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Extracellular DNA and autoimmune diseases

Hantao Lou! and Matthew C Pickering®

Extracellular DNA is secreted from various sources including apoptotic cells, NETotic neutrophils and bacterial
biofilms. Extracellular DNA can stimulate innate immune responses to induce type-l IFN production after being
endocytosed. This process is central in antiviral responses but it also plays important role in the pathogenesis of a
range of autoimmune diseases such as systemic lupus erythematosus. We discuss the recent advances in the
understanding of the role of extracellular DNA, released from apoptotic and NETotic cells, in autoimmunity.
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INTRODUCTION

It was long discovered that cytosolic DNA was immune
stimulatory and associated with autoimmunity but little was
known about the mechanism. Over the last decade, a range
of DNA sensors have been identified that recognize DNA,
including viral DNA.! Following sensor engagement, the
adaptor protein stimulator of interferon genes (STING) is
stimulated and proinflammatory cytokines released.> This
response is a key component of host defence against pathogens.
However, when perturbed, this response can contribute to
susceptibility to autoimmune diseases. Aberrant DNA sensing
is implicated in the pathogenesis of systemic lupus erythema-
tosus (SLE) and Aicardi-Goutieres syndrome (AGS).> Unlike
RNA sensors, which recognize pathogen-specific RNA, the
majority of DNA sensors found to date recognize DNA in a
sequence-independent manner.* Under homeostatic condi-
tions, DNA engagement is prevented by accessory proteins
such as nucleases that cleave DNA and intracellular regulators
for DNA receptors.” Together, these prevent the development
of an excessive immune response.°

DNA sensors and inflammation

DNA sensors can be generally divided into two groups:
endosomal membrane receptors and intracellular receptors.
Toll-like receptor 9 (TLRY) was the first DNA sensor that was
identified. It is still the only endosomal expressed pathogen
recognition receptor (PRR) for DNA.7® It is expressed mainly
within plasmacytoid dendritic cells (pDC) and to a lesser extent
on monocytes, B cells and dendritic cells. It was elegantly

demonstrated that TLR9 is activated by CpG DNA (5’ cytosine-
phosphate-guanine 3°), which in turn leads to type-I interferon
(IEN) production via TLR9 adaptor protein, myeloid differ-
entiation primary response gene 88 (MyD88), and interferon
regulatory factor 7 (IRF7).7!! Although TLR9 is able to
recognize CpG DNA that is enriched in the microbial genome,
DNA-protein complexes were also shown to induce proin-
flammatory cytokine production via TLR9.!?

In contrast to endosomal PRR, cytosolic DNA sensors are
widely expressed in mammalian cells.* This enables them to
recognize the invading pathogens in the affected cells and
mount a prompt immune response. Cytosolic DNA sensors
show great redundancy: 13 have been discovered so far. DNA-
dependent activator of IFN-regulatory factors (DAI) was the
first cytosolic DNA sensor identified. It is essential for viral
clearance during cytomegalovirus infection in human fibro-
blasts. DAI engagement activates TANK-binding kinase 1
(TBK1) and the IRF3 complex to provoke type-I IFN produc-
tion. The function of DAI in vivo is still under investigation.!?
Pyrin and HIN domain-containing (PYHIN) family proteins,
such as ‘absent in melanoma’ (AIM2) and interferon-inducible
gene 16 (IFI116), function as DNA sensors. They have a DNA
binding domain termed the carboxy-terminal HIN domain.!*
AIM2 binds to cytosolic DNA and enables the assembly of the
inflammasome with ASC and caspase 1 to induce interleukin-1
beta (IFN-f) production, which is essential for protection against
pathogens such as vaccinia virus."> The most important DNA
sensor that has been found so far is the cyclic-di-GMP-AMP
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(cGAMP) synthetase (cGAS). The cGAS binds directly to
dsDNA and the adaptor protein STING to activate TBK1 and
IRF3-7. This in turn initiates type-I IEN production. cGAS was
shown to be central for IFN-f production during DNA viral
infection in mouse and human cells.'®!” Many other cytosolic
DNA receptors including double-strand break repair protein
MREI1 (encoded by MRE11A), DNA-dependent protein kinase
(DNA-PK) and Leucine-rich repeat flightless interacting protein
2 (LRRFIP2) also recognize dsDNA and converge on STING to
upregulate type-1 IFN expression.'®!® Another interesting DNA
sensor is DNA polymerase III. This converts AT-rich DNA to
RNA which then activates RIG-I followed by type-I IFN
production.!” However, the role of RNA polymerase III in
DNA sensing is still unclear. The DExD/H-box helicases (DDX)
are an emerging group of DNA sensors, which include DDX41,
DDX9 and DHX36. DExD/H-box helicase 36 and 9 (DHX36
and DHX9) bind CpG DNA in pDC. This is followed by binding
to MyD88 which triggers type-I IFN production.?” It was also
reported that DDX41is an important signalling molecule for
dsDNA-dependent responses in addition to its role as an innate
DNA sensor.2! However, it is currently unclear how the DDX
family proteins interact with nucleic acids and transduce signals
downstream.

