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Abstract In recent years, investigations of microbial flora

associated with fish gut have deepened our knowledge of

the complex interactions occurring between microbes and

host fish. The gut microbiome not only reinforces the

digestive and immune systems in fish but is itself shaped by

several host-associated factors. Unfortunately, in the past,

majority of studies have focused upon the structure of fish

gut microbiome providing little knowledge of effects of

these factors distinctively and the immense functional

potential of the gut microbiome. In this review, we have

highlighted the recently gained insights into the diversity

and functions of the fish gut microbiome. We have also

delved on the current approaches that are being employed

to study the fish gut microbiome with an aim to collate all

the knowledge gained and make accurate conclusions for

their application based perspectives. The literature

reviewed indicated that the future research should shift

towards functional microbiomics to improve the maximum

sustainable yield in aquaculture.

Keywords Fish � Microbiome � Gut � Metagenomics �
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Introduction

Due to their vast ecological adaptations, microorganisms

present enormous diversity, thereby fascinating the

microbiologists to explore their residence in and on the

animal bodies. After first insights into diversity of micro-

bial communities were given by the ‘‘Human Microbiome

Project’’, it followed that most of the bacterial symbionts

and commensals populate the gastro-intestinal (GI) tracts

and their interactions among themselves and with the host

finds great significance to human biology [1]. Since then,

intensive research has contributed to an enhanced under-

standing of gut microbiome for its potential complexity and

functional contributions only to develop as an attractive

area of research among other vertebrates. Representing

more than half of the vertebrates with vast ecological

diversities and distinctive structural features within their

intestinal tracts [2, 3], fish has justifiably emerged to be a

significant class for the examination of the confederation of

microorganisms with their hosts. In the past, the traditional

culture-dependent methods [4–7] and the use of Denaturing

Gradient Gel Electrophoresis (DGGE) and Temporal

Temperature Gradient Gel Electrophoresis (TTGE) tech-

niques [8, 9] revealed very low fraction of these significant

microorganisms. While these approaches only aimed to

reveal the ‘‘variety’’ constituted in the microbiome, some

early studies also correlated the taxonomic abundance of

fish gut flora with specific host functions [10, 11]. Over the

years, the culture based assessments have led to identifi-

cation of several probiotic and pathogenic bacterial strains

and still continue being employed in studies of fish gut

microbiome [12–14]. In recent years, however, the culture-

independent methods have replaced these traditional tech-

niques as the direct mining of community DNA hold pro-

mise to unveil the low abundance and rare taxa [15–19].
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While the next generation sequencing (NGS) platforms

have vested ease in deciphering the whole community

structure, they also compel researchers to devise ways to

mine the complete functional potential of fish gut micro-

biome. Further, to test the efficiency and sustainability of

the beneficial flora is an emerging need. In 2016, the Food

and Agriculture Organisation (FAO) of the United Nations

reported that the aquaculture yield worldwide has been

increasing. However, at the same time, about 31.4% of the

commercial wild fish stocks were reported to be fished at

biologically unsustainable levels in 2013. As the demand of

fish for human consumption continues to increase, the

aquaculture research must focus on the application of latest

technologies to improve the maximum sustainable yield

(MSY). The gut microbiome is known to play crucial roles

in development of fish immune system and aid in optimal

nutrient absorption [20]. Despite this, the use of NGS

platforms in studies aimed at exploiting the beneficial flora

to improve overall fish health lags far behind. Too often,

these studies only focus on their species specificity and

effect on fish health while neglecting the change in the

overall gut microbiome structure. The microbiome is

influenced by a myriad of factors and it is difficult to

ascertain the individual effects of each of these factors.

Tarnecki et al, recently summarized the different factors

affecting fish gut microbiome while also highlighting the

potential sources of bias in the results from sample pro-

cessing [21]. Apparently, the choice of the study design

also greatly impacts the results. It is therefore important to

contemplate at the study design prior to noting the

important inferences. In this review, we aim to summarize

the different study designs currently being employed in

order to delineate the influence of the different selective

pressures affecting fish gut microbiome. The important

findings from recent metagenomics studies are noted. The

review also discusses the future perspectives of fish gut

microbiome research and sheds light on the need to focus

on applied microbiomics.

