophage growth inhibition [19,20]. 

Using glycan microarrays, we found highly heterogeneous IgG responses to AM OS 

fragments and a significant correlation of IgG reactivity to specific AM OS with enhanced 

mycobacterial phagocytosis ([20] and unpublished data). These data provide important 

insights because the field of glycoconjugate vaccine development, in part informed by the 

study of human sera, is moving towards OS-conjugates. Such vaccines have proven to be 

effective for several extracellular and intracellular pathogens, such as Streptococcus 
pneumoniae, Candida albicans, and Shigella [62-68].

Evidence of Ab efficacy in TB vaccine studies

In the past twenty years, vaccine development for many intracellular pathogens has been 

limited by the dogma that T cell-mediated immunity is the main contributor to the protective 

response. Vaccination with protein antigens will generate both Ab and T-cell specific 

responses. Consequently, evaluation of protective responses after vaccination with such 

antigens would necessarily need to include the evaluation of how both arms of the adaptive 

immune response contribute to the overall measured protective response. Passive transfer of 

vaccine-immune serum and adoptive transfer of T cells would complement such studies. 

However, negative results could lead to incorrect interpretations because of the potential 

interdependence of the two arms. This is particularly evident in TB vaccine research where 
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most studies do not incorporate measurement of Ab responses after vaccination; those that 

do lack functional investigations of Abs, such as FcyR-mediated effects. Surprisingly, 

studies testing vaccine efficacy of TB subunit vaccines typically neither assess nor mention 

Ab responses. This includes those using some of the most immunogenic Mtb antigens 

capable of inducing marked Th1 responses, such as the Ag85b and the RD1-encoded 

antigens ESAT-6 and CFP-10 [5]. In a more general perspective of vaccine development 

against intracellular pathogens, recent studies on PS-conjugate vaccines demonstrate that 

both cellular and humoral immunity can act synergistically to orchestrate a more efficient 

protective response than those based on inducing responses to either arm alone [24,69].

Most of the knowledge generated in the context of Ab-mediated protection against Mtb 

through vaccination has been restricted to targeting Mtb surface PS antigens (Box 2). This is 

because PS are classical B cell antigens with the inability to stimulate T-cell responses. To 

generate B cell memory, PS antigens need to be conjugated to T-cell dependent antigens 

(i.e., proteins), triggering the required T-cell help leading to B cell maturation and the 

production of high affinity Abs [70]. In this context, both cell wall-associated LAM and 

capsular AM have attracted most of the attention. Conjugates including secreted AM [58] or 

delipidated LAM [56] have been linked to Ag85b or other non-mycobacterial proteins as 

carriers. These studies demonstrated significant Ab-based protection against Mtb. More 

recently, other conjugate formulations including synthetic LAM OS [71] or a baculovirus-

conjugated mimotope vaccine [72] have also demonstrated substantial immunogenicity. 

Similarly, ssDNA aptamers were developed to suppress the immunomodulatory properties of 

LAM leading to control of bacterial replication in animal models [73,74]. Other Mtb cell 

surface components, such as phenolic glycolipids, have also been targeted with conjugate 

vaccines [75]. However, in none of these studies was evidence of a direct contribution of 

vaccine-induced Abs provided.

We have recently reported PS-conjugate vaccines prepared using Ag85b and capsular AM to 

induce Ab responses to the mycobacterial cell surface [24]. Our studies showed protection at 

the level of BCG. More importantly, this work demonstrated, through passive transfer 

studies of immune sera, the significant contribution of both AM- and Ag85b-binding Abs to 

controlling bacterial dissemination in mice. The enhanced capacity of AM-Ag85b-

immunized mice to reduce bacterial dissemination to the spleen relative to mice immunized 

with Ag85b alone supports the beneficial additive effect of AM-binding Abs to the overall 

protective response. This study also demonstrated, for the first time, that one of the most 

immunogenic Mtb protein antigens, Ag85b, induces protective Abs. Adoptive T-cell transfer 

from both Ag85b- and AM-Ag85b-immunized mice led to a reduction in bacterial burden in 

both the lung and spleen, indicating that both arms of the adaptive immune response 

contribute to the protective properties of Ag85b [24] (Figure 1B). We further demonstrated 

that several Ab mechanisms can explain the contribution of vaccine-induced Abs to the 

overall protective response. Changes in the Mtb transcriptional response upon binding of 