In addition to protection against pathogens, these DNA
sensors also recognize self DNA. Recognition of self-DNA can
initiate an inflammatory response (summarized in Figure 1).
TLRY and type-I IEN have been closely associated in SLE from
studies in humans and murine models of SLE.??> Recently,
c¢GAS and STING were identified as the key mediators in
Aicardi-Goutieres syndrome.??> Genetic ablation of cGAS
rescued the phenotype in a murine model of Aicardi-Goutieres
syndrome.”* Expression of DAI and AIM2 have also been
found to upregulated in patients with autoimmune
diseases.”>?® In summary, cytosolic DNA is sensed by DNA
sensors and subsequently activates adaptor proteins, such as
STING and MyD88, and the inflammasome, resulting in
proinflammatory cytokine production.

Role of type-I IFN

Type-1 IFNs are critical anti-viral cytokines that are triggered by
DNA sensors.?” The secreted type-I IFNs bind to IFN receptors
to upregulate interferon-stimulated genes (ISGs) via Janus
kinase (JAK)-signal transducer and activator of transcription
(STAT) pathway.?® This changes the cell-intrinsic status and
production of interferon stimulated genes (ISGs) to fight
against the microbial insult and limit the spread of the
pathogens. It also facilitates antigen presentation and natural
killer cell cytotoxicity. Furthermore, the adaptive immune
system is activated resulting in the generation of activated
T cells and high-affinity antibodies.”>3! The type-1 IFN
production is tightly regulated by multiple layers of mediators
such as some of the ISGs to ensure appropriate immune
response.>?? In autoimmunity, inappropriate chronic type-I
IFN production leads to autoreactive T cells and autoantibody
production in some autoimmune animal models.*> However, it
should be noted that type-I IEN also has a protective effect in
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some autoimmune diseases including inflammatory bowel
disease and multiple sclerosis. This might be due to suppres-
sion of the production of other proinflammatory cytokine.**
The effect of type-I IEN in autoimmune disease is probably
dependent on the stage of the disease; early type-I IFN
production may initiate systemic autoimmunity, whilst later
production might limit autoreactive T-cell function.

DNA SENSING AND AUTOIMMUNITY
In mammalian cells, DNA is normally confined to the nucleus.
Its presence in the cytosol can induce immune responses.>>>°
DNA is predominantly released into the extracellular space by
two mechanisms: cell death and bacterial biofilm. We discuss
the role of DNA released from dead cells.

Abnormal response to DNA released from apoptotic cells
Cell death pathways. Death is inevitable but living is not.
Multiple types of cell death exist but these can be broadly
grouped into programed cell death (PCD) and passive cell
demise. PCD plays a key role in development and homeostasis.
It is also important in the pathogenesis of autoimmunity.
Deficiency in the clearance of DNA/nucleosome derived
from either PCD or passive cell death is associated with
autoimmunity.

Apoptosis is the most familiar and well-studied PCD path-
way. It can be stimulated by both intrinsic and extrinsic signals
that activate the caspase protein family.?” Activated caspases
cleave (1) nuclear lamins, resulting in nuclear shrinking
and budding; (2) cytoskeleton proteins, resulting in loss of
cell shape; and (3) PAK2, which mediates apoptotic body
blebbing.?%3°

During apoptosis, nucleases cleave condensed chromatin
into oligonucleosomes.’ With an increase in the nuclear
permeability, oligonucleosomes can migrate into the cytoplasm
and fuse with the plasma membrane to form blebs. Apoptotic
blebs are about one micron in size and contain DNA fragments
(of 500-1000 base pairs), histones and ribonuclear proteins.
These apoptotic blebs are then released from the apoptotic
cells. Under normal conditions, the blebs are phagocytosed
rapidly and under conditions that are anti-inflammatory in
nature.*!

