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The complex underpinnings of genetic background
effects
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Genetic interactions between mutations and standing polymorphisms can cause mutations to

show distinct phenotypic effects in different individuals. To characterize the genetic archi-

tecture of these so-called background effects, we genotype 1411 wild-type and mutant yeast

cross progeny and measure their growth in 10 environments. Using these data, we map 1086

interactions between segregating loci and 7 different gene knockouts. Each knockout exhibits

between 73 and 543 interactions, with 89% of all interactions involving higher-order epistasis

between a knockout and multiple loci. Identified loci interact with as few as one knockout and

as many as all seven knockouts. In mutants, loci interacting with fewer and more knockouts

tend to show enhanced and reduced phenotypic effects, respectively. Cross–environment

analysis reveals that most interactions between the knockouts and segregating loci also

involve the environment. These results illustrate the complicated interactions between

mutations, standing polymorphisms, and the environment that cause background effects.
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Background effects occur when the same spontaneous or
induced mutations show different phenotypic effects across
genetically distinct individuals1–7. Countless examples of

background effects have been described across species and
traits1,2, collectively suggesting that this phenomenon is common
in biological systems and plays a significant role in many phe-
notypes. For example, alleles that show background effects con-
tribute to a wide range of hereditary disorders, including, but not
limited to, colorectal cancer, hypertension, and phenylketonuria8.
Background effects may also impact other disorders that fre-
quently involve de novo mutations, such as autism9, congenital
heart disease10, and schizophrenia11. Additionally, it has been
proposed that background effects can shape the potential trajec-
tories of evolutionary adaptation12,13, influence the emergence of
novel traits7, and help maintain deleterious genetic variation
within populations14.

Despite the importance of background effects to biology and
medicine, understanding of their causal genetic mechanisms
remains limited. Although superficially background effects are
known to arise due to genetic interactions (or “epistasis”) between
mutations and standing polymorphisms15–20, only recently have
studies begun to provide deeper insights into the architecture of
epistasis underlying background effects. These papers
indicate that background effects often involve multiple poly-
morphisms that interact not only with a mutation but also with
each other4–7,21–26 and the environment6. This work also suggests
that background effects are caused by a mixture of loci that show
enhanced and reduced phenotypic effects in mutants relative to
wild-type individuals1,5–7,18,23–25,27–32. Together, these previous
reports imply that the phenotypic effect of a mutation in a given
genetic background can depend on an individual’s genotype at a
potentially large number of loci that interact in complicated,
highly contextual ways. However, this point is difficult to expli-
citly show because doing so requires systematically mapping the
interactions between mutations, polymorphisms, and environ-
ment that give rise to background effects.

In this paper, we perform a detailed genetic characterization of
a number of background effects across multiple environments.
Previous work in yeast, as well as other model species, has
established that mutations in chromatin regulation and tran-
scription often show background effects5–7,21,28,29,33. We extend
this past work by knocking out seven different chromatin reg-
ulators in a cross of the BY4716 (BY) and 322134S (3S) strains of
Saccharomyces cerevisiae. We generate and genotype 1411 wild-
type and knockout segregants, measure the growth of these
individuals in 10 environments, and perform linkage mapping
with these data. In total, we identify 1086 interactions between
the knockouts and segregating loci. These interactions allow us to
obtain novel, detailed insights into the genetic architecture of
background effects across different mutations and environments.

Results
Preliminary screen. When a mutation that exhibits background
effects is introduced into a population, the phenotypic variance
among individuals will often change24,25,27,30. Here, we attempted
to identify mutations that induce such changes in phenotypic
variance. Specifically, we screened 47 complete gene knockouts of
histones, histone-modifying enzymes, chromatin remodelers, and
other chromatin-associated genes for impacts on phenotypic
variance in segregants from a cross of the BY and 3S strains of
budding yeast (Supplementary Figs. 1 and 2; Supplementary
Table 1; Methods). To do this, we generated BY/3S diploid
hemizygotes, sporulated these hemizygotes to obtain haploid
knockout segregants, and then quantitatively phenotyped these
BY×3S knockout segregants for growth on rich medium

containing ethanol, an environment in which we
previously found background effects that influence yeast colony
morphology5–7,34. For each panel of segregants, three biological
replicate end-point colony growth assays were performed and
averaged. We then tested whether the knockout segregants
exhibited significantly higher phenotypic variance than wild-type
segregants using Levene’s test (Supplementary Table 2). This
analysis implicated CTK1 (a kinase that regulates RNA poly-
merase II), ESA1 and GCN5 (two histone acetyltransferases),
HOS3 and RPD3 (two histone deacetylases), HTB1 (a copy of
histone H2B), and INO80 (a chromatin remodeler) as knockouts
that show background effects in the BY×3S cross (Supplementary
Fig. 1; Supplementary Note 1).

