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Abstract

There are concerns about the effects of subconcussive head impacts in sport, but the effects of 

subconcussion on brain connectivity are not well understood. We hypothesized that college 

football players experience changes in brain functional connectivity not found in athletes 

competing in lower impact sports or healthy controls. These changes may be spatially 

heterogeneous across participants, requiring analysis methods that go beyond mass-univariate 

approaches commonly used in functional MRI (fMRI). To test this hypothesis, we analyzed 

resting-state fMRI data from college football (n = 15), soccer (n = 12), and lacrosse players (n = 

16), and controls (n = 29) collected at preseason and postseason time points. Regional 

homogeneity (ReHo) and degree centrality (DC) were calculated as measures of local and long-

range functional connectivity, respectively. Standard voxel-wise analysis and paired support vector 

machine (SVM) classification studied subconcussion’s effects on local and global functional 

connectivity. Voxel-wise analyses yielded minimal findings, but SVM classification had high 

accuracy for college football’s ReHo (87%, p = 0.009) and no other group. The findings suggest 

subconcussion results in spatially heterogeneous changes in local functional connectivity that may 

only be detectible with multivariate analyses. To determine if voxel-wise and SVM analyses had 

similar spatial patterns, region-average t-statistic and SVM weight values were compared using a 

measure of ranking distance. T-statistic and SVM weight rankings exhibited significantly low 

ranking distance values for all groups and metrics, demonstrating that the analyses converged on a 
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similar underlying effect. Overall, this research suggests that subconcussion in football may 

produce local functional connectivity changes similar to concussion.
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Introduction

Multiple concussions over the course of a long career in American football can affect a 

player’s brain long after participation in the sport has ended, possibly increasing the player’s 

susceptibility for multiple neurodegenerative disorders, including chronic traumatic 

encephalopathy (Iverson et al. 2015; Lehman et al. 2012; McKee et al. 2013; Omalu et al. 

2006; Stein et al. 2014). However, the majority of sports-related head impacts do not cause 

concussion, but there is mounting evidence that even subconcussive head impacts can affect 

brain structure (Davenport et al. 2014; Koerte et al. 2012; Zhang et al. 2013), function 

(Abbas et al. 2015; Breedlove et al. 2012, 2014; Johnson 2014; Militana et al. 2015; 

Robinson et al. 2015; Shenk et al. 2015; Svaldi et al. 2016; Talavage et al. 2010), and 

performance (Hwang et al. 2016; Kawata et al. 2016; Tsushima et al. 2016). While there is 

no official definition of subconcussion, Bailes et al. (2013) defined it as “a cranial impact 

that does not result in a known or diagnosed concussion on clinical grounds.” Aggregately, 

these studies suggest that subconcussive head impacts might produce spatially 

heterogeneous effects on the brain, that are similar to, but less severe than, the effects from 

concussion (Bailes et al. 2013).

Functional magnetic resonance imaging (fMRI) is a noninvasive method for measuring 

functional activity in the brain that has proven capable of detecting functional changes in the 

brain related to subconcussion. The first studies to indicate that subconcussive head impacts 

cause functional changes in the brain used fMRI with a working memory task (Breedlove et 

al. 2012, 2014; Robinson et al. 2015; Shenk et al. 2015; Talavage et al. 2010). These studies 

identified a group of athletes who were not diagnosed with a concussion but exhibited 

functional impairment in multiple regions and experienced a higher subconcussive head 

impact load compared to athletes without functional impairment. Using task-independent 

resting state fMRI (rs-fMRI), Johnson et al. (2014) found changes in functional connections 

between multiple regions in the default mode network (DMN) (Johnson 2014), and Abbas et 

al. (2015) found changes in the number of regions connected to the DMN (Abbas et al. 

2015) after exposure to repetitive subconcussive head impacts. Task-based fMRI has found 

changes in working memory and rs-fMRI has found changes in the functional connectivity 

of the DMN, but there is no reason to assume that these tasks and networks are the only, or 

even the primary, areas affected by subconcussion (Breedlove et al. 2012, 2014; Robinson et 

al. 2015; Shenk et al. 2015; Talavage et al. 2010). If the physiological effects of 

subconcussion have heterogeneity similar to concussion, then it may be more appropriate to 

use whole-brain fMRI analyses that are independent of specific brain functions and 

networks.

Reynolds et al. Page 2

Brain Imaging Behav. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Resting-state fMRI data can be used to calculate many aspects of functional connectivity for 

each grey matter voxel (Telesford et al. 2011), including metrics reflecting local and global 

functional connectivity of a voxel. Regional homogeneity (ReHo) is a commonly used 

measure of local connectivity that calculates connectivity between a grey matter voxel and 

its immediate spatially contiguous neighboring voxels. Degree centrality (DC) is a 

commonly used measure of global connectivity that calculates connectivity between one 

grey matter voxel and all other grey matter voxels in the brain. Meier et al. (2016) recently 

investigated whether ReHo and DC changed after athletes sustain a concussion and made 

several compelling findings. Their analyses revealed several brain regions that contained 

areas with statistically significant changes in ReHo one-month after a concussion, including 

the left paracentral lobule and postcentral gyrus, and the right postcentral gyrus, lingual 

gyrus, fusiform gyrus, middle temporal gyrus and superior temporal gyrus, among others 

(Meier et al. 2016). However in the same study, no areas experienced a significant change in 

DC (Meier et al. 2016). If repetitive subconcussive head impacts affect changes similar to 

concussion, then ReHo and DC may be useful metrics to detect those changes.