Necrosis, unlike programmed cell death, is unplanned and
typically associated with inflammation. Necrotic cells result
from stress, heat shock or any stimulus that overwhelms the
structural integrity of the cell. The process is morphologically
different from apoptosis. The cell expands with consequent
plasma membrane rupture. This is independent of cell
fragmentation or DNA cleavage.> Whereas apoptotic cell
contents are packed in apoptotic bodies, necrotic cells release
DAMPs, which promote inflammation. Necrotic cells are
cleared by a process called macropinocytosis, which is slow and
incomplete.*?

Secondary necrosis occurs if the elimination of the apoptotic
remnant is not cleared sufficiently. This phenomenon is easily
induced in vitro but only observed in vivo under pathological
conditions.** Similar to primary necrosis, secondary necrosis is
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Figure 1 Model of extracellular DNA induced proinflammatory response. DNasel digests extracellular DNA that is released from either
neutrophils undergoing NETosis or apoptotic/necrotic cells. The undigested DNA may form immune complexes with anti-DNA antibodies,
which are then phagocytosed following Fc receptor engagement. DNA can also be phagocytosed in the form of microparticles from
apoptotic/necrotic cells. The DNA in the lysosome is degraded by DNase Il. Undigested DNA in the lysosome may activate TLR9 to
stimulate MyD88. This in turn assembles the Myddosome complex which is composed of MyD88, IRAK1, IRAK2 and IRAK4. TRAF6 is
then recruited to the complex, leading to the activation of NF-kb and AP-1. RNA helicase DHX36 and DHX9 were found to identify CpG
DNA in certain cell types and trigger MyD88 signalling. TREX1 is localized on the endoplasmic reticulum (ER), digests cytosolic DNA to
prevent innate immune response. TREXI mutations leads to DNA accumulation. This triggers the production of guanosine monophosphate-
adenosine monophosphate (cGAMP) by cGAS upon intracellular DNA engagement. cGAMP activates the ER-resident STING, which then is
shuttled to ER-Golgi intermediate compartment and the Golgi apparatus. STING initiates TBK1 activation, resulting in the expression of
type-l IFNs. Other DNA sensors including double-strand break repair protein MRE11, DNA-dependent protein kinase (DNA-PK), IFNy-
inducible protein 16 (IFI16), protein kinase RNA-activated (PKR), the probable ATP-dependent RNA helicases DDX41 and DDX60,
recognize DNA and signal through STING to initiate type-l IFN expression. DNA or RNA is sensed by Leucine-rich repeat flightless
interacting protein 2 (LRRFIP2) to activate the B-catenin, resulting in the production of IFN- f. DAI directly recruits TBK1 which leads to
type-I IFN production. AIM2 and NLRP3 trigger ASC caspase-1 inflammasome assembly upon dsDNA binding that promote the production
of IL-1b and IL-18.
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characterized by cytoplasmic swelling, plasma membrane
rupture, mitochondria hyperpolarization, oxidative burst and
the release of DAMPs as well as oxidized products.*> Unlike
necroptosis, secondary necrosis does not rely on receptor-
interacting serine/threonine-protein kinase 1 (RIP1) or mito-
chondrial dependent reactive oxidative species (ROS) produc-
tion because neither necrostatin-1 (Nec-1), a RIP1 inhibitor, or
knockdown of mitochondrial complex I chaperone affects
secondary necrosis.*® DNA released from necrosis and second-
ary necrosis is not specifically cleaved in a manner seen during
apoptosis. DNA appears as a smear on gel electrophoresis
instead of the ladder-like pattern characteristic of apoptosis.
Phagocytosis of secondary necrotic cells by phagocytes is
enhanced by proteins such as Clq, mannose-binding lectin
(MBL) and polyreactive IgM.4748