Mapping of mutation-independent and mutation-responsive
effects. To map loci that interact with the seven knockouts
identified in the screen, we genotyped 1411 segregants in total.
This included 164 wild-type, 210 ctk1Δ, 122 esa1Δ, 215 gcn5Δ,
220 hos3Δ, 177 htb1Δ, 141 ino80Δ, and 162 rpd3Δ segregants
(Supplementary Fig. 3; Supplementary Tables 3 through 5;
Methods). These genotyped segregants were phenotyped for
growth in 10 diverse environments using replicated end-point
colony growth assays (Supplementary Fig. 4; Supplementary
Table 6; Methods). We note that, despite causing increased
phenotypic variance in ethanol, the knockouts induced a broad
range of phenotypic responses in other environments (Supple-
mentary Fig. 4).

As described in detail in Methods, genome-wide linkage
mapping scans were conducted within each environment
(Supplementary Data 1 and 2). To maximize statistical power,
we analyzed the 1411 segregants jointly using a fixed-effects linear
model that accounted for genetic background. We identified
individual loci, as well as two- and three-way genetic interactions
among loci, that exhibited the same phenotypic effect across the
wild-type and knockout backgrounds (hereafter “mutation-
independent” effects). We also conducted scans for individual
loci, as well as two- and three-way genetic interactions among
loci, that exhibited different phenotypic effects in at least one
knockout background relative to the wild-type background
(hereafter “mutation-responsive” effects). Post hoc tests were
used to associate mutation-responsive effects with specific
knockouts. Mutation-responsive one-, two-, and three-locus
effects can alternatively be viewed as two-, three-, and four-way
interactions where one of the involved genetic factors is a
knockout. However, to avoid confusion throughout the paper, we
do not count the knockouts as genetic factors. Instead, we classify
each genetic effect as mutation-independent or –responsive and
report how many loci it involves. Representative examples of
mutation-responsive effects are shown in Fig. 1.

In total, we detected 1211 genetic effects across the 10
environments (Supplementary Figs. 5 and 6; Supplementary
Data 3; Supplementary Tables 7 through 10; Supplementary
Note 2 and 3). One hundred and twenty five (10%) of these
genetic effects were mutation-independent while 1086 (90%) were
mutation-responsive (Fig. 2a). On average, we identified 121
genetic effects per environment, 109 of which were mutation-
responsive. However, the number of detected genetic effects
varied significantly across the environments, from 15 in room
temperature to 359 in ethanol. Despite this variability, in every
environment, ≥47% of the identified genetic effects were
mutation-responsive. This suggests that, regardless of environ-
ment, most genetic effects in the cross were responsive to the
knockouts. Additionally, the seven knockouts exhibited major
differences in their numbers of mutation-responsive effects.
Between 73 and 118 mutation-responsive effects were found for
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the CTK1, ESA1, GCN5, HTB1, INO80, and RPD3 knockouts
(Fig. 2b). In contrast, the HOS3 knockout had 543 mutation-
responsive effects (Fig. 2b).

Higher-order epistasis influences response to mutations. While
only 29% (36 of 125) of the mutation-independent effects
involved multiple loci, this proportion was more than tripled
(89%; 965 of 1086) among the mutation-responsive effects
(Fig. 2a). Simulations indicate that our statistical power to detect
mutation-responsive loci was appreciably higher for single locus
effects than for multiple locus effects, suggesting that our results
may underestimate the importance of higher-order epistasis to
background effects (Supplementary Fig. 7). To better assess how
loci involved in the identified higher-order interactions contribute
to background effects, we partitioned the individual and joint
contributions of involved loci to mutation-responsive phenotypic
variance (Supplementary Data 4 and 5; Methods). For mutation-
responsive two-locus effects, on average, 78% of the mutation-
responsive phenotypic variance was attributed to the higher-order
interaction between the knockout and both loci (Fig. 3a). Like-
wise, among mutation-responsive three-locus effects, on average,
58% of the mutation-responsive phenotypic variance was
explained by the higher-order interaction of the knockout and the
three loci (Fig. 3b). Thus, most mutation-responsive effects
involve multiple loci that contribute to background effects pre-
dominantly through their higher-order interactions with each

other and a mutation, rather than through their individual
interactions with a mutation.