AM-specific Abs was also demonstrated. This novel observation indicates that Abs could 

have a direct effect on Mtb by compromising its physiology [24]. Similar Ab effects on the 

intracellular pathogen Cryptococcus neoformans have been reported [38]. We also 

demonstrated that pretreatment of Mtb with AM-specific polyclonal murine serum enhanced 

opsonophagocytosis by macrophages [24], an observation consistent with results from our 

Achkar and Prados-Rosales Page 6

Curr Opin Immunol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



human studies with high anti-AM IgG titer polyclonal sera and human macrophages [20]. 

Importantly, we and others have shown that the opsonic entry of Mtb into phagocytic cells 

triggers a macrophage response leading to reduced bacterial survival via increased 

phagosome–lysosome fusion [20,76].

The role of vaccine-induced Abs against Mtb during an ongoing infection has been also 

explored. Generation of such data is important because the WHO estimates that the largest 

immediate impact of a TB vaccine would be in the prevention of disease in already infected 

individuals thus preventing transmission [2]. Two independent studies have shown the 

benefit of the therapeutic administration of immune sera in Mtb-infected SCID [77] or B-

cell knockout mice [78]. The results of the former study should, however, be taken with 

caution as they were developed in the context of TB relapse after antibiotic treatment using a 

DBA/2 mouse strain that is known to be impaired in Ab development after chemotherapy. 

The later study clearly showed the amelioration of lung inflammation associated with 

reduced neutrophil infiltration and Th17 levels after passive transfer of murine BCG-

immune serum. No mechanism of regulation of neutrophilic response was provided. 

However, this study encourages further explorations between humoral and innate immune 

responses to gain more insight into additional potential Ab-mediated mechanisms and the 

interactions between the various arms of the immune response. Such investigations would 

provide critical information for TB vaccine development.

Future perspectives

While the studies discussed here support protective efficacy of human polyclonal IgG in 
vitro and in vivo, they also indicate substantial complexity in structure–function 

relationships of Abs targeting Mtb. This complexity contributes to the challenges of proving 

protective Ab efficacy, particularly in humans with highly heterogeneous Ab responses to 

Mtb [18]. To decipher this complexity, and to determine structure–function relationships 

relevant for protection, more single Ag-specific studies with both human polyclonal and 

mAbs are needed (Box 1). The studies described above should also encourage the rethinking 

of TB vaccine design strategies, specifically the consideration that neither Ab- nor T cell-

mediated immunity alone might suffice to generate an optimal protective response against 

Mtb infection. Based on what we have learned from conjugate vaccine studies, future 

strategies aiming to exploit this interaction should consider the optimization and 

development of second generation conjugate vaccines that incorporate specific glycan 

fragments and protein epitopes. We anticipate that vaccines harnessing both aspects of the 

immune response could have the highest impact in the prevention of TB. Another important 

area that has potentially tremendous implications for vaccine efficacy, especially for Ab-

based vaccines targeting the Mtb surface, is the phenomenon of microbial antigenic 

variability of Mtb. This is expected to be particularly important for developing vaccines that 

target different strains in various TB endemic regions.

In conclusion, current evidence now indicates that it is critical for TB vaccine development 

to consider the humoral response in the experimental design of novel candidates. In addition, 

for those vaccine candidates in clinical trials with reagents capable of eliciting an Ab 

response, it is essential for the field to learn whether part of the protective response is due to 
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Abs. The complexity of the Ab response to Mtb is currently being increasingly uncovered. 

However, there is sufficient evidence to demonstrate that Abs could make a difference in 

developing vaccines that protect against this tremendously successful human pathogen.
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Box 1

The need for an unbiased and holistic evaluation of the humoral immune 
responses to Mtb

The tremendous heterogeneity of the humoral immune response to Mtb, even among 

individuals with apparently similar immune competency and Mtb infection states creates 

major challenges in delineating beneficial Ab responses in humans. Several factors, most 

of all the state of Mtb infection (controlled in LTBI versus uncontrolled in TB), immune 

competency (e.g. HIV uninfected versus HIV co-infected), and age (young children 

versus adults) have a major impact on Ab responses to Mtb. Other factors – prior 

exposure to environmental non-tuberculous mycobacteria, the infecting Mtb strain, and 

host genetics, to name just a few – are also likely influencing the repertoire of 

mycobacterial antigens eliciting Abs in humans. Mtb Ab responses must be analyzed in 

the context of these factors to avoid drawing misleading conclusions. Recent Positron 

Emission Tomography/Computed Tomography (PET/CT) studies demonstrate the 

diversity of Mtb infection even within a single individual (reviewed in [32]). 

