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Abstract

Multicellular organisms synthesize and renew components of their subcellular and scaffolding 

proteins, collectively known as the extracellular matrix molecules (ECMs). In the lung, ECMs 

maintain tensile strength, elasticity, and dictate the specialized function of multiple cell lineages. 

These functions are critical in lung homeostatic processes including cellular migration and 

proliferation during morphogenesis or in response to repair. Alterations in lung ECMs that expose 

cells to new cryptic fragments, generated in response to endogenous proteinases or exogenous 

toxins, are associated with the development of several common respiratory diseases. How lung 

ECMs provide or relay vital signals to epithelial and mesenchymal cells has shed new light on 

development and progression of several common chronic respiratory diseases. This review will 

consider how ECMs regulate lung homeostasis and their reorganization under pathological 

conditions that can modulate the inflammatory diseases asthma, chronic obstructive pulmonary 

disease (COPD), and idiopathic pulmonary fibrosis (IPF). Better understanding of changes in the 

distribution of lung ECM could provide novel therapeutic approaches to treat chronic lung 

diseases.

Introduction

Genomic and proteomic studies have identified over 300 different extracellular matrix 

molecules (hereafter referred to as ECM) that control the structure and function of 
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multicellular organisms [1]. Although they were first recognized for their function as 

scaffolding and structural molecules that support of all living cells, the ECM are now known 

as critical, acellular components of cells because they orchestrate essential cellular 

processes, including morphogenesis, signal transduction, migration, proliferation and wound 

repair [2–4]. While some components of the ECM are highly preserved among different 

tissues, their unique qualities provide a window into organ-specific functions. For instance, 

the rigidity and pliability of the ECM is dependent on their macromolecular components, 

which are dictated by tissue-specific functions.

Predominately, proteins and glycoproteins comprise the largest portion of the ECM 

molecular niches [5, 6]. Two primary forms of matrices exist: 1) the basement membrane 

ECM that lie immediately below epithelial and endothelial cells, and 2) the acellular, 

interstitial ECM components embedded within the tissue that surrounds cells. Non-fibrillar 

collagens, laminins, glycoproteins, and proteoglycans make up most of the basement 

membrane, which compartmentalize the epithelium or endothelium from their surrounding 

stroma [7, 8]. The primary role of basement membrane ECM includes barrier function that is 

especially important for the mucosal tissues (e.g., respiratory, gastrointestinal, and 

genitourinary organs) [7, 8]. The tissue-specific acellular interstitial matrix is composed of 

connective tissue with large concentrations of fibrous proteins (e.g., collagen, elastin), 

fibronectin and proteoglycans that are assembled into intricate fibril networks [9–11]. The 

interstitial matrix provides the necessary scaffolding to enable structural stability and 

resistance among all tissue [9–11].

In addition to their major roles in maintaining structural stability and tissue homeostasis, 

ECM can also modulate cell signaling as intact or modified molecules. For example, ECMs 

can activate or repress cell-specific transcription factors, supporting their direct role in tissue 

morphogenesis and cell fate [12, 13], while secreted proteinases can cleave and modify 

ECMs, further diversifying their function [14]. The term ‘matrikine’ or ‘matricryptin’ has 

been attributed to the bioactive fragments of extracellular matrix that modulate multiple 

physiological processes [14–16]. A number of ECM-derived matrikines have been shown to 

be involved in inflammation and immune homeostasis, while others are implicated in tumor 

metabolism and invasion [14–16]. Here, we discuss several unique features of the lung ECM 

as they relate to disease pathogenesis driven by immune modulation and matrikine signaling 

functions. This review focuses on the role of ECM in the pathogenesis of idiopathic 

pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.

Lung ECM

The lungs provide two vital physiological functions: passive gas exchange (alveolar 

respiration), and lung-specific innate immune defense against pathogenic insults that protect 

the airway epithelial barrier. Notably, the lung’s elastin-rich ECM is molecularly distinct 

from that of the kidney, which is a more rigid organ and is predominantly composed of 

several types of collagens (Type I, III, VI, VII,) that are less abundant in the lung [17]. 