Environment plays a strong role in background effects. The
role of the environment in background effects has yet to be fully
characterized. Although our group previously showed that the
genetic architecture of background effects can significantly
change across environments6, this past work focused on only a
modest number of segregating loci and environments. To more
generally assess how the environment influences the genetic
architecture of background effects, we determined whether the
1086 mutation-responsive effects impacted phenotype in envir-
onments outside the ones in which they were originally detected.
This analysis was performed using statistical thresholds that were
more liberal than those employed in our initial genetic mapping
(Methods). In all, 29% (311) of the mutation-responsive effects
were detectable in additional environments, with this proportion
varying between 7% and 65% across the 10 environments.
(Fig. 4). Of these mutation-responsive effects, 64% (200) were
identified in only one additional environment, 28% (85)
were found in two additional environments, and just 8% (26)
were detected in ≥3 environments. Given the limited resolution of
the data, it is possible that some of the mutation-responsive
effects that were detected in multiple environments in fact
represent distinct, closely linked loci that act in different envir-
onments. Such linkage would lead us to overestimate how often
mutation-responsive effects contribute to background effects in
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different environments, further suggesting that most mutation-
responsive effects act in a limited number of environments. These
findings support the idea that background effects are caused by
complex interactions between not only mutations and poly-
morphisms but also the environment.

Interactions between loci and different knockouts. We next
looked at how the same mutation-responsive effects interact with
different knockouts. Based on involvement of the same loci, the
1086 mutation-responsive effects were collapsed into 594 distinct
mutation-responsive effects that showed epistasis with at least one
knockout (Methods). In all, 65% of these mutation-responsive
effects were found in only one knockout background, while 35%
were identified in ≥2 knockout backgrounds (Supplementary
Fig. 8). Also, 97% of the mutation-responsive effects that inter-
acted with only one knockout were HOS3-responsive and these
effects represented 69% of the total interactions detected in a
hos3Δ background (Fig. 5a). In contrast, nearly all (between 95%
and 100%) of the CTK1-, ESA1-, GCN5-, HTB1-, INO80-, and
RPD3-responsive effects were detected in multiple backgrounds
(Fig. 5a). Although the mutation-responsive effects exhibited a
broad, continuous range of responses to the knockouts (Fig. 5b),
they could be partitioned into two qualitative classes—enhanced
and reduced—based on whether they explained more or less
phenotypic variance in mutants than in wild-type segregants,
respectively. The distinct mutation-responsive effects exhibited a
strong relationship between their number of interacting knock-
outs and how they were classified. Mutation-responsive effects

that interacted with fewer than three knockouts predominantly
were in the enhanced class, while mutation-responsive effects that
interacted with four or more knockouts typically were in the
reduced class (χ2= 709.37, d.f.= 6, p= 5.81 × 10−150; Fig. 5c;
Supplementary Data 6). These results illustrate how background
effects are caused by a mixture of loci that respond specifically to
mutations in particular genes and loci that respond more gen-
erically to mutations in different genes, with the relative con-
tribution of these two classes of loci varying significantly across
mutations. Our findings also suggest that how loci respond to
mutations in a particular gene is related to the degree to which
they interact with mutations in other genes.

Genetic basis of induced changes in phenotypic variance. Lastly,
we looked at the extent to which the identified mutation-responsive
effects in aggregate related to differences in phenotypic variance
between the knockout and wild-type versions of the BY×3S cross
across the 10 environments (Supplementary Table 11). This was
important because many studies (e.g., refs. 23–25,29,30,35) have
described how perturbing certain genes can alter the phenotypic
variance within a population, but the genetic underpinnings of this
phenomenon have not been fully determined. Among the 70 dif-
ferent combinations of the 7 knockouts and 10 environments, we
found a highly significant relationship between differences in the
numbers of mutation-responsive effects with reduced and enhanced
phenotypic effects and knockout-induced changes in phenotypic
variance (Fig. 6; Spearman’s ρ= 0.84, p= 4.33 × 10−20). No such
relationship was seen when we looked at the mean phenotypic
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changes induced by the mutations (Supplementary Fig. 9). To
control for potential biases in our analyses that might arise from
allele frequency differences among the backgrounds (Supplemen-
tary Fig. 3), we performed the same analysis on each knockout
background individually using data from the 10 environments
(Supplementary Table 11). When we did this, we found that all
seven knockout backgrounds exhibited nominally significant cor-
relations between observed changes in phenotypic variance and