Composition of Fish Gut Microbiome

The colonization of fish gut starts early in the larval stage

and is continuously driven towards achievement of a

complex assemblage of gut associated microbes [22].

Approximately 108 bacterial cells belonging to over 500

different species are reported to populate the fish GI tract,

which are dominated by aerobes or facultative anaerobes

although strict aaerobes have also been detected [7, 23].

While considering a metagenomic sample, the diversity is

defined in terms of number of OTUs. OTUs are number of

clustered similar sequences ([ 97%) that define a taxo-

nomic unit on the basis of divergence. OTU analyses are

done to reveal the alpha diversity (within-sample diversity)

and beta diversity (diversity among different samples)

while deciphering the composition of gut microbiome.

Most studies corroborate to the domination of bacterial

sequences in NGS sequencing data from fish gut sources

with negligible representatives of archaeal and eukaryal

origins [17, 19, 24].

To date, the analyses of sequencing data have revealed a

peculiarly low phylogenetic diversity with Proteobacteria,

Firmicutes and Bacteroidetes representing up to 90% of the

fish intestinal microbiota across different species and

Fusobacteria, Actinobacteria, and Verrucomicrobia among

the represented phyla [20, 24–31]. This is not very sur-

prising with our knowledge of the challenges imposed by

the gut environment onto the microorganisms to whittle

down the diversity in the niche. The diversity generally

increases as the diet of the fish changes from carnivorous to

omnivorous to herbivorous [19]. The composition also

differs due to different environmental conditions. Acine-

tobacter, Aeromonas, Flavobacterium, Lactococcus, and

Pseudomonas, obligate anaerobes Bacteroides, Clostrid-

ium, and Fusobacterium, and members of family Enter-

obacteriaceae dominate the gut of freshwater species [32].

The guts of marine fish are dominated by Aeromonas, Al-

caligenes, Alteromonas, Carnobacterium, Flavobacterium,

Micrococcus, Moraxella, Pseudomonas and Vibrio [32]. A

summary of the major bacterial phyla composing the gut

microbiome as revealed by studies in different species can

be referred in review by Llewellyn et al, [33] and much

recent studies in Table 1. Abundance of similar bacterial

phyla irrespective of the taxonomic position or geograph-

ical location of the fish indicates a role of microbiome in

important host functions such as nutrient absorption,

digestion and generation of immune response. Further, the

structural similarity of fish gut microbiome with that of the

mammals indicates towards the vertebrate core gut

microbiotas.

Functional Potential of Fish Gut Microbiome

Till date, majority of studies on fish gut microbiome are

restricted to diversity analysis and most of our knowledge

comes from its correlation with the necessary host func-

tions (Table 1). In this regard, computational tools have

been developed that may provide important predictions of

the functional capabilities of the community, once the

taxonomic composition is deciphered using marker gene

based approach e.g. PICRUSt [34] and Tax4Fun [35]. The

most widely studied functional attributes of microbiota

include digestion and immunity. In grass carp, the ability to

digest plant matter is long been associated with the higher

abundance of cellulolytic bacteria in the gut of herbivorous
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species [20, 36, 37]. Li et al, showed that gut bacterial

community of grass carp is dominated by cellulolytic

Aeromonas, followed by Enterobacter, Enterococcus,

Citrobacter, Bacillus, Raoultella, Klebsiella, Hydrotalea,

Pseudomonas, Brevibacillus and that an increase in intake

of plant-fibre increases the diversity of cellulolytic bacteria

[36]. Cellulose degrading bacteria Clostridium, Aero-

monas, Cellulomonas and Bacteroides along with other

nitrogen fixing species are reported to provide assimilable

carbon in the wood eating fish Panaque nigrolineatus

[38, 39]. Clostridia also dominate the gut microbial flora in

different marine herbivorous fish species [40]. In contrast

to the cellulolytic function of microbiome in herbivorous

species, lipase and protease producing bacteria and trypsin

activity are observed to be much higher in carnivorous

species [19], which further confirms the role of microbiota

in host digestion. In Atlantic salmon fed a plant-based diet,

Lactic acid producing bacteria (LAB) are shown to be

present in higher abundance as compared to those fed with

fishmeal-based diets suggesting their potential role in

digestion [41]. Besides digestion, changes in microbiome

composition resulting from environmental stress results in

challenged immunity in the host. The gut microbiota pro-

duce important short-chain fatty acids (SCFAs) while

breakdown of complex sugars which are absorbed in the

intestine by simple diffusion or specific receptors and

confer resistance against pathogenic invaders [42, 43].