DNA accumulation and autoimmunity: lessons from mouse
models. 'When the quantity of apoptotic cells overwhelms
the regulatory system, autoimmunity can develop. Consider-
able data support the idea that defective clearance of apoptotic
cells leads to autoimmunity.*>>* For example, a subset of SLE
patients show defective apoptotic cell clearance ability with
morphologically different macrophages that have impaired
phagocyte function.”>? In addition, accumulated apoptotic
cells were observed in the bone marrow of SLE patients and
skin of patients with cutaneous lupus.®® These findings are
further confirmed in mice models. Mice lacking milk fat
globule-EGF factor 8 protein (Mfge8), proto-oncogene tyro-
sine-protein kinase (Mer), or C1q accumulated apoptotic cells
and developed an SLE-like disease with anti-nuclear antibodies
and glomerulonephritis.”*>> However, mice lacking CD14 have
accumulated apoptotic cells without autoimmunity. And mice
that have received apoptotic cell by injection display only
transient autoantibody production.>®>’

DNasell. DNA released from dead cells is processed by
multiple regulatory mechanisms to prevent inflammation.
DNA from the engulfed apoptotic cells is normally transported
to the lysosome of phagocytes for degradation. Deoxyribonu-
cleasell (DNasell) is the nuclease in the lysosome that degrades
DNA. Because huge numbers of cells undergo apoptosis,
almost one gram of DNA needs to be cleaved by DNasell
per day. Not surprisingly, DNasell knockout mice die before or
shortly after birth with numerous undigested DNA in the
macrophages.®® DNasell and IFN-I receptor (IFN-IR) double
knockout mice are born normally although they still have lots
of undigested DNA.* These double-knockout mice, and mice
with induced DNasell knockout after birth, develop an age-
dependent rheumatoid arthritis-like disease.®® Similar to the
human rheumatoid arthritis, proinflammatory cytokines
including TNF-a, IL-6 and IL-1 are upregulated in the inflamed
joints. They stimulate macrophage and fibroblast in the affected
joints, followed by pannus formation and tissue destruction.®!

TREX. Three-prime repair exonuclease 1 (Trex1) is a mam-
malian 3-DNA exonuclease. It cleaves cytosolic DNA which
might have leaked from the lysosome.®? Unlike DNase
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[I-deficient mice, TREX-deficient mice develop inflammatory
myocarditis, while a TREX mutation in human leads to
Aicardi-Goutieres syndrome.®> A strong proinflammatory
cytokine profile is found in the heart, joints and cerebrospinal
fluid in Aicardi-Goutieres syndrome possibly due to the
cytosolic DNA accumulation.®* Because both DNase II and
TREX-deficient mice display high IFN-o expression, it is
plausible that undigested DNA initiates the inflammatory
process. Why are different tissues affected in the two deficien-
cies? This is most likely because DNase II only works in acidic
conditions and is expressed in specific organs including bone
marrow and spleen. Conversely, TREX1 works in the cytosol
and is expressed ubiquitously.®®

When regulatory mechanisms are impaired, undigested
DNA released from dead cells can stimulate proinflammatory
cytokine production via an array of mechanisms. Macrophages
lacking Dnase II or TREX1 can engulf apoptotic cells. But DNA
accumulates within the macrophages. It was observed that
TLRY deficiency did not rescue the Dnasell deficient mouse
phenotype, indicating the DNA-stimulated immune response
in Dnasell deficiency is TLR9 independent®® It is likely that
undigested DNA leaks into the cytosol and engages cytosolic
DNA sensors. For example, Eyes absent 4 (EYA4) stimulates
IFN-f and CXCL10 expression in response to undigested DNA
associated with apoptotic cells.®” And STING is critical for the
cytosolic DNA-induced cytokine production. STING deficiency
rescues Dnasell-dependent embryonic lethality.®®

DNasel. DNA may also be released into the extracellular
space during cell death in the form of apoptotic bodies,
microparticles or naked nucleosomes.®*’" DNasel is the
predominant nuclease in serum. It was reported that DNasel
deficient mice develop an SLE-like disease with anti-DNA
antibodies and glomerulonephritis.”! It should be noted that
only 38% of the DNasel deficient mice develop full-blown
glomerulonephritis, indicating the presence of compensatory
mechanisms such as Clq-mediated apoptotic cell clearance.”!
These observations are consistent with human data. Hetero-
zygous DNase I mutations are associated with an SLE-like
illness but the DNase I level is not correlated with disease
activity.”?