In fMRI data analysis, mass-univariate application of the general linear model (GLM) 

accounts for the vast majority of publications over the last 20 years, including the majority 

of fMRI studies of mTBI to date. Mass-univariate analysis of fMRI data is most useful for 

identifying situations where the same region shows the same type of change across a 

majority of the population under investigation. However, if the underlying change of interest 

exhibits spatial heterogeneity across participants, mass-univariate application of the GLM 

becomes poorly matched to the problem under investigation. Studies of mTBI from different 

domains - clinical, biomechanical, and fMRI - support the idea that spatial heterogeneity of 

injury is likely a dominant feature of mTBI. It is well-described that concussion presents 

with a variable set of signs and symptoms (Belanger and Vander-ploeg 2005), to the point 

that physicians who see concussion patients are fond of the statement, “If you have seen one 

concussion, you have seen one concussion”. Data from both biomechanical simulations and 

live action sports competition suggest the clinical variability may exist because each unique 

head impact likely imparts different forces on different brain regions (Beckwith et al. 2013; 

Broglio et al. 2010; Crisco et al. 2010; Rowson et al. 2012; Wilcox et al. 2015). The existing 

fMRI studies of concussion support this idea, with many reporting different areas of change 

in brain activity (Yuh et al. 2014), suggesting spatial differences between populations with 

similar mechanisms of injury. If we hypothesize that subconcussion affects similar brain 

regions as concussion but in a less severe manner, then mass-univariate application of the 

GLM may be insufficient to detect changes related to subconcussion.

To address some of the weaknesses of mass-univariate analysis, some fMRI researchers have 

started using multivariate analyses as a complement to standard mass-univariate analyses 

(Mahmoudi et al. 2012; Vergara et al. 2016). For example, multivoxel pattern analyses 

(MVPA) can probe the information in distributed neural patterns without assuming a specific 

spatial model. MVPA is often performed within the framework of supervised learning 

classification, using a training set of data to create classification algorithms that discriminate 

between two known groups, before testing classifier performance on novel data (Mahmoudi 

et al. 2012). The resulting algorithms differentially weight voxels across the brain that might 

collectively discriminate between two (or more) groups of interest. This general approach 

Reynolds et al. Page 3

Brain Imaging Behav. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



has the benefit of being more robust in detecting changes that are spatially heterogeneous or 

spatially distributed across a group. Linear support vector machine (SVM) classification is 

an increasingly common technique in fMRI that tries to create a hyperplane decision 

boundary that separates the two groups’ feature sets with the maximum possible margin 

(Cortes and Vapnik 1995; Vapnik 2000). For fMRI data, the strength of linear SVM lies in 

its ability to deal with high dimensionality data and resistance to overtraining (Formisano et 

al. 2008; Meier et al. 2012); but a significant weakness is the open question of whether 

resulting classifier weight maps contain useful information about spatial distribution of 

effects in the brain (Haufe et al. 2014).

We hypothesized that the hundreds of subconcussive head impacts sustained in college 

football produce spatially heterogeneous changes in brain functional connectivity that should 

be measurable with rs-fMRI. To test this hypothesis, the present study collected preseason 

and postseason rs-fMRI data from college football, soccer, and lacrosse players and a 

matched control group. At each time point, ReHo and DC were respectively used as voxel-

based measures of local and global functional connectivity throughout the brain. Changes in 

ReHo and DC between the two time points were tested with both: (1) mass-univariate 

application of the GLM and (2) paired implementation a linear SVM classification. In 

addition, a ranking distance measure was used to test if the spatial information resulting 

from the mass-univariate analysis shared any information with the weight maps resulting 

from the SVM classification, despite the disparate ways these maps are generated.

Methods

Participants

From 2013 to 2015, preseason and postseason resting-state fMRI data was collected from 31 

college football players (CF), 18 college men’s lacrosse players (CL), 14 college men’s 

soccer players (CS), and 30 male controls (MC) (mean (SD) age: 20.3 (1.5) years, 20.2 (1.2) 

years, 20.4 (1.2) years, 21.7 (3.3) years, respectively). For all college athletes, preseason data 

was collected no later than one week after the first practice of the sports season, and before 

any competitive games; postseason data was collected no later than two weeks after the final 

game or practice of the season or postseason (mean (SD) days between scans: CF = 

133.5(9.2), CL = 63.6(13.2), CS = 86.6(4.5)). Football player data was collected during their 

fall competitive season, while lacrosse and soccer player data was collected during their 

respective fall and spring practice seasons. For male controls, the two scanning sessions 