Therefore, the functional repertoire of gut microbiota

appears to be synergic with the host needs.

Fate of Colonizing Members and the Factors
Affecting Fish Gut Microbiome

The gut colonization may either be driven by (1) stochastic

or neutral assembly that derives from random dispersal of

microorganisms or chance events that land the microbes

into the intestine that are solely responsible for the final

shape of intestinal community; or (2) deterministic or non-

neutral model assumes that the assembly is determined by

the host selective pressures, active dispersal by the host and

host-microbe and microbe–microbe interactions. Studies

on zebrafish, Danio rerio, herbivorous Ctenopharyngodon

idellus, carnivorous Chinese perch, Siniperca chuatsi, and

catfish Silurus meridionalis over developmental time sug-

gest that the gut colonization among larvae is governed by

seeding from surrounding environments which then transits

to be progressively determined by the non-neutral pro-

cesses as the host matures to become adult [44, 45].

Therefore, suggesting stochastic towards deterministic

colonization of GI tract.

Though the host GI tract provides for shelter of

microbes, certain adaptations are demonstrated to be

exigent for this possession. Ley et al. [46], intricately

reviewed the demands imposed on microbial flora by the

GI tract viz. in order to firmly attach to the mucosal

epithelium of gut wall, microorganisms must possess cell

surface molecules for adhesion; the efficient utilization of

all the nutrients calls for the production of an enzyme

arsenal; the microbes must also be armed with genetic tools

for adapting to the ecological plasticity offered by the GI

tract and for immunity against bacteriophages. The fittest

microorganisms that are able to meet the ecological

demands grow and survive in the GI tract and are able to

appropriate most niche space to become permanent

dwellers, also referred to as ‘‘autochthonous’’. While oth-

ers, known as ‘‘allochthonous’’ are visitors of the gut that

derive from the surrounding environment [22]. Thus,

microbes associate with the host in diverse ways which

may be simply fortuitous at first and may become obliga-

tory later. The adherence of the bacteria onto the epithelial

cells is considered an essential factor in determining their

effector functions within host. A link between the biofilm

forming ability of bacteria and successful colonization and

functions of gut flora is suggested [47, 48]. The ability to

form biofilms helps bacteria to survive in hostile environ-

ment offered by the GI tract and is seen in cases of both

pathogenic and probiotic bacteria [49, 50]. To unravel the

allochthonous communities, fecal samples are generally

examined while mucosal epithelium scraped after rinsing

are used for analyzing the adherent residents. So far,

studies on characterization and comparison of the two

community types suggest presumably different composi-

tion and that both serve different purposes within the GI

tract [51]. High species richness in the digesta (al-

lochthonous) is observed as compared to the mucosa (au-

tochthonous) [52]. This can be understood from the

knowledge of the exasperating conditions within the GI

tract outlined above. Further, there are evidences that the

microbial composition also differs in different regions

along the GI tract, the foregut communities being signifi-

cantly different from hindgut communities [53]. However,

the degree by which these two population types differ is not

completely understood and needs further clarification.

Interplay of a variety of factors determines the consti-

tution of the fish gut microbiome. Quality of surrounding

water and microbial communities directly influence the gut

microbiome of fish [24, 54]. Strong evidences of host

genetics, developmental stage, immune status and other

host specific pressures on the gut microbiome also persist

[33, 45, 53, 55, 56]. In addition, the diet also shapes the gut

microbiome which displays differential composition with

difference in dietary intake [38, 57–60]. Hence, the factors

influencing gut microbiome may be broadly grouped into

three classes, which are (1) ecology and environmental

conditions, (2) host specific and (3) trophic level and/or
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feeding behavior as illustrated in Fig. 1. Each of these

factors are discussed in detail in the following section.