Clqg-deficient mice also develop autoimmunity but this is
influenced by genetic background.> Deoxyribonuclease I-like 3
(DNaselIL3) is homologous to DNasel. It digests extracellular
DNA. A frameshift mutation of DNaselL3 was found to be
associated with autosomal recessive SLE.”> Dnasell3-deficient
mice display similar phenotype to Dnasel-deficient mice: high
anti-DNA antibody titres, splenomegaly and strain-dependent
glomerulonephritis. Unlike DNasel, DNaseIlL3 can digest
membrane-coated DNA such as microparticles that are released
from secondary necrotic cells. Taken together, DNasel and
DNaselL3 act to digest extracellular DNA released from
apoptotic cells.”*

DNA modification. The quantity and nature of DNA
can trigger autoimmunity. Extracellular DNA is poorly
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immunogenic but certain modifications, such as oxidation and
unmethylated CpG, make it a more potent activator.”>’®
Oxidized DNA is commonly found in the ultraviolet (UV)-
induced apoptotic cells and is resistant to TREX1 digestion.”””8
Hence, oxidized DNA could accumulate in the cytosol and
engages cGAS to stimulate STING and initiate type-I IFN
production. This phenomenon is relevant to SLE and rheu-
matoid arthritis (RA) patients as high levels of oxidized DNA
have been observed in lupus-specific skin lesions after UV
exposure and synovial fluid (SF).”# Notably, oxidative DNA
damage was abundant in UV-exposed cutaneous lesions in SLE
patients and injection of oxidized DNA into the skin of a lupus
mouse model (MRL/Ipr strain) induced skin lesions.?!

The accumulated DNA may also form complexes with
nuclear proteins to mediate immune responses. The best
studied DAMP that is complexed with DNA is high mobility
group box 1 (HMGBI1), a non-histone nuclear protein that is
composed of two DNA binding domains called the A box and
B box as well as C terminal tail.*® HMGBI is not normally
tightly bound to DNA and has considerable mobility inside the
cell, translocating from nucleus to cytoplasm depending on the
state of the cell. HMGBI is released from primary necrotic and
secondary necrotic cells, either by itself or bound to
chromatin.2 HMGB1 complexed to nucleosome is able to
induce IL-B, IL-6 and TNF-a secretion from DC and macro-
phages. Neither HMGB1 nor nucleosome alone mediates these
effects.3> These processes may be relevant to tissue injury in
scleroderma. In this condition, excessive damage of the
fibroblast is thought to initiate the fibrosis, the pathological
hallmark of the condition.®* DAMPs released from apoptotic
fibroblasts can trigger inflammation.®> Nucleic acids alone or in
complex with autoantibodies against topoisomerase I can
stimulate TLRs to produce type-I1 IFN.8¢%7 However, the role
of type-I IEN in scleroderma remains unclear.

Anti-DNA antibody. Excessive extracellular nucleosome pro-
duction can promote the production of anti-DNA antibodies
that might further amplify the inflammatory responses. The
level of anti-dsDNA antibodies broadly correlates with disease
activity in SLE and they can bind to apoptotic cells.®® Some of
these anti-DNA antibodies were demonstrated to inhibit
apoptotic cell uptake via Fc receptors.®” However, polyclonal
anti-dsDNA antibodies from SLE patients may form complexes
with secondary necrotic cells and promote phagocytosis and
IL-8 and IL-1 secretion from granulocytes and monocytes,
respectively.”’ The isotype of the anti-dsDNA antibody is
important. Anti-DNA IgM antibodies (T15-Nab) form com-
plexes with apoptotic cells and facilitate uptake. This process
suppresses the inflammatory cytokine production by
macrophages.”! The seemingly contradictory results are prob-
ably caused by two main factors. First, anti-DNA antibodies are
highly heterogeneous. They have distinct antigen reactivity as
well as antibody isotype. Second, results from studies are likely
influenced by the different experimental conditions and their
effects on phagocytosis. An improvement would be to focus on
the study of individual antibodies derived from SLE patients.

Cellular and Molecular Immunology

NEUTROPHIL EXTRACELLULAR TRAP AND
AUTOIMMUNITY

NET kills pathogens

Neutrophil extracellular trap (NET) secretion is a key mechan-
ism through which neutrophils neutralize pathogens. The
pathway is determined by the size of the pathogen. If the
pathogen is small enough to be phagocytosed, neutrophil
elastase (NE) will be trafficked away from the nucleus,
preventing chromatin decondensation, and therefore inhibiting
NETosis.”?

