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Serotonin receptor type 1B 
constitutes a therapeutic  
target for MDS and CMML
Antònia Banús-Mulet1,2, Amaia Etxabe1,2, Josep Maria Cornet-Masana1,3,4, 
Miguel Ángel Torrente1,4,5, María Carmen Lara-Castillo1,6, Laura Palomo1, 
Meritxell Nomdedeu1,5, Marina Díaz-Beyá1,4,5,7, Francesc Solé1, Benet Nomdedeu4,5, 
Jordi Esteve1,4,5,7 & Ruth M. Risueño   1

Myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) are chronic myeloid 
clonal neoplasms. To date, the only potentially curative therapy for these disorders remains allogeneic 
hematopoietic progenitor cell transplantation (HCT), although patient eligibility is limited due to high 
morbimortality associated with this procedure coupled with advanced age of most patients. Dopamine 
receptors (DRs) and serotonin receptors type 1 (HTR1s) were identified as cancer stem cell therapeutic 
targets in acute myeloid leukemia. Given their close pathophysiologic relationship, expression of HTR1s 
and DRs was interrogated in MDS and CMML. Both receptors were differentially expressed in patient 
samples compared to healthy donors. Treatment with HTR1B antagonists reduced cell viability. HTR1 
antagonists showed a synergistic cytotoxic effect with currently approved hypomethylating agents in 
AML cells. Our results suggest that HTR1B constitutes a novel therapeutic target for MDS and CMML. 
Due to its druggability, the clinical development of new regimens based on this target is promising.

Myelodysplastic syndromes (MDS) encompass a diverse group of clonal disorders of hematopoietic immature 
cells characterized by ineffective hematopoiesis. The incidence of MDS in Europe is 1.5/100000 and 5-year sur-
vival rate after diagnosis is below 30%1. Treatment regimen for MDS mainly depends, beyond patient-related 
variables, on disease risk stratification, transfusion need and cytogenetic profile2. Recently, new treatments such 
as hypomethylating agents (HMA) and lenalidomide have been approved, with a limited benefit to patients’ 
outcome3.

Chronic myelomonocytic leukemia (CMML) is a myeloid neoplasm with clinical and hematologic features 
that overlap MDS and myeloproliferative neoplasms (MPN)4. Epidemiologically, the median age at diagnosis is 
approximately 65 years5,6 and the disease incidence is approximately 0.3–0.5/1000001,7,8. Treatment regimens for 
CMML include supportive care, HMA, hydroxyurea, AML-type chemotherapy, and, in selected patients, HCT9. 
The overall median survival is inferior to 3 years, with a small improvement in recent years10–14. Consequently, 
there is an unmet need for treatment of these myeloid neoplasms.

The pathogenesis of MDS and CMML is complex and not fully understood. The development of these dis-
eases is a multistep process comprising a severe disturbance within the hematopoietic cell compartment and 
bone marrow (BM) microenvironment, and the complex interactions between both compartments. Interestingly, 
approximately one third of MDS and CMML patients develop overt AML during the course of the disease15. 
Mechanisms of disease progression and transformation from a chronic MDS or CMML phase to a more aggres-
sive, usually therapy-resistant AML phase are still poorly understood and the prediction of the transformation is 
not yet clearly established16. On the other hand, the high transformation potential to AML observed in MDS and 
CMML patients highlights the biological relationship among these hematologic myeloid neoplasms.

Despite the many efforts made by the scientific community to identify new therapeutic targets for MDS and 
CMML with a clinical significant impact, currently available treatment results in a limited benefit, with HCT 
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arising as the only long-term potential curative therapy9,17. Nonetheless, the advanced age and comorbidities of 
most MDS patients makes HCT an inappropriate option for the majority of patients. Numerous clinical trials 
testing new agents for MDS and CMML are currently on-going; many of these trials consist of the combination 
of HMA, the backbone treatment in high-risk MDS, with a novel agent, but, to date, only discrete positive results 
have been reported18–22. Moreover, secondary AML, following MDS and CMML, displays aggressive behavior and 
poor prognosis. Indeed, the overall survival after transformation is inferior to 6 months16. Thus, new therapeutic 
approaches are desperately required for improved management of myeloid neoplasms.