Study Designs Currently Employed to Study
the Factors Affecting Fish Gut Microbiome

While some recent attempts highlight both the environ-

mental and host associated factors to be significantly

contributing to the microbial composition in gut [61],

others suggest a stronger influence of the host selective

pressures [62]. The exact degree with which each of

these factors influence the gut microbiome is not known.

Clearly, it is difficult to distinguish the host specific and

environmental effects on fish gut microbiota. The dif-

ference in feeding behavior of different species adds to

the problem of investigating the role of each of these

factors. Several different approaches are currently

employed to study the degree of their influence on fish

gut microbiome. Most approaches rely on the fact that if

strongly determined by the environment, the gut micro-

biome must vary among members of a species, both

spatially and temporally, in correlation with the sur-

rounding waters and vice versa if strongly shaped by

host selective pressures. The different approaches that are

currently employed to study the different determining

factors are outlined below.

Microbial Composition and Quality of Surrounding

Waters

Due to being constantly exposed to alterations in water

quality resulting from various anthropogenic and natural

causes, the microbial communities in GI tract of fish should

change repeatedly. Thus, a comparison of the water quality

and host gut microbiome is expected to improve the

understanding of environmental influence. Shared Opera-

tional Taxonomic Units (OTUs) between water and gut

Fig. 1 Factors influencing the diversity and function of the gut

microbiome of fish. The factors may be broadly categorized into

environmental, diet-associated or host—associated. All these intrinsic

and extrinsic factors are responsible for either healthy state (normo-

biosis) or altered microbiota (dysbiosis) both of which affect the

growth and development of the fish host
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microflora have suggested the possible role of surrounding

water in steering of gut microbiota [63]. Salinity of water

also largely determines the microbial composition in fish

gut as revealed from analysis of a large number of species

with different ecological needs for survival [24]. Studies on

wild and lab-reared invasive carp species also establish

environment as a key factor in shaping the gut microbiome

[64]. On the contrary, studies also suggest otherwise that

the abundant microbial taxa in surrounding waters are not

found in the gut of habitant fish and vice versa suggesting a

much stronger influence of host associated factors than

environment [65].

Species that are known to survive in different stressed

habitats are considered apt to assess if a change in

quality of surrounding waters other than microbial

composition also affect the host gut microbiota. For

instance, the endogenous microbiota in Amazonian tam-

baqui, Colossoma macropomum that is tolerant to sig-

nificant variation in pH levels has been shown to be

significantly altered at experimental low pH levels;

however, it also displays a strong resilience once pH

levels are restored [66].

Variations in Different Cohabiting Species

The second approach employs the use of different species

inhabiting same water systems. Many studies have revealed

a larger influence of host selective pressures and trophic

level in constraining the gut microbiota than the environ-

ment as different cohabiting species are observed to com-

prise different microflora in gut. For instance, cohabiting

species of silver carp, grass carp, bighead carp, and blunt

snout bream revealed distinct gut microbiome composition

[67] providing for the influence of host specific factors on

the gut micro-organismal communities. Similar results

were obtained in paddle fish, Polyodon spathala and big-

head carp, Aristichthys nobilis with similar feeding

behavior when fed same food and reared in same pond

[68]. Thus host associated factors outplay the influence of

environment.

Variations Within a Species at Different

Geographical Locations

Third approach employs studying the microbiome of a

single species found in different geographical locations to

study if it is defined by a core set of microbial communities

that stably reside in the GI tract due to host-specific

selective pressures or if the environment shapes the com-

munities. In this regard, zebrafish, Danio rario, has been

extensively studied to establish the strong influence of host

associated factors that shape the core gut microbiome of

the species [25]. Although differences occur, however, the

peculiarly low diversity presented by the gut microbiome

of different fish species of ecologically and geographically

different origins with respect to the bacterial phyla further

warrants the argument of host selective pressures on the gut

microbiome [19, 23, 26, 27, 69, 70].