were separated by 3–4 months to approximate the length of an athletic season (mean (SD) 

days between scans: 108.7 (6.4)). College athletes were volunteers from NCAA Division I 

teams without a history of developmental or neurological disorder, or moderate to severe 

traumatic brain injury. Nineteen CF, seven CL, and six CS players had a self-reported history 

of diagnosed concussion prior to the start of the season, but were not excluded from the 

study. Male controls were drawn from a mixed-gender university population screened for 

history of neurologic disease, including concussion. Four football players sustained an injury 

or illness that resulted in substantial lost playing time, and three additional players were 

diagnosed with a concussion during the season; these athletes were excluded from further 

analyses. For the rs-fMRI analyses, the participants were divided into three groups: college 
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football players (CF), other sports (OS) including both college lacrosse and soccer players, 

and male controls (MC). The three groups represented high, medium, and low subconcussive 

exposure, respectively (Reynolds et al. 2017). Six football players had a position and playing 

status that resulted in no game time and little to no expected head impact exposure during 

practice (ex. redshirt quarterback or back-up kicker), and were therefore excluded from 

further analysis. The OS athletes also serve as a college athlete control group to account for 

possible aerobic training confounds, or other factors that may differentiate college athletes 

from their nonathlete peers.

Data acquisition

Data for this study was collected at the University of Virginia Health System on a Siemens 

MAGNETOM Trio MRI. A whole brain multiband BOLD sequence (University of 

Minnesota, CMMR sequence, https://github.com/CMRR-C2P/MB) (Feinberg et al. 2010; 

Moeller et al. 2010; Xu et al. 2013) (TR/TE = 1000 ms/32 ms, slice thickness = 3 mm, slice 

spacing 0.75 mm, in-plane dimensions 3 × 3 mm, flip angle = 90°, matrix = 64 × 64, 

multiband factor = 4, volumes = 480) was acquired during an eyes-open resting state: the 

participants were instructed to lie still and remain awake. A three-dimensional high 

resolution T1 magnetization-prepared rapid gradient-echo (MPRAGE) sequence (TR/TE = 

1200/2.27, slice thickness = 1 mm, in-plane dimensions = 0.977 X 0.977 mm, flip angle = 

9°, matrix=256 × 256) was acquired as an anatomical reference.

Data preprocessing

Each participant’s anatomical image was brain extracted using Advanced Normalization 

Tools (ANTs) (Avants et al. 2011) antsBrainExtraction.sh script. A college athlete and 

control (CAC) template was created from a random selection of 30 participants’ anatomical 

scans using antsMultivariate-TemplateConstruction2.sh. The Desikan-Killiany-Tourville 

(DKT) atlas (Klein and Tourville 2012) was applied to the CAC template using 

antsJointLabelFusion.sh and 20 hand-labeled brains from the OASIS-TRT dataset (2012). 

The following preprocessing steps were performed in ANTs with R (ANTsR) (Avants et al. 

2015) unless otherwise specified. The first 10 time points of the rs-fMRI were removed to 

allow the MRI to reach signal equilibrium. White matter signal, CSF signal, component 

based grey matter noise (CompCor) (Behzadi et al. 2007), six-degrees of motion parameters 

and their squares, and derivatives of original and squared motion parameters were regressed 

from the rs-fMRI images. Time points that exceeded a framewise displacement of 0.5 mm 

were removed from subsequent analyses, along with the following time point, and were 

replaced with β-spline interpolation. If either a participant’s preseason or postseason scan 

had a mean translation across all time points greater than 0.25 mm compared to the 

participant’s average BOLD image, that participant was removed from further analyses; this 

excluded three football players, two lacrosse players, two soccer players, and one control. 

The remaining subjects’ mean head translation and mean head rotation during the fMRI scan 

were compared to identify any head movement differences across groups and time points, 

with unpaired and paired t-tests respectively. Rs-fMRI images were then diffeomorphically 

and affine transformed to the CAC template using antsRegistration and 

antsApplyTransforms commands. Supplemental Table S1 summarizes the participants’ 
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demographics, including their sport, the position played in that sport, if they were included 

in the subsequent analyses, and if not, why they were excluded.

Calculating measures of functional connectivity (Fig. 1)

Preprocessed BOLD images were used to calculate measures of functional connectivity 

using the Data Processing Assistant for Resting State fMRI (DPARSF) version 4.0 (Yan and 

Zang 2010). A cortical grey matter mask, segmented from the CAC template, was used to 

mask the data before metric calculation. BOLD images were then bandpass filtered (0.01–

0.10 Hz) before calculation of the two metrics (Biswal et al. 1995). Regional homogeneity 

(ReHo) and degree centrality (DC) were calculated for each set of BOLD images. ReHo is 

the Kendall’s coefficient of concordance (KCC) for a 27 voxel cube surrounding the 

reference voxel, and is a measure of local functional connectivity within that small 

neighborhood (Zang et al. 2004). Weighted degree centrality (DC) is the sum of Pearson 

correlations between a voxel’s time series and that of all other grey matter voxels, and is a 

measure of global functional connectivity. To improve normality, the resulting correlation 

coefficient brain maps were then Z transformed by subtracting the mean metric value for 

grey matter from each voxel and dividing by the corresponding standard deviation, using 

DPARSF (Yan et al. 2013). Metric difference maps ΔReHo and ΔDC) were created, by 

subtracting a participant’s preseason metric map from their postseason metric map (ex. 

postReHo - preReHo = ΔReHo).