detected mutation-responsive effects (Spearman’s ρ > 0.71, p < 0.02;
Supplementary Fig. 10). Permutations indicate that the probability
of observing this result by chance is low (p < 10−5). Thus, these
findings are consistent with the knockout-induced changes in
phenotypic variance resulting from a large number of epistatic loci
with small phenotypic effects (Supplementary Fig. 11; Supplemen-
tary Table 11). In summary, our results not only provide valuable
insights into the genetic architecture of background effects but also
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illustrate how interactions between mutations, segregating loci, and
the environment can influence a population’s phenotypic variance.

Discussion
Most prior studies of background effects have described specific
examples without identifying the contributing loci. Here we used
a screen of 47 different chromatin regulators to identify 7
knockout mutations that exhibit strong background effects in a
yeast cross. We then generated and phenotyped a panel of 1411
mutant and wild-type segregants. Using these data, we detected
1086 genetic interactions that involve the 7 knockouts and loci
that segregate in the cross. To better understand the genetic
architecture of background effects, we comprehensively examined
how the identified loci interact not only with the knockouts but
also with each other and the environment. Our results confirm
important points about the genetic architecture of background
effects that to date have been suggested but not conclusively
proven. Namely, background effects can be highly polygenic, with
many, if not most, loci contributing through higher-order genetic

interactions that involve a mutation and multiple loci. These loci
can respond to mutations in different ways, such as by exhibiting
enhanced and reduced phenotypic effects in mutants relative to
wild-type individuals. Moreover, most of these interactions
between mutations and segregating loci also involve the envir-
onment. Altogether, these findings shed light on the complex
genetic and genotype–environment interactions that give rise to
background effects.

Our work also illustrates how the genetic architecture of
background effects varies significantly across different mutated
genes. In our study, response to six of the seven knockouts was
mediated almost exclusively by loci that respond to mutations in
different genes and predominantly exhibit reduced effects in
mutants relative to wild-type segregants. Given that some of the
examined chromatin regulators have counteracting or unrelated
biochemical activities36,37, we propose that loci detected in mul-
tiple knockout backgrounds respond generically to perturbations
of cell state or fitness, rather than to any specific biochemical
process. In contrast, response to HOS3 knockout was largely
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mediated by loci that were not detected when the other genes
were compromised. Why so many loci responded specifically to
perturbation of HOS3 is difficult to infer from current under-
standing of Hos3’s biochemical activities. Although Hos3 can
deacetylate all four of the core histones38 and influence chromatin
regulation in certain genomic regions39, it also plays roles in cell
cycle40 and nuclear pore regulation41. Thus further work is
needed to characterize HOS3 and its extensive epistasis with
polymorphisms in the BY×3S cross.

In addition to advancing understanding of background effects,
our results may also have more general implications for the
genetic architecture of complex traits. Many phenotypes,
including common disorders like autism9 and schizophrenia11,
are influenced by loss-of-function mutations that occur de novo
or persist within populations at low frequencies. We have shown
that these mutations can significantly change the phenotypic
effects of many polymorphisms within a population by altering
how these polymorphisms interact with each other and the
environment. Although these complicated interactions between
mutations, standing polymorphisms, and the environment are
often ignored in genetics research, our study suggests that they in
fact play a major role in determining the relationship between
genotype and phenotype.

Methods
Generation of different BY×3S knockout backgrounds. All BY×3S segregants
described in this paper were generated using the synthetic genetic array marker
system, which makes it possible to obtain MATa haploids by digesting tetrads and
selecting for spores on minimal medium lacking histidine and containing cana-
vanine42 (Supplementary Fig. 1). We first constructed a BY/3S diploid by mating a
BY MATa can1Δ::STE2pr-SpHIS5 his3Δ strain to a 3S MATα ho::HphMX his3Δ::
NatMX strain. This diploid served as the progenitor for the wild-type segregants.
Hemizygous complete gene deletions were engineered into this wild-type BY/3S
diploid to produce the progenitors of the knockout segregants. Genes were deleted