Variations at Different Trophic Levels and Feeding

Behavior

The microbial diversity in GI tract increases as the diet

changes from carnivorous to omnivorous to herbivorous

[53]. Cellulose-decomposing bacteria such as Anoxybacil-

lus, Leuconostoc, Clostridium, Actinomyces, and

Citrobacter populate the gut of herbivorous species such as

grass carp, Ctenopharyngodon idellus [20]. On the other

hand, carnivorous species are found to harbor lipase and

protease-producing bacteria such as Halomonas [19].

Feeding behavior is also shown to affect the gut micro-

biome composition in a habitat in closely related but dif-

ferent species. Filter feeding fishes display higher diversity

as they filter large volumes of water and cover large areas

by swimming rapidly [71].

Administration of Different Dietary Components

The effect of dietary intake on gut flora is not only

restricted to the nutritional composition but also the source

of nutrients. In general, plant-derived dietary proteins have

been linked to significantly reduced diversity of microbial

flora [28] with an increase in relative abundance of Lac-

tobacillales, Bacillales and Pseudomonadales [72]. While

animal-derived proteins nurture Bacteroidales, Clostridi-

ales, Vibrionales, Fusobacteriales and Alteromonadales in

the gut [72]. A study by Mansfield et al., revealed that fish

fed with synthetic casein based diet have larger diversity as

compared to those fed with fish meal or soyabean meal

based diet [73]. Effects of a large number of other nutri-

tional components have been reviewed in detail [74].

Patterns of Gut Colonization in Gnotobiotic Models

The use of gnotobiotic fish models incomparably fit to

serve the purpose of delineating the processes that fabricate

the gut microbiome structure. Analysis of patterns of col-

onization in germ-free zebrafish GI tract revealed that the

host responses may be attributed to specific bacterial

members of the community [23]. Transplantation experi-

ments of gut microbial flora between gnotobiotic zebrafish

and mouse and between gnotobiotic mouse and zebrafish

hint towards reconstruction of the microbiome after trans-

plantation to resemble that of conventionally raised fish

thereby concealing the microbial communities which were

transplanted in their gut [55].
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Thus, it can be inferred that the microbial composition

of water influences the fish gut microbiome to some extent.

In addition, diet and genetic variations among individual

hosts also shape the gut microbiome. To elucidate the exact

degree of influence by each factor would be an interesting

area of study. Even though the microbiome composition of

two individuals might differ at the species level, there

occur significant level of similarity among the microbial

genes that are shared which suggest for a molecular link

between the microbial genes and host functions [75]. Thus,

there is an emerging need for multifaceted analyses to

clearly demarcate the host-, environment- and feeding

behavior derived manifestations of the gut microbiome. It

may be viewed as environment, host specific factors and

diet, act in concert to constrain the acquisition of gut

microbiota.

Profiling the Fish Gut Microbiome

An illustration of the steps followed to analyze the gut

microbiome of a fish species by direct analysis of the

community DNA is shown in Fig. 2. The choice of

amplicon or shotgun sequencing depends on the goal of the

study. To date, the studies of fish gut microbiome have

remained limited to deciphering the composition. How-

ever, shotgun assessments of the gut microbial genetic

repertoire are needed to provide crucial insights into their

functional potential and can be further aided by the geno-

mic sequencing and analysis of the cultured isolates as has

been investigated in other niches [76–85].