If the pathogen is too big to be phagocytosed, NETosis is
initiated. The NET is composed of decondensed neutrophil
DNA. DNA in the NET mediates intracellular signal transduc-
tion and immune responses that not only contribute to
pathogen destruction, but under certain conditions can con-
tribute to inflammation in the setting of autoimmunity.”* It is
still unclear which receptor transduces the signal but reactive
oxygen species are critical for NETosis. It drives the protease to
migrate from primary granules to the nucleus to degrade
histones.”»*> The chromatin is then further decondensed by
NE and myeloperoxidase and released into the cytoplasm.”®"’
Finally, NET are released after plasma membrane rupture. The
NET release via cell death is slow while NET release from viable
neutrophils is about two to three fold quicker. The decon-
densed DNA and antimicrobial proteins are wrapped in vesicles
that are secreted from viable neutrophils in response to, for
example, Staphylococcus aureus.”

Immunological effects of NET clearance

Like DNA released from apoptotic cells, DNase digests DNA in
the NET. Nevertheless, DNase alone may not be sufficient as
they cannot degrade the insoluble aggregates formed by DNA
complexed with LL37/human neutrophil peptide (HNP). This
insoluble aggregate induces type-I IFN production in a TLRY-
dependent manner.”” NETs can be engulfed by professional
scavenger cells like monocytes/macrophages, a process facili-
tated by DNase and complement. Engulfed NETs can be
digested in the lysosome without proinflammatory cytokine
production.!'® This finding, however, is challenged by other
studies that demonstrate that NETs initiate proinflammatory
signalling pathways in PBMC, monoctyes and DC.”” These
studies suggest that the DNA content of the NET activates
c¢GAS and TLR9 in PBMC and pDC, respectively, which
subsequently initiates type-I IFN production.'®! This makes
the clearance of NETs remarkably different from apoptotic cell
clearance, which upregulate TGF-p and IL-10 production. One
possible explanation for this disparity is that NETs are
predominantly produced to combat infection. Hence, in this
setting it might be favorable to promote type-I IFN secretion.
Many aspects of NET processing/degradation mechanisms are
still elusive and remain an active field of research (Table 1).

NET and autoimmune diseases

Serum from SLE patients protected NETs from DNase
degradation: undegraded NETs were observed in kidney tissue
and correlated with active lupus nephritis.'®> Glomerular NETs
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were also observed in patients with ANCA vasculitis.!0?
Undigested NETs in SLE appear to promote inflammatory
responses through TLR9 dependent and independent path-
ways. TLRY recognizes both CpG DNA and NET-associated
DNA.!% The DNA complex in NETs was shown to induce
type-I IEN production from pDC in a TLR9-dependent
manner, driven by the TLR adaptor MydD88 and IRF7. Only
the NET DNA-protein complex but not naked DNA is able to
activate TLR9 in pDC due to the stability of the complex.””
NETs are mainly composed of dsDNA therefore it is not
surprising that NET stimulates intracellular DNA sensors. In
SLE patients, a group of granulocyte population called low-
density granulocytes (LDGs) were found to simulate the
production of type-I IFNs.10>196 [ DGs secrete NETs contain-
ing LL-37 (a cathelicidin-related antimicrobial peptides),
matrix metallopeptidase 9 (MMP9), dsDNA and histones.
The dsDNA released from LDGs was noted to be oxidized
because of its mitochondrial origin. Oxidized DNA is more
resistant to cytosolic DNase and augments type-I IFN produc-
tion from PBMC.!919% DNA in endocytosed NETs is sensed
by cGAS, which activates the adaptor protein STING to
simulate type-I IFNs. IFN-a secreted in response to NETs
enhanced the autoreactivity of the autoreactive B cells.'%1%° In
addition to DNA, cathelicidin and other NET-associated
proteins engage P2X7 receptor on LPS-primed macrophages.
This activates the NLRP3 inflammasome, leading to IL-1 and
IL-18 release.!>!'%!!1 This proinflammatory response appears
to be augmented by the lack of NET clearance in SLE patients.
A proportion of SLE patients have defective DNase and/or
DNase inhibitors that impair NET degradation. The presence
of anti-NET antibodies in some patients might also block the
access of DNase to the NET-associated DNA.!%2

NETs are also detected in synovial fluid, skin and rheuma-
toid nodules of RA patients.3*!12 NETs have direct effects on
fibroblast-like synoviocytes promoting IL-6 and IL-8 produc-
tion. This process is diminished with DNase I treatment. These
data suggest a role for extracellular DNA in the inflammatory
response in RA.