using transformation with PCR products that were comprised of (in the following
order) 60 bp of genomic sequence immediately upstream of the targeted gene,
KanMX, and 60 bp of genomic sequence immediately downstream of the targeted
gene. Lithium acetate transformation was employed43. To obtain a given knockout,
transformants were selected on rich medium containing G418, ClonNAT, and
Hygromycin B, and PCR was then used to check transformants for correct inte-
gration of the KanMX cassette. These PCRs were conducted with primer pairs
where one primer was located within KanMX and the other primer was located
adjacent to the expected site of integration. PCR products were Sanger sequenced.
Primers used in these checks are reported in Supplementary Table 18. Wild-type
and hemizygous knockout diploids were sporulated using standard techniques.
Low-density random spore plating (around 100 colonies per plate) was then used
to obtain haploid BY×3S segregants from each wild-type and knockout background
of the cross. Wild-type segregants were isolated directly from MATa selection
plates, while knockout segregants were first replica plated from MATa selection
plates onto G418 plates, which selected for the gene deletions.

Genotyping of segregants. Segregants were genotyped using low-coverage whole-
genome sequencing. A sequencing library was prepared for each segregant using
the Illumina Nextera Kit and custom barcoded adapters. Libraries from different
segregants were pooled in equimolar fractions and these multiplex pools were size
selected using the Qiagen Gel Extraction Kit. Multiplexed samples were sequenced
by BGI on an Illumina HiSeq 2500 using 100 bp × 100 bp paired-end reads. For
each segregant, reads were mapped against the S288c genome (version
S288C_reference_sequence_R64-2-1_20150113.fsa from https://www.yeastgenome.
org) using BWA version 0.7.7-r4444. Pileup files were then produced with SAM-
TOOLS version 0.1.19-44428 cd45. BWA and SAMTOOLS were run with their
default settings. Base calls and coverages were obtained from the pileup files for
36,756 previously identified high-confidence single-nucleotide polymorphisms
(SNPs) that segregate in the cross7. Individuals who showed evidence of being
aneuploid, diploid, or contaminated based on unusual patterns of coverage or
heterozygosity were excluded from further analysis. We also used the data to
confirm the presence of KanMX at the gene that had been knocked out. Individuals
with an average per site coverage <1.5× were removed from the dataset. A vector
containing the fraction of 3S calls at each SNP was generated and used to make
initial genotype calls with sites above and below 0.5 classified as 3S and BY,
respectively. This vector of initial genotype calls was then corrected with a Hidden
Markov Model (HMM), implemented using the HMM package version 1.0 in R46.
We used the following transition and emission probability matrices: transProbs=
matrix(c(.9999,.0001,.0001,.9999),2) and emissionProbs=matrix(c
(.0.25,0.75,0.75,0.25),2). We examined the HMM-corrected genotype calls for
adjacent SNPs that lacked recombination in the segregants. In such instances, a
single SNP was chosen to serve as the representative for the entire set of adjacent
SNPs that lacked recombination. This reduced the number of markers used in
subsequent analyses from 36,756 to 8311.

Phenotyping of segregants. Prior to phenotyping, segregants were always
inoculated from freezer stocks into YPD broth containing 1% yeast extract (BD
Product #: 212750), 2% peptone (BD 211677), and 2% dextrose (BD Product
#:15530). After these cultures had reached stationary phase, they were pinned onto
and outgrown on plates containing 2% agar (BD 214050). Unless specified, these
plates were made with YPD and incubated at 30 °C for 2 days. However, some of
the environments required adding a chemical compound to the YPD plates or
changing the temperature or carbon source. In addition to YPD at 30 °C, we
measured growth in the following environments: 21 °C, 42 °C, 2% ethanol (Koptec
A06141602W), 250 ng/mL 4-nitroquinoline 1-oxide (“4NQO”) (TCI N0250), 9
mM copper sulfate (Sigma 209198), 50 mg/mL fluconazole (TCI F0677), 260 mM
hydrogen peroxide (EMD Millipore HX0640-5), 7 mg/mL neomycin sulfate (Gibco
21810-031), and 5 mg/mL zeocin (Invivogen ant-zn-1). For 4-NQO, copper sulfate,
fluconazole, hydrogen peroxide, neomycin sulfate, and zeocin, the doses used for
phenotyping were chosen based on preliminary experiments across a broader range
of concentrations (Supplementary Table 6). Growth assays were conducted in
triplicate using a randomized block design to account for positional effects on the
plates. Four BY controls were included on each plate. Plates were imaged using the
BioRAD Gel Doc XR+ Molecular Imager. Each image was 11.4 × 8.52 cm2