In the last years, classic neurotransmitter (monoamine) receptors such as dopamine and serotonin recep-
tors have attracted an increasing attention to investigators in oncology23–29. Both dopamine receptors (DRs) 
and serotonin receptors type 1 (HTR1s) are differentially expressed on cancer stem cells, including leukemia 
stem cells (LSCs), as compared to their normal counterpart; and their inhibition induces differentiation and 
subsequent cell death of LSCs from primary AML samples in both ex vivo and in vivo models23,24. Interestingly, 
DRs’ and HTR1s’ signaling disruption also severely affects cell viability of the bulk AML cell population23,24,30. 
Both DRs and HTR1s are G-protein coupled receptors (GPCRs) constituted by seven transmembrane domains. 
Upon ligand binding, GPCRs suffer a conformation change that result in the activation of G proteins. HTR1 and 
DRD2/3/4 are Gαi-coupled GPCRs; thus, activation of the receptor inhibits the production of cAMP by adenylate 
cyclase. Activation of DRD1/5 may either transduce activation signaling through Gαo or Gαs. Thus, whereas Gαs 
stimulates cAMP production, Gαo inhibits its production; the activation of either Gα protein depends on the 
cellular context.

Here, we demonstrate that HTR1s and DRD3/5 are differentially expressed on MDS and CMML cells, as 
compared to their normal hematopoietic counterparts. HTR1, especially HTR1B, behaves as a promising thera-
peutic target for both MDS and CMML, similarly to AML. Inhibition of HTR1B reduces cell viability and displays 
an interesting synergistic anti-neoplastic effect when combined with currently approved HMAs (azaciditine or 
decitabine), at least in AML cells. On the other hand, DR inhibition results in a reduction in cell viability of AML 
and CMML cells but not MDS samples. Interestingly, the anti-leukemic effect observed with HTR1 antagonists 
is enhanced in the presence of DR antagonists, suggesting the existence of a cross-talk between both types of 
receptors, at least in myeloid neoplasms. Our results support a further clinical development of novel treatment 
strategies based on HTR1B antagonists in combination with DRs’ antagonists for myeloid neoplasms.

Results
HTR1s and DRs are differentially expressed in MDS and CMML patient cells, similarly to AML.  
Due to the key role that HTR1s and DRs play in AML23,24 and the close physiopathological relationship between 
AML and MDS, the expression of HTR1s and DRs was screened by flow cytometry in BM samples from MDS 
patients. Similar to AML, MDS patient samples highly expressed HTR1A (Fig. 1A) and HTR1B (Fig. 1B) on the 
cell surface. The expression of HTR1A and HTR1B on MDS BM cells was 3.4- and 3.7-fold higher compared to 
healthy donor samples (HD), respectively. Interestingly, expression levels of HTR1A and HTR1B were compara-
ble in MDS and AML patients.

Similarly, DRD3 and DRD5 were highly expressed in MDS and AML patient samples as compared to HD 
blood cells (Fig. 1C,D). The expression of both DRs was equivalent, displaying a 3.5-fold increase with respect 
to HD cells. Although all samples expressed DRs on the surface, only DRs type 3 (DRD3) and 5 (DRD5) were 
significantly higher expressed than HD blood cells (Figure S1). Moreover, DRD3 and DRD5 expression have 
been comprehensively studied in the context of AML23. Consequently, DRD3 and DRD5 were chosen for further 
validation as biomarkers for MDS cells.

MDS is driven by a complex combination of genetic and epigenetic changes that result in a wide heterogeneity 
in both clinical phenotype and disease outcome. According to the World Health Organization (WHO) classifi-
cation4, MDS is a clonal disease characterized by morphological dysplasia, ineffective hematopoiesis leading to 
cytopenias and risk of transformation to AML4. MDS is subclassified into clinically relevant groups mainly based 
on morphological and cytogenetic criteria4. Thus, we next interrogated the expression of HTR1A/B and DRD3/
D5 within the most frequent MDS subtypes (Figure S2). As shown in Fig. 2A–D, the expression of HTR1A, 
HTR1B, DRD3 and DRD5 was significantly higher in all MDS subgroups as compared to HD samples, with the 
exception of MDS-RS (MDS with ring sideroblasts) with multilineage dysplasia (MDS-RS-MLD), which showed 
only an increase in DRD3 expression. Indeed, the frequency of positive cells for HTR1s and DRs was above 
50% in MDS-RS with single lineage dysplasia (MDS-RS-SLD); MDS with isolated del(5q) (MDS-5q); MDS with 
multilineage dysplasia (MDS-MLD); and MDS with excess blasts type 1 (MDS-EB-1) and type 2 (MDS-EB-2) 
(Fig. 2A–D) (Table 1). Notably, MDS-RS-MLD samples expressed HTR1s and DRs similarly to HD samples. 
Due to the cell subpopulation heterogeneity within MDS samples, the expression of HTR1A/B and DRD3/5 
was also interrogated in the CD34-positive cell population, which corresponds to the most primitive fraction. 
Expression levels of each receptor were similar in the bulk population and CD34+ fraction (Figure S3). Indeed, 
CD34-positive HD cells lacked the expression of HTR1A/B (Figure S3) and DRD3/523.