NET and anti-NET antibody

NETs were also found to form immune complexes with anti-
NET antibodies. Autoantibodies against DNA are specific to
SLE and anti-dsDNA antibodies may form immune complexes
with NETs. These immune complexes are able to activate pDC
to secrete IFN-at and TNF-« in a TLR9-dependent manner.'!?
The engagement of Fcgamma receptors by the immune
complexes recruits cytosolic endoplasmic reticulum to the
phagosome thereby triggering the downstream interferon
production.'!® In addition to pDC, other TLR9- and CD32-
positive cells including monocytes, B cells and GM-CSF-treated
PMNSs also respond to DNA-antibody immune complexes.'!*
pDC also produce increased amounts of IFN-a in patients with
active but not inactive small vessel vasculitis,'?> a phenomenon
that correlates with circulating chromatin levels.'9 Hence,
it is possible that, in small vessel vasculitis, NETs contribute to
IFN-a production by pDC.

Cellular and Molecular Immunology

NET in animal models
The pathogenic role of NET in vivo has been studied in various
animal models. Nakazawa and colleagues demonstrated that
NETs induced by propylthiouracil and phorbol myristate
acetate were relatively resistant to DNase I degradation and
had a more compact conformation. When rats were immu-
nised with these abnormal NETs they developed anti-
myeloperoxidase antibodies and pulmonary capillaritis.''> In
addition to the direct tissue damage, intact NETs can also act as
a source of autoantigens. Myleoid dendritic cell (mDC) can
interact and take up NETs. Injection of mDC loaded with
NETs to wild-type mice promoted the production of anti-MPO
and anti-dsDNA autoantibodies. However, the pathological
consequence of the NET uptake remains incompletely
understood.! 16117

Evidence from lupus-prone mice strains remains incom-
plete. New Zealand mixed 2328 (NZM) mice have enhanced
NEtosis which might lead to the NET deposition in the kidney.
The inhibition of NET formation by peptidylarginine deimi-
nase (PAD) inhibitor abolished the NET production and
reduced anti-dsDNA antibody level in kidney !'® However, it
should be noted that the PAD inhibitor did not ameliorate the
kidney inflammation. By contrast, disease activity of MRL/lpr
lupus-prone mouse disease is exacerbated by the Nox2
deficiency, which inhibits NET formation.!' The Nox2-
deficient mice had defective NET formation but higher titres
of anti-nuclear antibodies, proteinuria and more severe glo-
merulonephritis. More studies using inhibitors within the
different NET forming pathways are needed to elucidate the
role of NETSs in SLE.

CONCLUDING AND PERSPECTIVES

The fundamental function of DNA is to store information in a
heritable manner. Foreign DNA is recognized by DNA sensors
which can elicit an immune response as part of host defence
against pathogens. But inappropriate response to self DNA is
associated with autoimmune diseases, such as SLE and AGS.
The discovery of DNA-sensing pathways and their contribution
to autoimmunity has revealed potential new therapeutic targets.
Anti-INF-o and anti-IFNR treatments are under clinical trials.
For example, sifalimumab showed promising results in
SLE.!?%121 NET inhibition and manipulation of apoptotic cell
removal remains in the pre-clinical study area: inhibitors of
NADPH oxidase; mitochondrial ROS production; actin cytos-
keleton; and PAD enzymes have been studied in lupus models.
For example, PAD deficiency prevents NET formation and
ameliorate arthritis in an induced arthritis model.!!®122123,
And, since PPARP and LXR coordinate apoptotic cell engulf-
ment and induce tolerance in APCs, agonists against PPARp
or LXR, at least in theory, might be beneficial in
autoimmunity.!?*12¢ Clearly, there is a complex regulatory
network to prevent an aberrant immune response to host DNA
and all the pathways described in our review are important in
homeostatic processes and/or response to pathogens and tissue
injury. Manipulating these in vivo is a major challenge both in
terms of expected efficacy (for example, disease-modifying



outcomes in systemic autoimmunity) and in terms of safety
(for example, infection risk, impaired homeostatic tissue
turnover).
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