(width × length) and imaged under white epi-illumination with an exposure time
of 0.5 s. Images were exported as Tiff files with a resolution of 600 dpi. As in ref. 47,
image analysis was conducted in the ImageJ software, with pixel intensity for each
colony calculated using the Plate Analysis JRU v1 plugin (http://research.stowers.
org/imagejplugins/index.html). The growth of each segregant on each plate was
computed by dividing the segregant’s total pixel intensity by the mean pixel
intensity of the average of BY controls from the same plate. The replicates for a
segregant within an environment were then averaged and used as that individual’s
phenotype in subsequent analyses.

Scans for one-locus effects. All genetic mapping was conducted within each
environment using fixed-effects linear models applied to the complete set of 1411
wild-type and knockout segregants. To ensure that mean differences in growth
among the eight backgrounds were always controlled for during mapping, we
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Fig. 6 Mutation-responsive effects underlie differences in phenotypic
variance between knockout and wild-type backgrounds across
environments. Each point’s position on the x axis represents the
difference in phenotypic variance between a knockout background of the
cross (VP.Mut) and the wild-type background of the cross (VP.WT) in a single
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associated p value are provided on the plot. Colors denote different
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included a background term in our models. Throughout the paper, we refer to loci
or combinations of loci that statistically interact or do not statistically interact with
the background term as mutation-responsive and mutation-independent, respec-
tively. Genetic mapping was performed in R using the lm() function, with the p
values for relevant terms obtained from tables generated using the summary()
function.

We first identified individual loci that show mutation-independent or
mutation-responsive phenotypic effects using forward regression. To detect
mutation-independent loci, genome-wide scans were conducted with the model
phenotype ~ background+ locus+ error. Significant loci identified in this first
iteration were then used as covariates in the next iteration, i.e., phenotype ~
background+ known_locus1… known_locusN+ locus+ error, where the
known_locus terms corresponded to each of the loci that had already been
identified in a given environment. To determine significance, 1000 permutations
were conducted at each iteration of the forward regression, with the
correspondence between genotypes and phenotypes randomly shuffled each time.
Among the minimum p values obtained in the permutations, the fifth quantile was
identified and used as the threshold for determining significant loci. This process
was iterated until no additional loci could be detected for each environment.

To identify mutation-responsive one-locus effects, we employed the same
procedure described in the preceding paragraph, except the model phenotype ~
background+ locus+ background:locus+ error was used. Here the significance of
the background:locus interaction term was tested, again with significance
determined by permutations as described in the preceding paragraph. The locus
term was included in the model to ensure that phenotypic variance explained by
mutation-independent effects did not load onto the mutation-dependent effects.
For each locus with significant background:locus terms, we included both an
additive and background interaction term in the subsequent iterations of the
forward regression: i.e., phenotype ~ background+ known_locus1… known_locusN
+ locus+ background:known_locus1… background:known_locusN+ background:
locus+ error. The known_locus terms were included in these forward regression
models to ensure that variance due to the mutation-independent effects of
previously identified loci was not inadvertently attributed to the mutation-
responsive terms for these loci. This process was iterated until no additional
background:locus terms were discovered for each environment.

Scans for two-locus effects. We also performed full-genome scans for two-locus
effects. Here every unique pair of loci was interrogated using fixed-effects linear
models like those described in the preceding section. As with the one-locus effects,
we employed two models in parallel. The model phenotype ~ background+ locus1
+ locus2+ locus1:locus2+ error was used to identify mutation-independent two-
locus effects, whereas the model phenotype ~ background+ locus1+ locus2+
background:locus1+ background:locus2+ locus1:locus2+ background:locus1:
locus2+ error was employed to detect mutation-responsive two-locus effects.
Specifically, we tested for significance of the locus1:locus2 and background:locus1:
locus2 interaction terms with the former and latter models, respectively. Simpler
terms were included in each model to ensure that variance was not erroneously
attributed to more complex terms. Significance thresholds for these terms were
determined using 1000 permutations with the correspondence between genotypes
and phenotypes randomly shuffled each time. However, to reduce computational
run time, 10,000 random pairs of loci, rather than all possible pairs of loci, were
examined in each permutation. Significance thresholds were again established
based on the fifth quantile of minimum p values observed across the permutations.
To ensure that our main findings were robust to threshold, we also generated
results at false discovery rates (FDRs) of 0.01, 0.05, and 0.1 by comparing the rate
of discoveries at a given p value in the permutations to the rate of discoveries at that
same p value in our results (Supplementary Table 10; Supplementary Note 2).