Furthermore, although the intestine and lung share a common embryonic origin, the gut 

ECM has higher concentrations of laminins that are critical for tight cell-to-cell junctions 

that are necessary for interactions with the gut microbiota [18]. Lung ECM is often altered 
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in response to different environmental insults that damage airway epithelia, such as chronic 

exposure to inhaled antigens, cigarette smoke, air pollution, viral or bacterial pathogens, and 

trauma [19]. Injured epithelial cells can promote specific ECM remodeling that in turn 

affects their local cellular function. Therefore, the unique composition of lung ECMs that 

support bronchial epithelial cells in the proximal conducting airway secrete more collagens, 

laminins, and proteoglycans [20], whereas, in the alveolar termini, type I epithelial cell walls 

nearly fuse with those of proximal capillary endothelial cells, creating an ultrathin elastin-

predominant ECM to permit efficient gas exchange [20, 21] (Figure 1).

A further unique aspect of the lung is the notable differences in the ECM basement 

membrane components and lung interstitial parenchyma. The airway basement membrane 

contains proteins (collagen IV & V, numerous proteoglycans, enactin, and laminins), which 

are specialized to promote airflow in the proximal airway and enhance appropriate gas 

exchange at the terminal alveoli [21].

Whilst specialized mesenchymal cells (e.g., myofibroblasts, fibrocytes, smooth muscle cells) 

within the lung interstitial space can secrete distinct sets of ECM molecules (e.g., collagens, 

laminin, elastin, proteoglycans, hyaluronans, etc.) [20, 22], they can also produce bioactive 

matrikines contributing to lung disease pathogenesis (Figure 2). For example, degradation of 

laminin by several MMPs (e.g. MMP3, MMP12, MMP14, MMP20) or neutrophil elastase, 

generates, laminin-332 and laminin-5, two matrikines that bind to EGFR to regulate 

epithelial proliferation (Figure 3) [23, 24]. In a preclinical model of asthma, overexpression 

of hyaluronan synthase 2 (HAS2) in myofibroblasts and smooth muscle cells resulted in 

increased airway fibrosis and reduced AHR. These findings suggest that HA accumulation in 

the airway wall may contribute to airway thickening in asthma via HAS2 [25].

Although several scaffolding molecules in the lung are required for normal ECM assembly 

[26], their major components are collagens, and elastin molecules that constitute over 

approximately 60% [27], and 24% [28, 29] of dry lung weight, respectively. As such, 

dysregulation of collagen and elastin in the ECMs contribute to multiple pathological lung 

conditions. In this review, we highlight the primary components of lung ECM and describe 

how these proteins and their fragments are harnessed to promote health, and in instances of 

injury, encourage disease.

1. Collagen

Multiple isoforms of collagen provide structural stability and tensile strength in the lung 

[30]. Approximately 28 different types of collagen have been identified, all containing 

repetitive Glycine-Proline-X amino acid sequences that enable then to form triple helices 

that contribute to the intermolecular bonding and strength of collagen fibers [7, 30, 31]. 

Fibrillar collagens, or collagens that are post-translationally modified by enzymes such as 

lysyl oxidase, form polymerized fibers, and are the most abundant lung isoforms [21, 32, 

33]. The triple helical structure of collagens I and III form a tight fibrous network 

throughout the large conducting airways, bronchi, and bronchioles, providing the strength 

and stability required for their proper function [32, 34, 35].
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Non-fibrillar collagens, (e.g., collagen IV and V), that are found in the lung basement 

membrane, contain interruptions or non-Glycine-Proline-X sequences in their triple helical 

domains that result in kinks in the macromolecular structure that facilitate interactions with 

other ECM components [36, 37]. Collagens in the lung basement membrane and interstitial 

space are vital molecular scaffolds for necessary physiological processes such as fibroblast 

proliferation, migration, and adhesion. For instance, transmembrane cell adhesion molecules 

such as the integrin subunits α1, α2, α10, α11, recognize and bind to collagen (type I), 

facilitating cellular locomotion and cell migration during development [38–40]. Frequent 

lung collagen turnover of different isoforms during acute inflammation [41] further supports 

their functional role in essential biological processes, including cellular proliferation and 

migration. Collagens are implicated in the pathogenesis of lung diseases characterized by 

both matrix deposition and degradation. Here, we describe the roles of collagen and its 

associated fragments in the pathogenesis of idiopathic pulmonary fibrosis, COPD, and 

asthma.