The natural history of MDS varies considerably among individuals, which correlates with the mosaic of sub-
types of MDS3. In order to better discriminate prognostic risk for assessing clinical outcomes in MDS, IPSS-R was 
developed based on five disease factors (percentage of blasts, cytogenetics, hemoglobin concentration, absolute 
neutrophil and platelet count) that categorized MDS patients into five risk categories: very low, low, intermediate, 
high, and very high31. Therefore, we further analyzed if the expression of HTR1A, HTR1B, DRD3 and DRD5 cor-
related with the diverse IPSS-R prognostic categories. As shown in Fig. 2E–H, the expression of HTR1A, HTR1B, 
DRD3 and DRD5 was independent of prognostic-risk, since no significant correlation was observed between the 
surface expression of these receptors and any of the IPSS-R prognostic groups.
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Inhibition of HTR1B in MDS cells induces cytotoxicity.  HTR1s have been recently described as ther-
apeutic targets in AML24. Indeed, inhibition of HTR1A and HTR1B leads to a reduction in cell viability coupled 
with the induction of the differentiation program of AML cells both ex vivo and in vivo24. Since MDS samples 
differentially expressed HTR1A and HTR1B similarly to AML (Figs 1 and 2), their sensitivity to HTR1A/B antag-
onists was evaluated ex vivo. MDS samples corresponding to MDS-RS-MLD (violet), MDS-RS-SLD (purple), 
MDS-5Q (red), MDS-MLD (orange) and MDS-EB1/2 (blue) were treated for 72 h with apomorphine (a promis-
cuous dual HTR1/2 antagonist and a DR partial agonist), methiothepin (a broad-spectrum HTR antagonist), 
SB-224289 (a highly selective HTR1B antagonist), and NAN-190 (a highly selective HTR1A antagonist), and 
subsequent cell viability and the differentiation stage were measured (Fig. 3B). A wide range of cell response to 
the different agents assayed was observed, in accordance with the intrinsic heterogeneity within MDS disease 
behavior among patients. An overall statistically significant but clinically irrelevant reduction in cell viability was 
observed upon apomorphine and SB-224289 treatment (Fig. 3B); cellular responses to methiothepin were heter-
ogeneous, probably due to a lower affinity. On the contrary, NAN-190, the selective HTR1A antagonist, spared 
MDS samples in terms of cell survival (Fig. 3B). When the analysis was focused on MDS-EB-1/2 samples (blue), a 
higher sensitivity to HTR1 antagonists was observed (Fig. 3C) (cell viability mean for apomorphine: 80.53 ± 7.243 
in MDS vs. 68.48 ± 11.34 in MDS-EB-1/2; methiothepin: 99.61 ± 4.799 in MDS vs. 89.88 ± 5.394 in MDS-EB-1/2; 
SB-224289: 78.26 ± 8.749 in MDS vs. 66.36 ± 6.11 in MDS-EB-1/2). Both broad HTR1/2 antagonists, apomor-
phine and methiothepin, triggered cell death in MDS-EB1/2 samples, whereas the difference observed in methi-
othepin was not statistically significant. Again, the highly specific HTR1B antagonist SB-224289 induced the 
greatest reduction in cell viability in MDS-EB samples. Similar to AML24, treatment with apomorphine and 
SB-224289 induced the expression of the differentiation-associated marker CD11b (Figs 3D–E and S4A,B). 
Interestingly, those MDS subgroups that displayed the highest resistance to HTR1 antagonists (MDS-5Q and 
MDS-RS-MLD) showed the highest differentiation induction upon treatment (CD11b expression in MDS-5Q: 
143.70 ± 20.22; MDS-RS-SLD: 79.35 ± 2.774; MDS-MLD: 138.10 ± 19.31; MDS-RS-MLD: 186.40 ± 43.79; 
MDS-EB-1/2: 116.10 ± 17.85). Therefore, inhibition of HTR1 affected cell viability and differentiation status in 
MDS cells.

Similarly to HTR1 antagonism24, DR antagonism in AML produces a reduction in cell viability coupled 
with the initiation of the differentiation program23. We therefore interrogated the cellular effect of the treatment 
with DR antagonists such as SCH-23390 (SC90) (DRD1 and DRD5 antagonists), UH-232 (DRD2 and DRD3 
antagonist), chlorpromazine (CPZ) (pan-DR antagonist), and thioridazine (Thio) (pan-DR antagonist) in MDS. 