The gut produces and receives an arsenal of enzyme

secretions while performing functions such as grinding the

food mechanically and chemically and extracting and

absorbing nutrients, which creates a major challenge in

extraction of quality community DNA from the microbial

populations. For instance, bile salts and complex polysac-

charides present in gut inhibit the downstream processes of

PCR amplification [86]. Therefore, a DNA extraction

method should be employed after envisaging (1) the correct

representation of genomes from entire community with no

over or under-representation of individual microbial pop-

ulations, (2) its efficiency on the sample source (foregut,

midgut or hindgut) and type (luminal contents only or gut

wall with contents), (3) the design of study which involves

the type of sequencing i.e., whole genome or targeted

sequencing and (4) the quality data required for down-

stream analysis. The choice of DNA extraction method

may strongly influence the analysis of the community

composition. There are convincing evidences that a method

for extracting DNA does not conform to changes in host

species or sample type due to variability in the ingested

food and microbial load in the host GI tract [87–90]. As the

ingested food may vary among individual hosts and may

comprise of semi-digested particulate matter and bones, the

availability of the starting mass of fecal or gut content

samples for DNA extraction needs to be taken into con-

sideration while comparing the extraction protocols to

avoid false interpretations. Perceivable differences are

reported to occur in the purity and concentrations of the

extracted DNA employing different methods [88]. Further,

the purity of extracted DNA does not guarantee a suc-

cessful amplification and sequencing [88]. Sample prepa-

rations pose as a source of variability in testing the

extraction efficiency of a method. Processing the entire GI

tract along with the luminal content may result in isolation

of a large amount of eukaryotic DNA from fish, therefore,

diluting the bacterial DNA for sequencing and analysis.

The structural composition of microbiota also affects pre-

cise extraction of DNA as the gram-positive bacteria are

more difficult to lyse than gram-negative bacteria due to

presence of a thick peptidoglycan layer in their cell walls.

This spurs a necessity to ensure complete lysis of all bac-

terial cells in the community by the chosen extraction

method.

It is critical to use an appropriate method of extraction

of microbial community DNA which lays the foundation

for accurate characterization of the gut microbiota both

structurally and functionally. Essentially, the sample

source and type need to be emphasized upon before relying

upon the results from DNA extraction methods comparison

studies as not all the results are comparable owing to the

sample variability.

Host-Microbe Interactions in Fish Gut

The gut-associated microbes might have potential benefi-

cial or harmful effects on the host. When the beneficial

micro-organisms constitute majority of the microbiome, a

state of ‘‘normobiosis’’ prevails. Any perturbations in its

normal composition result in ‘‘dysbiosis’’ in which state the

harmful microbes predominate giving rise to a diseased

condition. While on one hand host intrinsic factors and

environment shape the gut microbiome, the microbiota has

equal influence on the host biology. Thus, a three way

interaction involving host- microbe-environment operates

to maintain homeostasis in the fish gut.

Colonization of the gut with specific microorganisms to

gain insights into the effects of microbiota on host cellular

responses in mice revealed that they modulate the expres-

sion of several cellular genes that endows host with

important functions including metabolism, nutrient

absorption, immune response generation, and intestinal

maturation [1]. Similar findings have been obtained using

zebrafish models [23, 91, 92] and in other fish species
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where microorganisms demonstrated to regulate metabo-

lism [29]. Studies on transgenic fast-growing common

carp, Cyprinus carpio L. suggest an important role of gut

flora on growth of fish and that the Firmicutes confer fast

growth of fish over Bacteroidetes [29]. The microbial

members are known to aid in digestion of cellulose in

Fig. 2 Schematic representation of the workflow for analyzing the

fish gut microbiome. The currently employed procedures for fish gut

microbiome studies include the traditional culture-dependent analysis

as well as culture-independent analysis of the total DNA obtained

directly from gut contents and mucosal wall. The culture-dependent

techniques widely use sequencing of 16S rRNA gene to identify

bacteria. For defining the uncultured microbiota, amplification and

sequencing of whole or partial [hypervariable region(s)] of 16S rRNA

gene is widely employed. Highly similar sequences are then grouped

into Operational Taxonomic Units (OTUs) and compared against

databases. The widely used databases and tools include NCBI [126],

QIIME [127], UPARSE [128], Silva [129], Green Genes [130], RDP

Classifier [131] and Naı̈ve Bayesian Classifier [132]. The community

is thus profiled based on the relative abundance of each OTU and their

phylogenetic relationships. Using advanced ‘omic’ tools, functions of

the community can also be predicted such as PICRUSt [34] or

Tax4Fun [35]. Important microbial functions may then be character-

ized through wet lab experiments
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herbivorous fishes [20, 22, 60]. They are also known to

influence innate immune responses in fish [32] and educate

the host-immune system for better protection against

pathogenic invaders. These findings provide strong per-

spectives of the interactions between resident microor-

ganisms and their host fish.