1.1 Collagen in IPF Pathogenesis—Collagen deposition is a prominent feature of the 

fibrotic or scar-like lesions found in the lungs of patients with pulmonary fibrosis [42]. 

Accumulation of excessive fibrous tissue in the lungs physically impedes, and functionally 

restricts adequate gas exchange [43, 44]. Idiopathic Pulmonary Fibrosis (IPF), a prototypic 

and incurable form of fibrotic lung diseases, is characterized by increased numbers of 

myofibroblasts that aberrantly produce collagen I, that in turn expand fibrotic foci in the 

lungs [45]. The molecular mechanisms by which myofibroblast drive IPF are currently an 

area of active investigation; however, reduced expression of PTEN has been linked to the 

repression of FOXO3a, a transcriptional activator of collagen I, which is also a known 

apoptosis-inducing protein [46–48]. However, whether these mechanisms also control 

collagen expression in IPF remains unclear. Decellularization of IPF lungs has demonstrated 

abnormal expression of several collagens, particularly fibrillar collagen III [49]. Other 

groups have corroborated the role of collagens in the progressive lung remodeling associated 

with IPF whereby fibrillar collagen III is associated with early disease onset, but collagen I 

is associated with advanced disease [50].

Cytokines are thought to drive the progression of IPF by increasing deposition of collagens 

[51]. Specifically, TGF-β expression is upregulated in fibrotic lungs and has been shown to 

induce the differentiation of myofibroblasts, which orchestrate disease progression [52–54], 

enhance collagen gene transcription [55, 56], and alter the balance between matrix 

metalloproteinase and their associated tissue inhibitors of metalloproteinases (TIMPs) to 

favor accumulation of matrix components [57, 58].

1.2. Collagen in COPD Pathogenesis—In response to cigarette smoke, innate and 

adaptive immune cells are recruited to the lungs and promote development of chronic 

obstructive pulmonary disease (COPD) [59, 60]. Collagen turnover is highly associated with 

COPD pathogenesis, which is in part mediated by activation and recruitment of innate 

immune cells (e.g., macrophages and neutrophils) to the lungs. Specifically, the lungs of 

smokers typically show increased concentrations of MMP2, MMP8, MMP9 and prolyl 

endopeptidases that can cleave collagen to form the matrikines Proline-Glycine-Proline 
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(PGP) and acetylated-PGP (Ac-PGP) [61, 62]. These collagen-derived matrikines have 

chemotactic properties that can perpetuate lung inflammation because they utilize the 

chemokine receptors CXCR1 and CXCR2, to recruit neutrophils to the lungs [61, 62]. 

However, collagen-derived PGPs are degraded by the aminopeptidase activity of leukotriene 

A4 hydroxylase, which limits their pro-inflammatory function [63, 64]. Clinically PGP and 

N-a-PGP concentrations are elevated in the sputum and serum of smokers with COPD when 

compared to asthmatic and/or healthy controls; furthermore, fluctuations in PGP 

concentration correlate in disease exacerbations [65, 66]. The pathogenic roles for PGP and 

Ac-PGP in COPD are also corroborated by experimental animal models, which demonstrate 

that PGP enhances lung tissue destruction and emphysema (Figure 2) [67].

Small airways that are less than 2 mm in diameter show minimal airflow resistance under 

normal conditions but are highly abnormal in smokers with COPD. A comprehensive 

quantitative histology, computed tomography, and gene expression analysis of smokers with 

different levels of COPD severity showed that bronchiolar tissue is reduced in COPD, but 

while total tissue collagen is reduced, there was a relative increase in collagen-3 over 

collagen-1 [68]. The authors concluded that narrowing of the terminal bronchioles occurs 

early in COPD, involving small airway remodeling and abnormal collagen deposition [68]. 