Figure 1.  HTR1A/B and DRD3/5 are expressed in AML and MDS. (A) HTR1A (HD n = 6; MDS n = 54; AML 
n = 14), (B) HTR1B (HD n = 6; MDS n = 55; AML n = 14), (C) DRD3 (HD n = 4; MDS n = 47; AML n = 14), 
and (D) DRD5 (HD n = 4; MDS n = 47; AML n = 14) surface expression measured by flow cytometry in blood 
samples from healthy donors (HD), MDS samples and AML samples. Frequency of positive cells for each 
marker is graphed as a box-and-whisker (turkey) plot, the statistical median is indicated as a horizontal line, 
error bars correspond to SEM and boxes indicated the lowest and upper quartile. **p < 0.01; ***p < 0.001; 
****p < 0.0001.



www.nature.com/scientificreports/

4SCIenTIFIC REporTS |  (2018) 8:13883  | DOI:10.1038/s41598-018-32306-4

Figure 2.  All MDS subtypes differentially express DRD3/5 and HTR1A/B, except MDS-RS-MLD. MDS patient 
samples tested for (A) HTR1A, (B) HTR1B, (C) DRD3 and (D) DRD5 surface expression by flow cytometry. 
Each subtype of MDS is represented (Healthy donor (HD), grey; RS-MLD, violet; RS-SLD, purple; 5q, red; 
MLD, orange; EB-1, light blue; EB-2, dark blue). MDS patient samples were classified according to IPSS-R 
(Very low, low, intermediate, high, very high) and the surface expression of (E) HTR1A, (F) HTR1B, (G) 
DRD3 and (H) DRD5 is represented. Frequency of positive cells is graphed. Each symbol type corresponds to a 
patient sample, and each symbol corresponds to an experimental point. Grand mean values are indicated with 
horizontal lines. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Surprisingly, and in contrast to AML23, none of the DR antagonists was cytotoxic for MDS samples (Fig. 3F), even 
though DRs were overexpressed on these patient cells. Only thioridazine at a 50 μM concentration produced a 
therapeutic significant induction of cell death (Figure S4C); however, at this concentration, thioridazine has been 
proven toxic to normal cells23. In contrast to HTR1B antagonists, DR antagonists showed neither cytotoxicity nor 
induction of differentiation in any MDS subgroup (Figure S4B,C).

Recently, HMAs such as azaciditine and decitabine have shown a clinical benefit for high-risk MDS patients, 
becoming a major advance in the treatment of these patients. However, 50% of MDS patients are non-responders 
and the majority of responders relapse within 2 years32. As both agents act on proliferative cells (S-phase) and 
treatment with HTR and DR antagonists induces cell cycle entry23,24, a potential synergistic cytotoxic effect of the 
combination of HTR1 antagonists and HMAs was investigated. To date, only 2 MDS cell lines have been gener-
ated: MDS9233 and its derivative MDS-L34,35. MDS-L successfully reproduces the disease in xenograft models34. 
However, the expression of DRs and HTR1s was absent in these cell lines, in contrast to primary MDS patient 
samples (Figure S5). Therefore, the pharmacologic interaction between HTRs antagonists and HMAs was ana-
lyzed in AML cells that express DRs and HTRs similarly to MDS (Fig. 1), which express DRs and HTR1s simi-
larly to MDS primary samples. The presence of apomorphine synergistically interacted with azaciditine inducing 
cytotoxicity (Fig. 4A,B). Indeed, 100 nM azaciditine in the presence of 5 μM apomorphine induced equivalent cell 
death level as 1 μM azaciditine (Fig. 4A). Similarly, decitabine treatment also showed synergistic anti-leukemic 
effect in combination with apomorphine (Fig. 4C,D). Moreover, synergism between drugs could be demonstrated 
based on both combination index (CI)36 (Fig. 4B,D) and Excess Over Bliss additivism (EOBA)37 (Figure S6A,B). 
Indeed, equivalent results were obtained with methiothepin in combination with HMAs (Figure S6C,D). Next, 
interaction between different DR antagonists with the HMAs was evaluated similarly to HTR1 antagonists. In 