Scans for three-locus genetic effects. Owing to computational limitations, we
were unable to run a comprehensive scan for mutation-independent and mutation-
responsive three-locus effects. Instead, we scanned for three-locus effects involving
two loci that had already been identified in a given environment (known_locus1
and known_locus2) and a third locus that had yet to be detected (locus3). The
model phenotype ~ background+ known_locus1+ known_locus2+ locus3+
known_locus1:known_locus2+ known_locus1:locus3+ known_locus2:locus3+
known_locus1:known_locus2:locus3+ error was used to identify mutation-
independent three-locus effects, whereas the model phenotype ~ background+
known_locus1+ known_locus2+ locus3+ background:known_locus1+ back-
ground:known_locus2+ background:locus3+ known_locus1:known_locus2+
known_locus1:locus3+ known_locus2:locus3+ background:known_locus1:known_-
locus2+ background:known_locus1:locus3+ background:known_locus2:locus3+
known_locus1:known_locus2:locus3+ background:known_locus1:known_locus2:
locus3+ error was employed to detect mutation-responsive three-locus effects.
Significance of the known_locus1:known_locus2:locus3 and background:known_lo-
cus1:known_locus2:locus3 terms in the respective models was determined using
1000 permutations with the correspondence between genotypes and phenotypes
randomly shuffled each time. For each permutation, 10,000 trios of sites were
chosen by first randomly picking two loci on different chromosomes and then
randomly selecting an additional 10,000 sites. The minimum p value across the
10,000 tests was retained. Significance thresholds were again established based on

the fifth quantile of minimum p values observed across the permutations. As with
the two-locus effect scans, we also performed our analysis across multiple FDR
thresholds to ensure that our findings were robust (Supplementary Table 10;
Supplementary Note 2).

Assignment of mutation-responsive effects to knockouts. In the aforemen-
tioned linkage scans, genetic effects exhibited statistical interactions with the
background term if they had a different phenotypic effect in at least one of the eight
backgrounds relative to the rest. To determine the specific knockouts that inter-
acted with each mutation-responsive effect, we used the contrast() function from
the R package lsmeans. This was applied to the specific effect of interest post hoc
using the same linear models that were employed for detection. All possible
pairwise contrasts between wild-type and knockout segregants were conducted.
Mutation-responsive effects were assigned to specific mutations if the contrast
between a mutation and a WT population was nominally significant. Unless
otherwise noted, we counted each assignment of a mutation-responsive effect to a
specific knockout as a separate genetic effect even if they involved the same set of
loci.

Statistical power analysis. To determine the statistical power of our mapping
procedures, we simulated phenotypes for the 1411 genotyped segregants given their
genotypes at randomly chosen loci and then tried to detect these loci using the
approaches described earlier. In each simulation, a given segregant’s phenotype was
determined based on both the mutation it carried (if any), as well as its genotype at
one, two, or three randomly chosen loci. The effects of mutations were calculated
based on the real phenotype data for the glucose environment. Phenotypic effects
of the mutation-responsive locus or loci were also attributed to each segregant.
Specifically, the phenotype of segregants in only one of the possible genotype
classes were increased by a given increment, which we refer to as the absolute effect
size. For one-, two-, and three-locus effects, this respectively entailed half, one
quarter, and one eighth of the individuals having their phenotypes increased by the
increment. In the case of mutation-independent effects, these increments were
applied to all eight of the wild-type and knockout backgrounds. In contrast, for
mutation-responsive effects, increments were only applied to one of the eight
backgrounds, with the specific background randomly chosen. Lastly, random
environmental noise was added to each segregant’s phenotype. Using these gen-
otype and phenotype data, we tested whether we could detect the loci that had been
given a phenotypic effect. This was done by fitting the appropriate fixed-effects
linear model, extracting the p value for the relevant term, and determining if that p
value fell below a nominal significance threshold of α= 0.05. Statistical power was
calculated as the proportion of tests at a given phenotypic increment where p ≤
0.05. The results of this analysis are shown in Supplementary Fig. 7.