Finally, in smokers, development of upper lobe emphysema and lower lobe fibrosis, or 

combined pulmonary fibrosis and emphysema (CPFE), is a defined endotype that portends a 

poor prognosis [69, 70]. Little is known about the pathophysiological responses to cigarette 

smoke that can promote emphysema and fibrosis, but in one study that compared smokers 

with IPF, emphysema, or CPFE, serum SP-A and SP-D levels were higher in patients with 

fibrosis irrespective of emphysema and which also correlated with disease severity [71].

1.3 Collagen in Asthma—The allergic airway disease asthma is defined by the presence 

of intermittent airway obstruction, termed hyper-responsiveness (AHR), that narrows 

bronchi and clinically manifests as wheezing and dyspnea. Exposure to allergens triggers 

recruitment of different innate inflammatory cells, including mast cells, eosinophils and 

neutrophils that release pre-formed vesicles that contain ECM remodeling collagenases (e.g., 

MMP2 and MMP9) in the lungs [72, 73]. Consequently, targeting collagenases to reduce 

collagen turnover and reduce lung inflammation has been considered a potential asthma 

treatment [74]. Notably however, using preclinical models of asthma, deficiency in MMP2, 

MMP9, or molecular inhibition of MMPs not only did not alleviate allergic lung 

inflammation, but resulted in reduced airway chemotactic gradient formation, culminating in 

exacerbated lung inflammation and asphyxiation [75–77]. These studies point to the diverse 

and non-redundant roles for collagenases that are acutely elevated in T helper type 2 (Th2) 

mediated lung inflammation.

Chronic allergic airway inflammation can also promote subepithelial fibrosis characterized 

by excessive deposition and/or reorganization of type I, III, and IV collagens [78–82]. 

Several associated proteins including fibronectin, periostin [83, 84], Fibulin-1 (Fbln1) [85] 

also play key roles in lung ECM formation and contribute to mucus hypersecretion and Th2-

associated inflammation [86]. In preclinical models of asthma, inhibition or genetic ablation 

of Fbln1c, a Fbln1 isomer, reduced airway collagen deposition, mucin production, and 

protected against AHR. Fbln1c deficiency also attenuated responses to allergens, reduced 
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interstitial contractile cells, and lowered Th2 inflammatory cytokines. These findings 

suggest that therapeutic targeting of proteins that destabilize collagen in asthma could reduce 

subepithelial fibrosis and inflammation [86].

Airway smooth muscle cells secrete collagen in response to Th2 inflammatory cytokines and 

can contribute to airway wall thickening in severe asthma [25]. Transgenic overexpression of 

IL-13, a canonical Th2 cytokine, in mouse lungs can induce allergic inflammation, 

characterized by mucus hypersecretion and subepithelial fibrosis [87]. Expression of IL-5 

and IL-13 by conventional T cells or innate lymphoid type 2 cells (ILC2s) is also important 

in orchestrating chronic structural changes in the lungs. Furthermore, impeding IL-13-

mediated signaling by neutralizing antibodies or decoy receptors can reduce airway 

remodeling and fibrosis associated with asthma [88–90]. Although much remains to be 

elucidated concerning the mechanisms by which IL-13 induces subepithelial fibrosis in 

asthma, studies using in vitro systems have demonstrated that IL-13-associated signaling 

modulates fibroblasts and myofibroblasts to enhance TGF-β-induced procollagen production 

and decrease collagenase (MMP1 and MMP3) activity via increases in TIMP expression 

(Figure 3) [89, 91, 92].

2. Elastin

Elastin fibers, arguably the most critical component of lung ECM, control respiratory 

compliance because of their ability to stretch up to 140%, in contrast to collagen, which 

provides tensile force, but can only stretch by 2% [93]. Lung elastin fibers are composed of 

approximately 90% tropoelastin and 10% microfibril proteins (e.g., fibulin, latent TGF-β 
binding proteins (LTBPs), fibrillin and microfibrin-associated glycoprotein (MAGP)) [29, 

94]. After assembly, elastin fibers are highly insoluble because lysyl oxidase crosslinks 

tropoelastin, its soluble precursor, which contains multiple highly repetitive hydrophilic 

lysine rich domains as well as hydrophobic amino acids (e.g., valine, proline, alanine, and 

glycine) that confer elastin’s elasticity [95].