Mean Lower-Upper 95% CI SEM pvalue

RS-MLD

HTR-1A 48,17 20,62–75,71 11,65 0,0954

HTR-1B 45,48 12,91–78,05 13,31 0,1224

DRD3 49,94 23,41–76,46 10,84 0,0772

DRD5 50,03 19,71–80,36 12,39 0,1126

RS-SLD

HTR-1A 89,15 44,68–133,6 3,5 0,0017

HTR-1B 89,83 53,93–125,7 2,825 0,0003

DRD3 87,4 32,13–142,7 4,35 0,0032

DRD5 91,55 51,53–131,6 3,15 0,0027

5Q-

HTR-1A 63,77 46,22−81,31 7,754 0,0023

HTR-1B 65,4 48,86–81,93 7,309 0,0006

DRD3 55,97 39,64–74,29 7,327 0,0084

DRD5 66,51 54,09–78,94 5,255 0,0004

MLD

HTR-1A 69,24 57,22–81,26 5,794 0,0004

HTR-1B 68,82 56,94–80,69 5,712 0,0002

DRD3 63,96 44,22–78,69 6,951 0,0072

DRD5 68,33 53,49–83,18 7,001 0,0041

EB-1

HTR-1A 76,64 55,31–97,97 9,02 0,0006

HTR-1B 73,25 49,89–96,61 9,546 0,0007

DRD3 52,25 18,57–85,93 13,1 0,0904

DRD5 61,58 32,17–90,98 12,02 0,0348

EB-2

HTR-1A 63,25 33,13–93,36 12,31 0,164

HTR-1B 66,99 35,18–91,79 13 0,0092

DRD3 62,26 28,23–96,29 13,24 0,038

DRD5 67,74 29,59–105,9 14,84 0,0367

Healthy donors

HTR-1A 21,38 3,708–39,04 6,873

HTR-1B 20,03 6,961–33,1 5,085

DRD3 18,98 −3,183–41,15 6,965

DRD5 19,14 −3,803–42,08 7,209

Table 1.  DR and HTR expression in MDS samples. Frequency of positive cells (mean value) is indicated. CI: 
confidence interval. SEM: Standard error of the mean.
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concordance to the cytotoxicity data observed with the use of DR antagonists alone, the anti-neoplastic effect of 
azaciditine (Fig. 4E,F) and decitabine (Fig. 4G,H) was not potentiated in the presence of the DR antagonists thior-
idazine (Thio) and SCH-224289. Taken together, HTR1 constitutes a potential therapeutic target in combination 
with currently approved HMAs in MDS.

CMML cells are sensitive to both HTR1B and DRs’ antagonists.  CMML is a clonal hematopoietic stem  
cell disorder, characterized by overlapping features between MDS and myeloproliferative neoplasms, with an 
inherent tendency to transform to AML38. Based on these characteristics, the expression of HTR1 and DR was 
also analyzed in CMML patient samples. Similar to MDS, CMML samples differentially expressed HTR1A 
(Fig. 5A), HTR1B (Fig. 5B), DRD3 (Fig. 5C), and DRD5 subtypes (Fig. 5D). Next, sensitivity to HTR1 antago-
nists’ treatment was assayed in similar conditions as described for MDS samples. In concordance with the expres-
sion profile, apomorphine, methiothepin, and SB-224289 reduced cell viability at 10 μM (Fig. 5E). In contrast to 
MDS, CMML samples were also sensitive to treatment with DR antagonists (such as CPZ, UH-232, SCH-23390 
and Thio) (Fig. 5F). Interestingly, the inhibition of HTR1B resulted in the reduction of the clonogenic capacity of 
CMML samples (Fig. 5G–H). These results suggest that HTR1B and DRs may also act as a therapeutic target for 
CMML analogously to AML.

Simultaneous inhibition of HTR1 and DR enhances the cytotoxic effect.  Oligomerization is a gen-
eral characteristic of GPCRs, and homo- and heterodimerizations are found in DRs and HTR1s39. Actually, DRs/
HTR1s complexes have been described40. The HTR and DR expression patterns observed in MDS samples were 
comparable (Figs 1 and 2). Indeed, HTR1A, HTR1B, DRD3 and DRD5 were expressed in each sample at the same 
level in both MDS and CMML (Fig. 6A). The cytotoxic effect observed upon treatment with HTR1 antagonists 
and DR antagonists was potentiated between 20–50% in co-treatment (Fig. 6B) in AML cell lines; thus, HTR1 and 
DR antagonists presented a synergistic anti-leukemic effect. Therefore, HTR1s and DRs seem to cooperate in the 
survival and/or proliferation of leukemic cells.