Mass-univariate analyses

Individual metric post-pre difference maps for subjects within a group were merged into 4D 

images using the Oxford Centre for Functional MRI of the Brain (FMRIB) Software 

Library’s (FSL) fslmerge command (Jenkinson et al. 2012). In order to identify voxel 

clusters of statistically significant metric change over the course of the season, a 

permutation-based one-sample two-tailed t-test was performed with FSL’s randomise (v5.0, 

5000 permutations) (Winkler et al. 2014) using threshold-free cluster enhancement (TFCE) 

(Smith et al. 2009).

Multivariate analyses

Linear support vector machine (SVM) classification was chosen as the multivariate analysis 

method (Mourao-Miranda et al. 2005; Orru et al. 2012). Classifier training and testing was 

implemented using Pattern Recognition for Neuroimaging Toolbox (PRoNTo v2.0) 

(Schrouff et al. 2013b). A linear kernel was used to avoid overtraining due to the high 

dimensionality of the data set (thousands of voxels) with relatively few examples 

(participants) (Braun et al. 2008; Muller et al. 2001; Vapnik 2000). A paired version of the 

SVM was implemented for each group and metric to distinguish between the participants’ 

metric difference maps and its opposite (Sripada et al. 2013). This involved training a 

classifier to differentiate between a group’s metric difference map (ex. CF postseason ReHo 

minus CF preseason ReHo = CF ΔReHo) and its opposite (ex. CF preseason ReHo minus 

CF postseason ReHo = CF ΔReHo), for a total of six separate classifiers (CF ReHo, CF DC, 

OS ReHo, OS DC, MC ReHo, and MC DC). A paired SVM is analogous to a paired t-test, 

in which the mean of a subject’s two observations is subtracted from their values, except in 

this case the postseason minus preseason (and vice versa) difference maps account for the 

Reynolds et al. Page 6

Brain Imaging Behav. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



longitudinal nature of the data rather than subtracting the mean of the two time points. The 

paired nature of the SVM ensures that each subject’s two metric maps (ex. ΔReHo and -

ΔReHo) end up on opposite sides of the classification decision line. This feature of the 

paired SVM results in equivalent class accuracy and total accuracy for each particular group 

and metric. Sripada et al. (2013) demonstrates application of paired SVM to BOLD fMRI 

data with detailed description of the underlying method and theory. As a supplemental 

analysis, an unpaired SVM was implemented to compare the preseason and postseason 

metric maps between each group. The SVM classifier is trained through leave-one-out cross-

validation (LOOCV) on all but one subject’s difference maps and then the classifier is tested 

on the left-out subject. LOOCV is a method to train with the maximum number of examples 

without testing the classifier on a subject on which the classifier was trained. Each LOOCV 

iteration results in a weight map, this weight map is multiplied by the difference map being 

classified and then summed to get a single classifier value that indicates the predicted class. 

Further weight map analyses used the average weight map among all LOOCV iterations. For 

permutation testing, the classification labels were permuted 5000 times to determine the 

statistical strength of the classifier’s accuracy, with a significance level of p < 0.05 (Golland 

and Fischl 2003; Pereira et al. 2009; Schrouff et al. 2013b).

Ranking distance comparison of brain regions

Ranking distance is a measure of correspondence between any two rankings that consist of 

the same items (Lempel and Moran 2005), in this case brain regions. Schrouff et al. (2013a) 

used a very similar measure to compare the correspondence between SVM weight maps 

(Schrouff et al. 2013a). Unthresholded t-statistic and SVM weight maps were divided into 

66 regions using the DKT atlas. The regions were ranked according to each region’s average 

t-statistic or SVM weight values, resulting in a t-statistic region (TROI) ranking and SVM 

weight region (WROI) ranking for each group and metric. The correspondence between the 

TROI and WROI rankings for a particular group and functional connectivity metric was 

calculated using a measure of distance:

RD TROI, WROI = 2
n ∗ (n − 1) ∑

i = 1

n
∑

j = 1

n
I(TROI, WROI)(i, j)

Where

if TROI(i) < TROI( j) and WROI(i) > WROI( j), then I(TROI, WROI)(i, j) = 1else 

I(TROI, WROI)(i, j) = 0

with RD(TROI, WROI) as the distance between the TROI and WROI rankings, and n as the 

number of ROI (66). The ranking distance values range from 0 (identical rankings) to 1 

(exactly opposite rankings) (Schrouff et al. 2013a). If the rankings have low ranking distance 

values, it indicates the mass-univariate and multivariate analyses are converging on similar 

underlying trends in the data. Statistical significance of the ranking was determined by 

randomly shuffling the rankings for 5000 permutations and identifying how many random 

permutations had a lower ranking distance than the actual rankings. The ranking distance 
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was also calculated for WROI rankings from ReHo and DC analyses in the college football 

cohort, to determine if the two functional connectivity metrics are experiencing similar 

spatial trends.