Conclusion and Future Perspectives: Towards
Applied Research

The gut microbiota is influenced by a myriad of factors but

the appeal of each of these factors on the behavior and

physiology of fish remain poorly understood. For drawing

meaningful conclusions, one of the crucial challenges is to

establish a correlation of microbiome structure and func-

tion with health status, age, genetic background, geo-

graphical location and other individual differences of the

host. Furthermore, creating a comparative picture based on

studies employing different methods of DNA extraction

from different sample types within a species needs careful

analyses. As the marker gene based approach limits the

analysis to predictions of microbiome structure, there has

emerged a need for complete shotgun sequencing efforts to

fully explore the metabolic potential of the gut microflora

and uncover functional variation with diet or host associ-

ated factors.

Fish are affected by several pathogenic bacteria includ-

ing Aeromonas, Edwardsiella, Pseudomonas, Flavobac-

terium, Vibrio and Streptococcus and Yersinia causing

diseases in different tropical freshwater fishes [93, 94].

These are often treated with antibiotics. However, their

overuse has encouraged antibiotic resistance which makes

the fight against pathogens even more difficult [93].

Pathogenicity of these bacteria such as Aeromonas hydro-

phila, A. salmonicida, Vibrio anguillarum, V. harveyi,

Yersinia ruckeri and Tenacibaculum maritimum is mediated

by quorum sensing systems that are important for biofilm

formation [95]. The use of quorum quenching enzymes has

also been successful in reducing pathogenicity of these

pathogens [96–98]. Bacteria derived from fish microbiome

have also been shown to produce natural products that

inhibit formation of biofilms and therefore promote

detachment of gram-negative pathogens [50]. However,

more efforts focusing on their application in fish GI tracts

are needed. From the recent studies on isolation of

Bdellovibrios that naturally feed on gram-negative bacteria

from experimental diseased fish models, we envisage the

use of these microbial predators as natural cure of diseases

[99–101]. Bdellovibrios are also found to be prevalent in

intestines of human and other animals and have been

reported from diverse habitats [76, 102–104]. The emerging

concept of ‘‘forward microbiomics’’ that involves

manipulating the gut flora to promote fish health finds

important applications in aquaculture. Several Lactobacil-

lus species have been identified as probiotics in fish and

other animals including humans [105, 106]. However, their

potential needs to be fully explored. Collating inferences

from different studies would help in identifying microbial

biomarkers and would augment the application of probi-

otics. It is becoming increasingly clear that the microbiome

affects its host in more than one ways and its study is

thought to bring a plenitude of understanding of its func-

tional potential in the host and expand current notions of the

fish gut microbiome.
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66. Sylvain FÉ, Cheaib B, Llewellyn M, Correia TG, Fagundes DB,

Val AL, Derome N (2016) pH drop impacts differentially skin

and gut microbiota of the Amazonian fish tambaqui (Colossoma

macropomum). Sci Rep 6:32032. https://doi.org/10.1038/

srep32032

67. Li X, Yu Y, Feng W, Yan Q, Gong Y (2012) Host species as a

strong determinant of the intestinal microbiota of fish larvae.