Figure 3.  Treatment with HTR1 antagonists reduces MDS cell viability. (A) MDS patient samples used in 
cytotoxic experiments classified by subtypes. (B) MDS patient samples or (C) specifically MDS-EB-1/2 samples 
were treated with 10 µM of subtype specific-HTR antagonists (apomorphine –apo-, HTR1/2; methiothepin 
–methio-, HTR1/2; NAN190 –NAN-, HTR1A; SB-224289 –SB9–, HTR1B) for 72 h and cell viability was 
measured by 7-AAD exclusion by flow cytometry. Normalized live cell counts against vehicle-treated samples 
are represented. (D) MDS patient samples were treated with 10 µM apomorphine for 72 h and the expression of 
the granulocytic associated-differentiation surface marker CD11b was measured by flow cytometry. Normalized 
frequency of positive cells refer to vehicle control-treated samples is represented. (E) CD11b surface expression 
upon treatment with 10 μM apomorphine is shown. (F) MDS patient samples were treated with 10 µM of 
subtype specific-DR antagonists (SCH-23390 –SC90–, DRD1/5; UH-232 –H232–; DRD2/3; Chlorpromazine 
–CPZ–; pan-DR, Thioridazine –Thio–, pan-DR) for 72 h and cell viability was measured by 7-AAD exclusion 
by flow cytometry. Each symbol type corresponds to a patient sample, and each symbol corresponds to an 
experimental point. Grand mean values are indicated with horizontal lines. *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001.
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Figure 4.  HTR and DR antagonist shown synergism with HMAs. MonoMac-1 AML cells were treated for 72 h 
with apomorphine –apo– (5 and 10 µM) and azaciditine –aza– (100, 200 and 1000 nM). (A) Cell viability was 
measured by 7-AAD exclusion by flow cytometry. (B) Synergism between drugs was evaluated based on the 
combination index method (CI). MonoMac-1 AML cells were treated for 72 h with apomorphine –apo–  
(5 and 10 µM) and decitabine –deci– (20, 40 and 200 nM). (C) Cell viability was measured by 7-AAD exclusion 
by flow cytometry. (D) Synergism between drugs was evaluated based on the combination index method (CI). 
(E) MonoMac-1 AML cells were treated for 72 h with thioridazine –thio– or SCH-23390 –SC90– (2, 5 and 
10 µM) and azaciditine –aza– (100, 200 and 1000 nM). Cell viability was measured by 7-AAD exclusion by 
flow cytometry. (F) Synergism between drugs was evaluated based on the combination index method (CI). 
MonoMac-1 AML cells were treated for 72 h with thioridazine –thio– or SCH-23390 –SC90– (2, 5 and 10 µM) 
and decitabine –deci– (20, 40 and 200 nM). (G) Cell viability was measured by 7-AAD exclusion by flow 
cytometry. (H) Synergism between drugs was evaluated based on the combination index method (CI). Bars 
represent mean values of triplicates. Error bars represent range.
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Discussion
The overexpression of HTR1 and DRs in MDS and CMML, described in this study, was also recently described 
in AML patients23,24. Regardless of disease subtype, these biomarkers arose as potential therapeutic targets in 
both disorders. Indeed, HTR1B antagonists induced cytotoxicity and differentiation of MDS and CMML cells; 
whereas DR antagonists showed an antiproliferative effect in CMML, in contrast to MDS cells. Interestingly, 
HTR1 antagonists displayed a synergistic effect with HMAs, which currently constitute the essential treatment 
for high-risk MDS patients; although due to technically difficulties, the synergist effect was studied in AML cells. 
The in vitro activity observed with these agents warrant their translation to clinical trials, given the incurability of 
these diseases with currently approved therapies and, therefore, the urgent need of new therapeutic strategies for 
this challenging group of patients.

HTR1B and DR3/5 receptors were consistently upregulated in a wide series of MDS patients diagnosed with 
different MDS subtypes, similar to previous description in AML patients23,24, and this finding was also observed 

Figure 5.  DRs and HTR1s are differentially express on CMML samples. CMML patient samples and healthy 
blood cells (HD) were tested for (A) HTR1A, (B) HTR1B, (C) DRD3 and (D) DRD5 surface expression by 
flow cytometry. Frequency of positive cells is represented. Each symbol type corresponds to a CMML patient 
samples, each symbol corresponds to an experimental point. Grand mean values are shown as a horizontal line. 
CMML patient samples were treated for 72 h with 10 µM of (E) subtype specific-HTR antagonists (apomorphine 
–apo–, HTR1/2; methiothepin –methio–, HTR1/2; NAN190 –NAN–, HTR1A; SB-224289 –SB9–, HTR1B) 
and 10 μM of (F) subtype specific-DR antagonists (SCH-23390 –SC90-, DRD1/5; UH-232 –H232-, DRD2/3; 
Chlorpromazine –CPZ-, pan-DR; Thioridazine –Thio-, pan-DR) and cell viability was measured by 7-AAD 
exclusion by flow cytometry. Data is normalized against vehicle-treated control sample. CMML n = 4 in 
triplicates. (G) CMML patient sample were plated in methylcellulose and the number of CFUs refer to control 
is represented. Normalized data refer to control are represented as mean ± range. CMML n = 2 in duplicates. 
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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among CMML specimens. Moreover, given the profound effect of HTR1B inhibition on cell viability and differen-
tiation, the distinctive higher expression of these receptors in comparison to normal hematopoietic cells supports 
the key role of HTR1B signalling in the pathogenesis of these myeloid diseases. The lack of clinical correlation 
with HTR1B and/or DR expression across patient samples imply that these signaling pathways might not be 
involved in mechanisms governing disease progression and/or AML transformation.