The unique structural features of elastin fibers provide it with stability and resistance against 

proteolytic degradation. Deposition of elastin fibers in the lung begin during the 

pseudoglandular, but is accelerated in the alveolarization stages of development. Maturation 

of lung elastin fibers requires cross-linking enzymes that assemble tropoelastin with 

microfibril proteins. Thus, it is not surprising that in response to injury, newly formed elastin 

fibrils are often less organized, and have reduced elasticity [96]. Under non-pathological 

conditions, the rate of elastin degradation in the lung, as estimated by radioimmunoassay 

with 14C labeling and desmosine quantitation showed a nearly 70-year half-life, further 

supporting the unique molecular stability of elastin. This finding contrasts notably with the 

approximate 10% per day turnover of lung collagen [97–100]. These biological insights into 

elastin longevity highlight the importance of this macromolecule in its structure, integrity, 

and proper function in the lungs.

Degradation of lung elastin requires activation of specific MMPs as well as the aspartic, 

cysteine, and serine families of proteinases. Under pathological conditions, elastases are 

released from mesenchymal cells (fibroblasts, myofibroblasts, etc.) and/or innate immune 

cells (e.g., neutrophils, eosinophils, mast cells, and macrophages) that cleave elastin, thereby 
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exposing new antigenic sites that can be recognized by T and B cells. Elastin fragments have 

been found in the serum of smokers with COPD [101] and have been shown to induce auto-

reactive immune responses [102, 103], (discussed below under Elastin in COPD). Elastin 

degradation also generates bioactive matrikines, called elastokines, such as the Val-Gly-Val-

Ala-Pro-Gly (VGVAPG) hexamer that influences cell migration, mitogenesis, and other 

cellular signaling [104, 105]. Similarly, the elastokine consensus sequence GXXPG forms 

type VIII β-turn structures that maintain its stable binding with the elastin receptor (S-Gal 

complex) [106].

2.1 Elastin in IPF pathogenesis—In response to lung injury, mesenchymal cells 

increase the expression of tropoelastin mRNA; however, newly synthesized elastin remains 

highly disorganized, i.e., amorphous [94]. Following injury, TGF-β, the prototypic pro-

fibrotic cytokine, promotes transcriptional expression and stability of the elastin mRNA 

mediated by activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway [107–112]. 

Increased elastin expression has been shown to promote lung fibrosis in part by increasing 

collagen deposition. For example, in a bleomycin-model of lung fibrosis, elastin expression 

positively correlated with deposition of newly synthesized collagen [113]. Furthermore, in 

response to TGF-β, elastin but not collagen can increase differentiation of fibroblasts to 

myofibroblasts, indicating a pathogenic role for elastin in IPF [114]. Lung elastin is further 

stabilized by the epithelial integrin αvβ6 that bind to the latency-associated peptide (LAP), 

facilitating activation of TGF-β, suppression of MMP12, and increases in TIMP-1 

expression in macrophages [114–116]. Furthermore, decellularized lung ECM from IPF 

patients, but not controls, can induce a specific set of genes in fibroblasts that are targets of 

microRNA(miR)-29, indicating that abnormal ECM can program new cellular responses 

[117]. Whether amorphous elastin or TGF-β play direct roles in these aberrant signaling 

remains an area of active investigation.

2.2. Elastin in Emphysema pathogenesis—Targeted disruption of proteins required 

for elastin fiber assembly (fibulin, latent transforming growth factor-β-binding protein-4 

(Ltbp4), and lysyl oxidase (Lox)) as well as genetic deficiencies of the elastin gene (Eln+/−) 

result in abnormal lung development [118–121] and increased susceptibility to smoke-

induced emphysema [110]. Genome-wide gene expression profiling using lung tissue 

samples from current and former smokers showed upregulation of fibulin-5 (FBLN5), elastin 

(ELN), and LTBP2 [122], indicating a dynamic process that is activated to repair lung elastin 

fibers in response to chronic smoke exposure. Furthermore, spatio-temporal expression of 

FBLN5, ELN, LTBP2 and microfibril associated protein 4 in response to cigarette smoke 

further provides strong support for their critical roles in lung elastin fiber repair in response 

to chronic inflammation in emphysema [122].