Contributions of loci involved in higher-order epistasis. For all mutation-
responsive two- and three-locus effects, we determined the proportion of mutation-
responsive phenotypic variance explained by each individual locus and the inter-
actions among these loci. To do this, we generated seven subsets of data, each of
which were comprised of the wild-type segregants and one set of knockout seg-
regants. We then fit the same model that was used to originally identify a given
mutation-responsive effect to the appropriate data subsets. For two-locus effects,
we obtained the sum of squares for the background:locus1, background:locus2, and
background:locus1:locus2 terms. We then divided each of these values by the sum of
all three sum of squares. For three-locus effects, we obtained the sum of sum of
squares associated with each individual locus (background:locus1, background:
locus2, background:locus3) and pair of loci (background:locus1:locus2, background:
locus1:locus3, background:locus2:locus2), as well as the sum of squares associated
with the trio of loci (background:locus1:locus2:locus3). We then divided the total
sum of squares associated with each class of terms by the total sum of squares
across all mutation-responsive terms. The ternary plots used to show these results
were generated using the R package ggtern.

Analysis of mutation-responsive effects across environments. We determined
whether each one-, two-, and three-locus mutation-responsive effect exhibited a
phenotypic effect in any environment outside the one in which it was originally
detected. To do this, we used seven subsets of data, each of which was comprised
of the wild-type segregants and one set of knockout segregants. We then fit the
same model that was used to originally identify a given mutation-responsive effect
to the appropriate data subsets for each of the nine additional environments. The
p value was then extracted for the relevant term. Bonferroni corrections were used
to account for multiple testing.

Genetic explanation of changes in phenotypic variance. We measured the
phenotypic variance explained by each mutation-responsive genetic effect in the
relevant knockout background(s), as well as in the wild-type background. Here we
fit each mutation-responsive genetic effect in both populations without using any
background term. For mutation-responsive one-, two-, and three-locus effects, the
following models were respectively employed: phenotype ~ locus1+ error, pheno-
type ~ locus1+ locus2+ locus1:locus2+ error, and phenotype ~ locus1+ locus2+
locus3+ locus1:locus2+ locus1:locus3+ locus2:locus3+ locus1:locus2:locus3+
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error. Partial R2 values were obtained in each population by obtaining the sum of
squares associated with the term of interest and dividing it by the total sum of
squares. Mutation-responsive effects were then classified by the number of
knockout backgrounds in which they were detected. For each class, the number of
genetic effects with larger partial R2 values in the knockout background than in the
wild-type background (enhanced effects) and the number of genetic effects with
smaller partial R2 values in the knockout background than in the wild-type
background (reduced effects) were determined. The proportion of mutation-
responsive effects that show enhanced and reduced phenotypic effects was calcu-
lated for each class. 95% bootstrap confidence intervals were then generated using
1000 random samplings of the data with replacement.

Checking potential consequences of allele frequency bias. Allele frequency bias
may result in the erroneous detection of mutation-responsive genetic effects due to
uneven representation of one-, two-, or three-locus combinations across the
knockout and wild-type backgrounds. To account for this, we generated 2 × 8, 4 × 8,
and 8 × 8 contingency tables for all one-, two-, or three-locus interactions, respec-
tively, counting each of the possible allele combinations in the wild-type and seven
knockout populations. Specifically, for one-locus interactions, we counted the
number of individuals carrying the BY and 3S allele at the significant locus for each
population. For two-locus interactions, the number of individuals carrying the
BY/BY, BY/3S, 3S/BY, and 3S/3S alleles at the two loci were enumerated. For three-
locus interactions, the number of individuals carrying the BY/BY/BY, BY/BY/3S,
BY/3S/BY, 3S/BY/BY, BY/3S/3S, 3S/BY/3S, 3S/3S/BY, and 3S/3S/3S alleles at the
three loci were counted. We then ran chi-square tests to identify individual loci or
combinations of loci that show different frequencies across the eight backgrounds,
using Bonferroni corrections to account for multiple testing. After filtering out
genetic effects that involve loci or combinations of loci with biased frequencies, we
repeated our main analyses to ensure that our results were robust to allele frequency
differences (Supplementary Figs. 5 and 6; Supplementary Table 11 and 12; Sup-
plementary Note 3).

Data availability
Genotype and phenotype data, as well as information on all identified loci, are provided
in the Supplementary materials.
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