College football metric difference maps

To visualize and compare college football’s longitudinal trends related to subconcussion 

with Meier, Bellgowan, and Mayer’s (2016) findings in concussion, we created a region 

average brain map where group mean ΔReHo and ΔDC values were averaged over each 

region in the DKT atlas.

Results

Head movement analyses

MC had more movement at postseason compared to preseason for both translation (p = 

0.002) and rotation (p = 0.018). MC also had lower translation (p = 0.003) and rotation (p = 

0.011) than OS at preseason, and MC had lower translation (p = 0.027) but not rotation (p = 

0.569) than CF at preseason. There were no significant differences for CF or OS between 

time points for either translation or rotation (p > 0.05). There were no differences in either 

translation or rotation between CF and OS at preseason, or between any groups at 

postseason (p > 0.05). Means and standard deviations for each group and time point are 

presented in Supplemental Table S2.

Mass-univariate analyses

For the TFCE voxel-wise analyses testing for spatially homogeneous preseason to 

postseason differences in ReHo and DC, a nine-voxel cluster of increased ReHo was found 

in the posterior superior temporal sulcus for college football players (TFCE corrected p = 

0.033) (Supplemental Figure S1). Additionally, a two-voxel cluster of increased ReHo was 

found in the left superior parietal lobule for the male control group (TFCE corrected p = 

0.040). No other group or metric had significant findings.

Multivariate analyses

For the paired SVM classifier trained with a linear kernel using LOOCV, only one metric 

and group produced a statistically significant accuracy. CF had a significant class accuracy 

for ReHo (87%, p = 0.009) (Fig. 2a, c), but OS and MC did not (50%, p = 0.617, 62%, p = 

0.102). CF did not have significant class accuracy for DC (73%, p = 0.084) (Fig. 2b, d), OS 

and MC were also not significantly accurate (OS: 57%, p = 0.317; MC: 55%, p = 0.311) 

(Table 1). Due to the paired t-test design, class accuracy and total accuracy are equivalent for 

each comparison. Results from multivariate analyses directly comparing metric maps 

between groups at preseason and postseason time points are presented in Supplemental 

Tables S3 and S4, for ReHo and DC respectively. All reported p-values in this section are the 

result of 5000 permutation tests for that comparison.
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Ranking distance between weight maps and t-statistic maps

While SVM weight maps are not considered to be spatially interpretable, spatial information 

is a key component of t-statistic maps output from mass-univariate analyses. Ranking 

distance is a way to test if the spatial information of an SVM weight map is similar to the 

spatial information of the corresponding t-statistic map, and low ranking distances would 

indicate that these mass-univariate and multivariate approaches are converging upon similar 

underlying effects in the data. In comparing the region rankings for SVM weight map and t-

statistic values for ReHo, all groups had statistically significant low ranking distances (CF: 

RD = 0.120, p < 0.001; OS: RD = 0.145, p < 0.001; MC: RD = 0.122, p < 0.001). All groups 

also had statistically significant low ranking distances for DC (CF: RD = 0.073, p < 0.001; 

OS: RD = 0.142, p < 0.001; MC: RD = 0.089, p < 0.001) (Table 2). These ranking distance 

values were substantially lower than all values calculated during permutation testing, 

indicating a very high level of correspondence between the t-statistic and SVM weight maps 

(Fig. 3). All reported p-values in this section are the result of 5000 permutation tests for that 

comparison.

Ranking distance between ReHo and DC weight maps

While the SVM did not produce a significantly high classification accuracy for DC in 

college football, there appeared to be a trend towards significance. To determine if this trend 

in DC exhibited a similar spatial pattern as CF’s effects in ReHo, SVM weight maps were 

compared using ranking distance with 5000 iterations of permutation testing to determine 

significance. Ranking distance comparison between college football’s ReHo and DC WROI 

rankings resulted in a significantly low ranking distance of 0.398 (p = 0.007).

College football metric difference maps

In college football among the 66 regions in the DKT atlas, the five most increased regions 

for ReHo are (in order) the left pericalcarine cortex, right lingual gyrus, left lingual gyrus, 

right pericalcarine cortex, and left postcentral gyrus. The five most decreased regions for 

ReHo are the right rostral anterior cingulate, left caudal anterior cingulate, right pars 

triangularis, left rostral anterior cingulate, and left pars orbitalis (Supplemental Table S5). 

The five most increased regions for DC are the right parahippocampal gyrus, right entorhinal 

cortex, left temporal pole, right fusiform gyrus, and left parahippocampal gyrus. The five 

most decreased regions for DC are the right pars triangularis, right rostral middle frontal 

gyrus, right supramarginal gyrus, right inferior parietal gyrus, and left caudal anterior 

cingulate (Supplemental Table S6).