Three of the most important elastolytic enzymes: MMP9, MMP12, and neutrophil elastase, 

are produced by innate immune cells [77]. In response to elastolysis, newly formed elastin 

fragments or elastokines, recruit monocytes to the lungs, whereby they can differentiate into 

macrophages and further release MMP12 that inactivates alpha 1 anti-trypsin, deficiency of 

which is associated with early onset emphysema [123]. Elastokines also induce expression 

of NADPH oxidase (NOX2) in macrophages. This enzyme in turn can inhibit SIRT1, 
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negative regulator of MMP9 expression in neutrophils and macrophages [124]. Neutrophil 

elastase can increase the availability of epidermal growth factor (EGF) for lung fibroblasts, 

which consequently stabilizes the Smad transcriptional corepressor, TG-interacting factor 

(TGIF), inhibit TGF-β production, and reduce new tropoelastin synthesis [125–127]. These 

findings suggest that elastolytic enzymes may have dual functions: 1) direct cleavage of 

elastin fibers, and 2) reduction in new elastin fiber biogenesis that together aggravate the 

lung repair process in response to cigarette smoke exposure.

Detection of desmosine, a biomarker of emphysema, signifies active breakdown of elastin in 

active and former smokers [128]. Several lines of evidence strongly support a role for the 

induction of acquired immunity to degraded elastin fragments in a subset of smokers who 

develop emphysema [129]. Specifically, T and B lymphocytes that recognize and respond to 

elastin fragments in the context of major histocompatibility complex class II (MHC II), are 

associated with emphysema severity [103]. Furthermore, elastin-specific T cells have been 

cloned from the peripheral blood of active and former smokers [102], and former smokers 

have been shown to harbor interferon gamma (IFN-γ) expressing T helper type 1 (Th1) and 

Th17 cells in their lungs [130]. The clinical significance of anti-elastin immunity is 

underscored by the positive correlation between the loss of lung function and Th1-specific 

immune responses to lung elastin fragments [131]. The mechanism for development of 

elastin-specific acquired immunity is due in part to cigarette smoke-induced activation of 

lung myeloid dendritic cells (mDC) [130]. Identification of specific regions within the 

elastin molecule that promote autoimmune responses could provide novel T cell-based 

therapies in COPD and emphysema.

Final considerations and new advances

Recent advances targeting ECM production and repair have provided novel approaches that 

could be used to treat chronic lung diseases. For example, doxycycline (DOX), a broad-

spectrum MMP inhibitor, has been used to inhibit elastin breakdown and allow regeneration 

and repair of elastin in models of aortic aneurysm [132, 133]. DOX has also been shown to 

inhibit c-Jun-N-terminal kinase 2 (JNK 2), which promotes TGF-β1 expression and 

elastogenesis mediated by the lysyl oxidase crosslinking of elastin [134]. Because systemic 

MMP inhibition can prevent normal ECM turnover in healthy tissues [135–137], efforts are 

now being directed towards local delivery of MMP inhibitors. For instance, applied 

magnetic fields have been used to deliver DOX via incorporation of super-paramagnetic iron 

oxide polymer nanoparticles (SPIONs) to localize elastin restoration in the aortic wall [133]. 

Similarly, SPIONs could be applied to emphysematous lung to inhibit MMPs, an 

intervention that could lead to regeneration of normal lung.

Another novel bioengineering approach is the utilization of photo cross-linkable, elastin-like 

polypeptide (ELP) hydrogels. These matrices have highly extensible properties and have 

been used to generate scaffolds to seal rents in the lung parenchyma [138, 139]. A futuristic 

approach to generate functional alveoli could include seeding these synthetic, elastin 

scaffold structures with mesenchymal stem cells (MSCs), induced pluripotent stem cells 

(iPSCs), or the newly identified alveolar epithelial stem cells expressing Lgr5 [140] to 

generate new lung tissue. Finally, mesenchymal alveolar niche cells (MANCs), a 
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functionally unique lung mesenchymal population, have been shown to secrete necessary 

molecular cues, (e.g., IL-6 and Fgf7), to form ECM and promote proliferation and 

regeneration of the alveolar epithelium [141]. Together, these novel, synthetic 

biotechnologies and lung stem cell discoveries provide exciting advances in medicine that 

could lead to restoring lung tissue structure and function in instances of chronic lung 

disease.
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Highlights

• The extracellular matrix plays key roles in lung structural integrity, and 

function.