Investigations of this type could provide new insights into additional causes for the 

heterogeneity of Ab responses. Nevertheless, the extrinsic and intrinsic factors affecting 

the tremendous heterogeneity of the humoral immune response to Mtb remain 

incompletely understood. Even less is known about the involvement and timing of 

immune responses at the local airway level. Studies with non-human primates suggest 

that early immunological events at the airway level could impact the outcome of Mtb 

infection [33,79]. Therefore, an unbiased and comprehensive profiling of mucosal airway 

Abs is essential to delineate Ab isotypes and antigens involved in controlling Mtb 

infection at the local level. This knowledge could inform mucosal airway vaccines. 

Overall, profiling of both systemic and mucosal airway Ab responses to Mtb in humans 

and non-human primates, along the continuum from uninfected but Mtb exposed to 

asymptomatic controlled latent infection to symptomatic uncontrolled disease, could lead 

to rationally designed studies with antigen-specific mAbs. Such studies are facilitated by 

the development of new tools that allow precise mapping of the specificity of Abs that 

bind to mycobacterial antigens [20,28,29,80], as well as by studies that allow the detailed 

analysis of Ab Fc structures and mediated FcyR functions [35]. Ultimately, the use of 

chemically defined reagents in form of mAbs would allow the rigorous evaluation of the 

specific Ab structure– function relationships and associated mechanisms of action that 

are needed to inform TB vaccine development strategies.

Achkar and Prados-Rosales Page 14

Curr Opin Immunol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 2

Improving TB vaccine efficacy

One of the longstanding problems in the TB field is defining what a protective response 

against Mtb is. Contrary to most other pathogens, an initial infection does not provide 

protection against reactivation and/or reinfection. Therefore, what we can learn from 

natural infection might not be enough to generate an effective vaccine against TB. It is 

clear that T-cell mediated immunity is critical to generate a protective response against 

TB, but, it is also clear that it is insufficient for high vaccine efficacy. Nevertheless, TB 

vaccine candidates currently in clinical development are immunologically similar in that 

they are mostly based on CMI and do not exploit other arms of the adaptive immune 

response. This is apparent by the failure to perform detailed investigations on Ab 

responses and functions after vaccination. Past and new studies, mostly with PS-

conjugate vaccines, have demonstrated that targeting the mycobacterial cell surface with 

Abs induced through vaccination can be complementary to and synergistic with the 

induced cellular response (Figure 1B). These data highlight that the understanding of 

what a protective immune response against TB requires should incorporate the interplay 

of the different components of the immune system.
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Highlights

• Human antibody functions against Mycobacterium tuberculosis differ among 

states of M. tuberculosis infection, from asymptomatic controlled latent 

infection (LTBI) to symptomatic uncontrolled infection (active tuberculosis)

• Antibody functions against M. tuberculosis are influenced by isotypes and 

IgG Fc glycosylation structures

• Induction of M. tuberculosis surface antigen-specific antibody responses can 

influence TB vaccine efficacy

• Antibodies induced through vaccination may be complementary to and 

synergistic with the induced cellular response against M. tuberculosis
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Figure 1. 
Conceptual view of Ab-mediated protection induced by a TB vaccine. (A) The ideal vaccine 

would prevent M. tuberculosis infection in the uninfected and development of disease in the 

already infected individual through mucosal airway and/or systemic vaccination. (B) 
Induction of protective M. tuberculosis antigen-specific antibody responses with potential 

enhancement of cell-mediated responses. (C) Illustration of several antibody-mediated 

functions against M. tuberculosis, including opsonization, FcR-mediated phagocytosis and 

intracellular growth reduction, influence on the host’s inflammatory response, direct effects 
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on the M. tuberculosis physiology, and influence of immune complexes on the host and host 

cells.
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