Discussion

This study used a combination of mass-univariate and multivariate analyses applied to rs-

fMRI data to investigate effects of subconcussion on metrics thought to represent local 

(ReHo) and global (DC) functional connectivity. Mass-univariate analyses found minimal 

changes (9 voxels of increased ReHo for CF and 2 voxels of increased ReHo for MC), and 

the paired SVM found significantly high class accuracy for preseason-to-postseason ReHo 

changes in only the college football players (87%, p = 0.009). At a superficial level, this 

finding agrees with prior studies of ReHo in concussion (Meier et al. 2016; Zhan et al. 
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2015), although direct comparison to these prior results is limited by the nature of the spatial 

information resulting from SVM analyses. However, our ranking distance finding of 

significant correspondence between the t-statistic maps and SVM weight maps for all six 

statistical tests supports the ideas that: (1) these disparate mass-univariate and multivariate 

analyses are converging upon similar underlying effects and (2) meaningful spatial 

information may exist in the SVM weight maps. An exploratory comparison of the raw 

ΔReHo maps against published ReHo results in concussion further supports the idea that 

changes in functional brain connectivity related to subconcussion may reflect a milder 

version of what occurs after a clinical concussion.

Comparing mass-univariate and multivariate analyses

While mass-univariate analyses were only able to detect small changes in ReHo for CF and 

MC, paired SVM classification demonstrated highly significant classification accuracy for 

CF’s ReHo difference maps (p = 0.009). High accuracy of the SVM indicates that college 

football players’ local functional connectivity changed over the course of a single season. 

The fact that the multivariate analysis, which can use information from across the brain, was 

able to detect a change that was only minimally detectable for mass-univariate analyses 

agrees with the hypothesis that changes affected by subconcussion are spatially 

heterogeneous across subjects and/or spatially distributed within subjects. Mass-univariate 

analyses in this study only identified a very small region of effect, whereas SVM detected 

changes were more robust in response to concussion, suggesting that subconcussion may 

produce similarly distributed but subtler effects than concussion.

Comparing SVM weight maps and mass-univariate t-statistic maps

Results from a paired SVM alone cannot identify the directionality of changes (i.e. increased 

or decreased ReHo), nor can they identify which regions are responsible for driving any 

changes (Sripada et al. 2013). However, results from the ranking distance analyses showed 

that the mass-univariate analyses and paired SVM classification have a remarkable level of 

spatial correspondence. Every comparison between t-statistic and SVM weight region 

rankings resulted in a ranking distance that was substantially lower than the lowest value 

calculated in permutation testing (Fig. 3). It is surprising that these maps have such a high 

level of agreement, as they use mathematically dissimilar processes to produce their results. 

While voxel-wise analyses ostensibly treat the effects in each voxel independently, the SVM 

classifier is trained to weight a number of spatially distributed voxels to discriminate 

between the two groups. The resulting SVM weight maps are not generally considered to be 

spatially interpretable (Haufe et al. 2014), but the high spatial correspondence with the t-

statistic maps suggests that meaningful spatial information may be contained in the weight 

maps.

Similarity to findings in concussion

Zhan et al. (2015) measured ReHo in patients diagnosed with a mild traumatic brain injury 

(mTBI) a few days after injury and compared them to matched controls. Patients with mTBI, 

compared to the control group, had lower ReHo values in the left insula, left precentral 

(PrG) and postcentral gyri (PoG), and the supramarginal gyrus (SMG) (Zhan et al. 2015). 

Meier et al. (2016) measured DC and ReHo at multiple time points after athletes had 
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sustained a sports-related concussion (SRC) (mean days after injury: T1 = 1.7, T2 = 8.4, T3 

= 32.4) and compared those measures to those found in a healthy athlete (HA) control group. 

Similar to our data, they found no changes in DC at any time point relative to the athlete 

control group. At one-month post injury (T3) concussed athletes, compared to the HA 

control group, had increased ReHo at the bilateral postcentral gyri (PoG), left paracentral 

lobule (PCL), right lingual gyrus (LgG), right fusiform gyrus (FuG), right superior temporal 

gyrus (STG), right middle temporal gyrus (MTG), and the right supplementary motor area 

(SMA), and decreased ReHo in the right middle frontal gyrus (MFG), right superior frontal 

gyrus (SFG), and superior medial frontal gyrus (SMFG) (Meier et al. 2016).

Similar to the published results from Zhan et al. (2015) and Meier et al. (2016) the region 

average brain map (Fig. 4) indicated increased ReHo in bilateral PoG, right LgG, right FuG, 

right STG, and decreased ReHo in left insula and SMG, and right superior and medial 

frontal gyri (Supplemental Table S5). In the DKT atlas, the SMA and SMFG are included in 

the superior frontal gyrus, preventing direct comparison to those regions in which Meier et 

al. showed increases and decreases, respectively. The only direct contradictions are with 

Meier et al.’s increases in the right MTG and left PCL, and Zhan et al.’s decreases in the left 

PrG and PoG. Furthermore, while CF’s significant 9 voxel cluster of increased ReHo was in 

the left superior temporal sulcus, a region not indicated in the previous studies, increased 

ReHo was found in the right STG and MTG in Meier et al. (2016).

