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Abstract Theoretical hydrogen (H2) yield by dark fer-

mentative route is 12 mol/mol of glucose. Biological H2

production yields of 3.8 mol/mol of glucose by microbes

have been reported. Transient gene inactivation in combi-

nation with adaptive laboratory evolution strategy has

enabled the H2 yield to exceed the stoichiometric produc-

tion values.
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Fossil fuel reservoirs are depleting faster than they can be

replenished. An associated limitation on the usage of these

non-renewable fuels is their high pollution causing capac-

ity. The need is to search for novel fuels, which can be

based on renewable resources [1]. In addition, it provides

an opportunity to identify an ideal fuel. Here, bioalcohol,

biodiesel, biohydrogen and methane are the most compet-

itive and ecofriendly fuels [2–11]. Each of them has its

own merits and demerits. Biohydrogen has been assessed

to be most energy efficient and non-polluting fuels, easy to

transport, and can be converted into other forms of energy

[1]. Different H2 production methods include: (i) Ther-

mochemical, (ii) Electrolytic, (iii) Photolytic and (iv)

Biological. Biologically, H2 can be produced by dark- and

photo-synthetic microbes from pure sugars and biowastes

[2]. Theoretically, 12 mol of H2 can be generated via the

complete oxidation of 1 mol of hexose sugar [12]. How-

ever, stoichiometrically, a maximum to 4 mol H2 per mole

of hexose sugar can be achieved. Under dark-fermentative

conditions, maximum of 4 and 2 mol of H2 can be pro-

duced depending upon the acetate and butyrate as fer-

mentative byproducts, respectively (Eqs. 1 and 2).

Hexose þ 2H2O ! 2Acetate þ 4H2 þ 2CO2 ð1Þ
Hexose ! Butyrate þ 2H2 þ 2CO2 ð2Þ

Overall, dark-fermentative H2 production rates are sig-

nificantly higher than those achieved through photo-fer-

mentative process. In the past three decades, limited

number of H2 producers with little significant improvement

in the biological H2 yields have been reported. The dark-

fermentative H2 production by pure cultures such as:

Bacillus, Caldicellulosiruptor, Clostridium, Thermotoga,

and Enterobacter has been reported to be up to

3.80 mol/mol of hexose [12–14]. To achieve higher H2

yields, various strategies have been adopted, including:

(i) identification of novel producers, (ii) optimization of

process parameters, and (iii) genetic engineering of native

producers. In addition, different approaches have been

suggested to improve the overall efficiency of the process

by integrating various processes such as: dark- and photo-

fermentations, polyhydroxyalkanoate production and

biomethanation [15–19].

After a few decades of dedicated efforts, it has now been

shown that we can go beyond the physiologic yields of

dark-fermentative biohydrogen. It is remarkable that

genetically modified extremophile Thermotoga maritima

under dark-fermentation process showed a 1.9-fold higher

H2 yield of 11.54 mol/mol of maltose compared to the wild
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type [20]. Here, the strategy of transient gene inactivation

to disrupt lactate dehydrogenase (ldh) to block lactate

production was combined with adaptive laboratory evolu-

tion. After a few passage, strain Tma200 was evolved,

which was slow growing and consumed maltose at a lower

rate but could oxidize sugar more efficiency. It was found

to be very effective in improving the H2 yield to

5.77 mol/mol of hexose by competing the needs for cell

biomass synthesis with metabolite (H2) formation using

maltose as feed. This novel strategy can be extended to

other H2 producers to improve the overall efficiency of the

process using biowaste as an economical feed for the

sustainable development.
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