• Proteinases generate cryptic extracellular matrix fragments or ‘matrikines’ 

that further diversify their function.

• Fragments of collagen and elastin play pathogenic roles in several common 

chronic inflammatory lung diseases including asthma, idiopathic pulmonary 

fibrosis, and emphysema.

• Novel bioengineering approaches utilize photo-crosslinkable elastin-like 

polypeptides (ELPs) hydrogel to repair or seal injured lung.
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Figure 1. Composition and Distribution of lung ECM
The ECM basement membrane matrix is composed of nonfibrillar collagens, laminin, and 

proteoglycans that support many vital physiological lung function. In the proximal airway, 

basement membrane ECM is dense, while the distal alveoli have an ultrathin basement 

membrane that aids in effective gas exchange. The lung’s interstitial connective tissue 

provides necessary elastic properties and tensile strength and is composed of complex 

networks of fibrous proteins (fibrillar collagen and elastin) as well as hyaluronan and 

proteoglycans. Excessive accumulation or degradation of ECM molecules within the 

interstitial matrix is thought to underlie the pathogenesis of chronic lung diseases like 

emphysema and idiopathic fibrosis.
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Figure 2. Matrix/Matrikine-derived signaling in the lung
Lung proteinases generate a wide array of matrikines that initiate or dampen inflammatory 

events in response to diverse insults. A) Collagen fragments, PGP and Ac-PGP, promote 

neutrophil recruitment to the lung in inflammatory diseases such as COPD. B) The elastin 

matrikine GXXPG promotes chemotaxis of monocytes and antigen-presenting cells 

following chronic exposure to cigarette smoke; elastin fragments initiate the induction of 

elastin-reactive T cells that accelerate the pathogenesis of emphysema. C) Laminin 

matrikine γ2 ectodomain binds to the epithelial growth factor receptor (EGFR) to trigger 

repair mechanisms and promoting proliferation. D) Hyaluronan fragments initiate 

inflammation by binding to the pattern recognition receptors TLR2 and TLR4. E) Syndecan 

matrikine, generated from syndecan-1 ectodomains, neutralizes specific chemokines and 

prevents T cell migration in allergic airway disease.
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Figure 3. Lung disease pathogenesis by proteolytic enzyme/ECM imbalance
Perturbations among the ECM networks of the lung are a hallmark feature of the most 

serious chronic lung diseases: asthma, IPF, and emphysema. A) In allergic asthma, 

aeroallergens bind pattern recognition receptors on airway epithelial cells and local antigen-

presenting cells, initiating Th2-associated inflammation. Signature Th2 cytokines, (e.g., 

IL-13) from conventional T cells, and innate lymphoid cells (ILCs), signal through local 

fibroblasts to promote collagen synthesis, which leads to subepithelial fibrosis. Lung 

sheddases cleave proteoglycans, (e.g., syndecan-1) to release bioactive fragments that bind 

chemokines and impede Th2 cell recruitment. B) In response to cell injury, the 

immunosuppressive cytokine TGF-β promotes myofibroblast differentiation, inhibits 

macrophage MMP expression, and increases expression of tissue inhibitors of 

metalloproteinases (TIMPs) to promote idiopathic pulmonary fibrosis (IPF). (C) In 

emphysema, inflammatory cells secrete multiple proteinases, (e.g., MMP9, MMP12, and 

neutrophil elastase) that degrade collagen and elastin in the interstitial matrix. Collagen- and 

elastin-derived matrikines further promote lung inflammatory cell recruitment. Elastin 

fragments are also processed by antigen-presenting cells and presented to T cells in the 

regional lymph nodes to generate autoreactive, elastic-specific T cells that accelerate disease 

persistence and severity.
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