The antineoplastic activity observed with different types of HTR antagonists identified HTR1B as the key 
target for further exploring for clinical purposes, either using a wide-spectrum agent as apomorphine or a more 
selective HTR1B antagonist. Of note, reduction of cell viability parallel induction of differentiation, supporting 
the rationale of differentiating therapy in MDS patients41.

Although AML, MDS and CMML are myeloid neoplasms that share common features such as an impaired 
terminal differentiation of mature cells, the intimate pathophysiology responsible and disease phenotype is 
remarkably diverse. AML is characterized by a marked block in differentiation coupled with an increased prolif-
eration kinetics of leukemic progenitors that results in the accumulation of blasts in BM and peripheral blood. On 
the contrary, in MDS, the lack of terminal normal mature cells is mainly attributed to a failure of differentiation. 
CMML is a highly diverse entity, which combines dysplastic features resembling MDS with proliferative traits, 
especially evident in some patients with hyperleukocytosis. These discrepancies are probably due to differences 
in cell cycle status, cell survival and cell proliferation rate42. Accordingly, the degree of cell viability reduction 
of AML and CMML cells upon treatment with HTR1 and DR antagonists was similar. In contrast, MDS cells 
were more sensitive to HTR1 antagonists, as compared to DR antagonists, even though the expression level of 
these biomarkers was equivalent across samples. These results suggest that DRs may be implicated mainly in 
the block of differentiation observed in CMML and AML; whereas HTR1 may play a critical role in survival of 
myeloid-transformed blasts. Alternately, formation of HTR1/DR oligomers may constitute a fine-tuning signaling 
regulation that mediates leukemogenesis.

Due to the characteristic intraclonal and interpatient heterogeneity of myeloid neoplasms, monotherapy 
regimens are unlikely to be capable of a durable, clinically meaningful disease control. Therefore, combination 
therapies that may target the different neoplastic subpopulation are highly desirable. DR and HTR1 antagonists 
not only act synergically as anti-leukemic agents, but also positively interact with currently approved HMAs 
(azaciditine and decitabine), the current cornerstone in MDS treatment, fully justify the design of clinical trials 
exploring combination of these diverse drugs. Interestingly, the concentrations used are within the safety range, 
as previously published23,24. Moreover, dopamine and serotonin blockage are widely used among patients with 

Figure 6.  DR3/5 and HTR1A/B are co-expressed in MDS and CMML cells. (A) Frequency of HTR1A- vs. 
HTR1B- (upper left), DRD3 vs. DRD5 (upper right), HTR1A vs. DRD5 (lower left) and HTR1B vs. DRD5 
(lower right)-positive cells are represented. The coefficient of determination measured as R2 is specified. The 
regression line is shown as a solid line; the confidence interval is represented as a dotted line. (B) HL-60 AML 
cell line was treated for 72 h with apomorphine (5 µM and 10 µM) and methiothepin (5 µM and 10 µM), in 
combination with thioridazine at 10 µM. Cell viability was measured by 7-AAD exclusion by flow cytometry 
(left panel). The synergistic effect in combination treatment measured was evaluated based on EOBA (Excess 
Over Bliss Additivism) (right panel). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Sample 
code Age Gender WHO 2016 Karyotype IPSS-R

% Blasts 
BM

#1 76 M CMML-1 46,XY[20] N/A 1

#5 83 M MDS-EB-1 47,XY, +8[3]/46,XY[28] High 7

#6 46 F RS-MLD 46,XX[20] Low 2

#9 70 F RS-MLD 46,XX[20] Int 4

#10 74 M MDS-EB-2 45,X, −Y,del(1)(p13p32),der(11)t(Y;11)(q11;q13)[8]/46,XY[12] Very high 12