Across the published findings for ReHo in concussion, our trends matched 9 of 13 

previously published region findings, with agreement in two additional regions unable to be 

determined. If the effects of concussion are spatially heterogeneous as indicated by 

heterogeneity in concussion’s clinical presentation (Rosenbaum and Lipton 2012), then 

Zhan et al. and Meier et al.’s voxel-wise analyses may only be detecting a subset of the 

changes occurring in their participants. The areas of change found in their studies may be 

more susceptible to head impacts than other regions, but different populations may result in 

different findings. In this study of subconcussion, the spatial heterogeneity combined with 

subtler effects result in only small significant clusters from voxel-wise analysis, but the 

underlying spatial trends in football seem to agree remarkably well with the published 

findings in concussion. The lack of significant findings in college soccer and lacrosse 

athletes does not necessarily confirm that there are no functional connectivity changes in 

these athletes, but only that if there are similar changes they are more subtle than those 

occurring in college football.

ReHo and DC comparison

Low ranking distance in comparing CF’s ReHo and DC rankings suggest that the effects for 

ReHo and DC may be similar, although the SVM classifier does not reach a significance for 

CF’s DC difference maps (p = 0.084). Increased local connectivity could result in a modest 

increase in global connectivity, or some other physiological change in these regions could 

independently cause changes in these two metrics. Resting-state measures of functional 

connectivity are sensitive to a large number of underlying physiological changes in the brain. 

Previous research in mTBI, concussion, and subconcussion suggests several possible injury 

mechanisms that could be responsible for changes in ReHo and DC metrics, including glial 

Reynolds et al. Page 11

Brain Imaging Behav. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activation and chronic inflammation (Shultz et al. 2012), and cytoskeletal disruption in 

neural axons and somas (Hemphill et al. 2011; Longhi et al. 2005).

In concussed athletes, a disruption in the functional connectivity of the default mode 

network has been associated with increased cerebrovascular reactivity (CVR) - a measure of 

how cerebral blood flow increases in response to a stimulus (Militana et al. 2015). Svaldi et 

al. (2016) found that CVR was decreased in high school girls’ soccer, and those players who 

experienced greater subconcussive impact load were more affected (Svaldi et al. 2016). 

While any of the proposed mechanisms could play a role in subconcussion’s effect on ReHo, 

CVR has the most direct pathway to affect fMRI-measured functional connectivity, and has 

already been shown affected by subconcussive head impacts. Furthermore, the lack of a 

strong effect in global functional connectivity suggests that damage to long-range white 

matter tracts may not be the primary mechanism of subconcussive injury, as global 

functional connectivity should be theoretically more sensitive to white matter damage than 

local connectivity.

Limitations

Several factors related to our participant groups may affect the generalizability of our 

findings. First, the athlete populations in this study are small and are all from the same 

Division I university. The college football sample was especially small due to our removal of 

athletes with limited head impact, diagnosed concussion during the season, and excess head 

movement during scanning; making the CF group (n = 15) roughly half the sample size of 

the OS and MC groups (n = 28 and n = 29, respectively). Second, previous research in 

football has shown that head impact can be affected by player position (Baugh et al. 2014), 

offensive style (Martini et al. 2013), or practice types (Reynolds et al. 2016), all of which 

could be different at other universities or teams. Differences may also exist at lower levels of 

collegiate competition or for other levels of play (youth, adult amateur, and professional). 

Youth athletes tend to experience less severe subconcussive head impacts but may be more 

susceptible to their effects (Daniel et al. 2012). While our subset of athletes represents a 

wide variety of player positions, it may not offer an accurate cross-section of the entire team. 

Third, head motion during MRI scanning did differ between the two time points for MC, and 

also between MC and the other two groups at the preseason scan. While head motion can 

create false positives in functional connectivity comparisons, the most robust findings in our 

study involve the comparisons where no differences in head motion are present.

No longitudinal clinical measures were collected from the participants during this study, 

which limits the ability to link these functional connectivity changes to behavioral changes. 

Recent research has suggested that subconcussive head impacts can cause vestibular 

dysfunction (Kawata et al. 2016), disruption of the ocular-motor system (Hwang et al. 2016), 

and impaired processing speed and reaction time (Tsushima et al. 2016). If the local 

connectivity changes correlated with a specific behavioral change in our football players, 

then we might conclude that the connectivity changes are the neural cause of the behavioral 

changes. Whereas, if there was no correlation between the local connectivity changes and 

behavioral measures, then we may identify the connectivity changes as having a subclinical 

effect. While correlating the local connectivity changes to clinical metrics would be 
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valuable, the importance of these changes in local functional connectivity is not negated by 

the absence of such a correlation.

To control for differences between a collegiate athlete population and a non-athlete 

population, such as higher cardiorespiratory fitness (Voss et al. 2016), we collected data 

from athletes in lower impact sports like soccer and lacrosse (Reynolds et al. 2017). 

However, it is possible that the athlete groups still differed in their cardiovascular training 

during their respective seasons, affecting group comparisons of functional connectivity. 