J Microbiol 50:29–37. https://doi.org/10.1007/s12275-012-

1340-1

68. Li XM, Zhu YJ, Yan QY, Ringø E, Yang DG (2014) Do the

intestinal microbiotas differ between paddlefish (Polyodon

spathala) and bighead carp (Aristichthys nobilis) reared in the

same pond? J Appl Microbiol 117:1245–1252. https://doi.org/

10.1111/jam.12626

Indian J Microbiol (Oct–Dec 2018) 58(4):397–414 411

123

https://doi.org/10.3390/d5030641
https://doi.org/10.3390/d5030641
https://doi.org/10.1007/s00227-006-0443-9
https://doi.org/10.1007/s12602-017-9366-7
https://doi.org/10.3389/fimmu.2015.00512
https://doi.org/10.3389/fimmu.2015.00512
https://doi.org/10.1111/1462-2920.14015
https://doi.org/10.1111/1462-2920.14015
https://doi.org/10.1111/1462-2920.13365
https://doi.org/10.1038/ismej.2015.142
https://doi.org/10.1038/ismej.2015.142
https://doi.org/10.1016/j.cell.2006.02.017
https://doi.org/10.1016/j.cell.2006.02.017
https://doi.org/10.1111/cmi.12331
https://doi.org/10.1038/npjbiofilms.2015.5
https://doi.org/10.1038/npjbiofilms.2015.5
https://doi.org/10.1007/s12088-016-0616-2
https://doi.org/10.1371/journal.pone.0149603
https://doi.org/10.1371/journal.pone.0149603
https://doi.org/10.1093/femsle/fnu031
https://doi.org/10.1093/femsle/fnu031
https://doi.org/10.1038/srep30893
https://doi.org/10.1038/srep30893
https://doi.org/10.1038/ismej.2013.181
https://doi.org/10.1111/j.1365-294X.2012.05646.x
https://doi.org/10.1111/j.1365-294X.2012.05646.x
https://doi.org/10.1016/j.cell.2006.08.043
https://doi.org/10.1371/journal.pone.0151594
https://doi.org/10.1371/journal.pone.0151594
https://doi.org/10.1111/mec.13050
https://doi.org/10.1016/j.phrs.2012.10.020
https://doi.org/10.1111/ele.12301
https://doi.org/10.1111/j.1365-2109.2006.01442.x
https://doi.org/10.1016/j.aquaculture.2016.07.017
https://doi.org/10.1016/j.aquaculture.2016.07.017
https://doi.org/10.1007/s00248-016-0924-4
https://doi.org/10.1007/s00248-016-0924-4
https://doi.org/10.1038/srep18206
https://doi.org/10.1186/s40168-016-0190-1
https://doi.org/10.1186/s40168-016-0190-1
https://doi.org/10.1111/mec.13177
https://doi.org/10.1111/mec.13177
https://doi.org/10.1038/srep32032
https://doi.org/10.1038/srep32032
https://doi.org/10.1007/s12275-012-1340-1
https://doi.org/10.1007/s12275-012-1340-1
https://doi.org/10.1111/jam.12626
https://doi.org/10.1111/jam.12626


69. Wong S, Waldrop T, Summerfelt S, Davidson J, Barrows F,

Kenney PB, Welch T, Wiens GD, Snekvik K, Rawls JF, Good C

(2013) Aquacultured rainbow trout (Oncorhynchus mykiss)

possess a large core intestinal microbiota that is resistant to

variation in diet and rearing density. Appl Environ Microbiol

79:4974–4984. https://doi.org/10.1128/AEM.00924-13

70. Sullam KE, Rubin BE, Dalton CM, Kilham SS, Flecker AS,

Russell JA (2015) Divergence across diet, time and populations

rules out parallel evolution in the gut microbiomes of Trinida-

dian guppies. ISME J 9:1508–1522. https://doi.org/10.1038/

ismej.2014.231

71. Li T, Long M, Li H, Gatesoupe FJ, Zhang X, Zhang Q, Feng D,

Li A (2017) Multi-omics analysis reveals a correlation between

the host phylogeny, gut microbiota and metabolite profiles in

cyprinid fishes. Front Microbiol 8:454. https://doi.org/10.3389/

fmicb.2017.00454

72. Michl SC, Ratten JM, Beyer M, Hasler M, LaRoche J, Schulz C

(2017) The malleable gut microbiome of juvenile rainbow trout

(Oncorhynchus mykiss): diet-dependent shifts of bacterial

community structures. PLoS One 12:e0177735. https://doi.org/

10.1371/journal.pone.0177735

73. Mansfield GS, Desai AR, Nilson SA, Van Kessel AG, Drew

MD, Hill JE (2010) Characterization of rainbow trout (On-

corhynchus mykiss) intestinal microbiota and inflammatory

marker gene expression in a recirculating aquaculture system.

Aquaculture 307:95–104. https://doi.org/10.1016/j.aquaculture.

2010.07.014

74. Ringø E, Zhou Z, Vecino JLG, Wadsworth S, Romero J,
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