Other differences could also exist between CF and OS/MC groups that may be responsible 

for the differential longitudinal changes in the groups. Some factors that could be different 

and were not collected or controlled for between our two group samples, and which could 

affect functional connectivity, include: caffeine use (Rack-Gomer et al. 2009; Wong et al. 

2014), alcohol use (Chanraud et al. 2011), cannabis use (Cheng et al. 2014), wakefulness 

during the rs-fMRI scan (Stoffers et al. 2015), and prescription medications (Sripada et al. 

2013). Given the longitudinal nature of the study, these uncontrolled confounds would need 

to have changed between preseason and postseason time points to produce the demonstrated 

effects.

While these alternative factors cannot be entirely excluded as explanations for these effects, 

the authors believe that correspondence with ReHo changes in concussion support 

subconcussive head impacts as the most likely cause of these effects.

Conclusions

This study demonstrates how mass-univariate analyses and paired SVM classification of rs-

fMRI data can be combined to provide insight on the effect of subconcussion on functional 

brain connectivity. The results of combining these techniques suggest the effects of 

subconcussion may be on the same spectrum as sports-related concussion but with a smaller 

magnitude of change. While American football was the high-impact sport under study, it is 

unlikely to be the only sport in which these subconcussive effects occur; other high-impact 

sports like ice hockey, rugby, and combat sports may also result in similar effects. Further 

research will be needed to determine the quantity and severity of subconcussive exposure 

needed to produce these functional connectivity disruptions by biomechanically measuring 

head impact and acquiring longitudinal rs-fMRI in the same cohort. Furthermore, the 

neurophysiological underpinnings of these changes should be studied by acquiring multiple 

MRI modalities in the same cohort, and comparing their effects across modalities.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Analysis framework.
At each time point (Preseason and Postseason), regional homogeneity (ReHo) and degree 

centrality (DC) metrics are calculated for each participant’s preprocessed rs-fMRI data, 

resulting in ReHo and DC values for each grey matter voxel. To control for variability 

between subjects, metric difference maps (Δ Metric) are created by subtracting the 

participants’ preseason metric map from their postseason metric map. Then the metric 

difference maps are analyzed using mass-univariate (general linear model) and multivariate 

(support vector machine) analyses, resulting in group t-statistic and SVM weight maps
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Fig. 2. SVM classification for college football.
College football’s SVM classification confusion matrix for ReHo (a) and DC (b) depict the 

number of correct and incorrect predictions for each class (ex. ΔReHo vs -ΔReHo). The 

SVM prediction plot for ReHo (c) and DC (d) shows result of the SVM decision function for 

each participant. Dotted line at zero represents the decision threshold which is zero-centered 

by the paired nature of the SVM. Closed black squares represent metric difference maps (ex. 

ΔReHo) and open circles represent their opposite (ex. -ΔReHo). ReHo regional 

homogeneity, DC degree centrality
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Fig. 3. Ranking distance results and permutation testing.
Six tests are shown for two metrics (ReHo and DC) in three groups (CF, OS, and MC). 

Vertical lines on the left of the figure depict the calculated ranking distance for each of six 

comparisons of Troi and WROI rankings. Curves on the right depict the distributions for each 

of the sixpermutation tests (5000 iterations) of ranking distance. Thick black vertical line 

(actually six superimposed vertical lines) represents the p < 0.05 decision lines for the six 

permutation tests. CF college football, OS other sports(soccer and lacrosse), MC male 

controls, ReHo regional homogeneity, DC degree centrality
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Fig. 4. Absolute changes in ReHo and DC for college football players.
Longitudinal changes for college football’s ReHo and DC metrics were averaged over each 

region in the DKT atlas. Trends are depicted with warm colors depicting increases and cool 

colors depicting decreases. In preprocessing functional connectivity metric were Z 

transformed, therefore values indicate preseason-topostseason changes in the Z value. ReHo 
regional homogeneity, DC degree centrality
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Table 1

Support vector machine classification accuracy for ReHo and DC difference maps

Metric Group Class accuracy Total accuracy P-value

ReHo CF 86.67% 86.67% 0.009

OS 50.00% 50.00% 0.617

MC 62.07% 62.07% 0.102

DC CF 73.33% 73.33% 0.084

OS 57.14% 57.14% 0.317

MC 55.17% 55.17% 0.311

CF college football, OS other sports (soccer and lacrosse), MC male controls, ReHo regional homogeneity, DC degree centrality
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Table 2

Ranking distance for each group’s comparison of TROI and WROI rankings

Metric Group Ranking distance P-value

ReHo CF 0.120 < 0.001

OS 0.145 < 0.001

MC 0.122 < 0.001

DC CF 0.073 < 0.001

OS 0.142 < 0.001

MC 0.089 < 0.001

Ranking distance of 0 indicates identical rankings and 1 indicates opposite rankings

GLM general linear model, SVM support vector machine, CF, college football, OS other sports (soccer and lacrosse), MC male controls, ReHo 
regional homogeneity, DC degree centrality
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