#12 73 F MDS with isolated del(5q) 46,XX,del(5)(q22q33)[15]/46,XX[5] Low 2

#14 72 M CMML-0 46,XY,del(5)(q31q33)[6] N/A 0

#15 51 M MLD N/A (normal FISH 5p15.2, 5q31, 7q31 & 20q12) N/A 2

#16 59 F CMML-0 46,XX[20] N/A 2

#17 79 M CMML-2 46,XX[20] N/A 13

#20 52 M CMML-1 46,XY[20] N/A 4

#23 71 F MDS with isolated del(5q) 46 XX, −11, +mar [20] Int 3

#24 29 F MDS isolated del(5q) 46,XX,del(5)(q12q32)[11]/46,XX[9] N/A N/A

#26 81 F MLD 46,XX[10] Low 0

#27 59 F MDS with isolated del(5q) 46,XX,del(5)(q13q33)[4]/46,XX[15] Low 2

#28 65 M RS-MLD 46,XY[20] Very low 2

#29 86 F MLD 47,XX, +8[10]/48,idem, +mar[2]/46,XX[7] High 3

#30 65 M RS-MLD 46,XY[20] Very low 2

#31 71 M MDS with isolated del(5q) 46,XY,del(5)(q14q34)[8]/46,XY[22] Low 7

#32 78 M MDS with isolated del(5q) 46,XY,del(5)(q13q33)[12]/46,XY[8] Very low 2

#33 77 M MDS-EBS2 Complex Very high >5%

#34 67 M MDS-MLD 46,XY[20] Low 4

#35 78 F MDS-RS 46,XX[20] Very low 0

#36 60 M CMML-1 N/A N/A 0

#37 60 F RS-MLD 46,XX[20] Very low 1

#38 91 M MDS-EB-1 45,X, −Y[14]/46,XY[6] Int 7

#39 70 F CMML-1 46,XX[20] N/A 1

#40 67 M MDS-EB-2 43,XY, −5,der(13;14)(q10;q10),add(15)(p10),add(16)(q24), −17,add(17)(p13), 
−18, +mar[cp14] Very high 15

#41 71 M CMML-0 46,XX[20] N/A 0

#43 83 M MDS-MLD 46,XY[20] Very low 1

#49 67 F MDS-EB1 26/08/2015: 46,XX,del(5)(q11q31)[15] Low 8

#50 75 M MDS-MLD 47,XY, +21[5]/46,XY[15 Low 2,5

#52 78 F MDS-MLD 46,XX,del(5)(q22q35),del(11)(q13.1q23.3)[17]/46,XX[3] Low 3,5

#53 56 M MDS-MLD 46,XY[20] Low 2

#57 79 M MDS-EB-1 46,XY[21] Int 5

#60 80 F MDS with isolated del(5q) 46,XX,del(5)(q13)[11]/46,XX[9] Low 4

#68 94 F MDS with isolated del(5q) 46,XX,del(5)(q13q33)[9]/46,XX[24] Very low 1

#73 76 M CMML-0 46,XY[20] Very low 1,5

#74 80 M MDS-MLD 46,XY[20] Low 0

#76 83 F MDS-MLD del(5q) Low <5

#78 73 F MDS-MLD 46,XX,add(9)(p24),16qh+c[7]/46,XX,16qh+c[7] Low <2

#80 67 F CMML-2 46,XX[20] Int 13

#93 79 F RS-SLD with thrombocytosis N/A Low 1

#95 66 M CMML-0 46,XY,t(4;16)(q21;q24)[3]/47,sl, +8[17] N/A 0

#98 63 F MDS with isolated del(5q) del(5q) add(7) Low 1

#103 70 M CMML-1 46,XY[20] N/A N/A

#110 80 M CMML-1 46,XY[20] N/A N/A

#113 56 M CMML-1 47,XY, +8[14]/46,XY[3] N/A N/A

#119 53 F MDS-EB1 46,XX,del(5)(q14q33)[7]/46,XX [13] Int 7,8

#122 N/A F CMML-1 47,XX, +21[13] N/A N/A

#131 68 F MDS-MLD 46,XX[20] Very low 0

#132 72 M MDS-MLD 46,XY[20] Very low <2

#134 45 M MDS-MLD 46,XY[20] Low 1

#138 68 F MDS-MLD 46,XX,del(5)(q13q33),del(11)(q13q23) Low 1

#140 69 F MDS-RS-SLD (−7) N/A N/A

Continued
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Parkinson’s disease without remarkable side effects43, and this clinical experience could facilitate their reposition-
ing as new agents for myeloid neoplasms44. Intriguingly, patients with Parkinson’s disease have been reported to 
present a lower incidence of hematological cancers45,46; although this epidemiological observation and putative 
casualty with generalized, long-standing use of DR and HTR antagonists should be prospectively addressed.

In conclusion, the differential expression of HTR1B and DRs in MDS and CMML cells, together with the 
observed effect on cell viability and differentiation induction upon HTR1B and DR inhibition in patient speci-
mens identify these monoamine receptors as potential therapeutic targets in myeloid neoplasms. Moreover, the 
well proven clinical safety of DR and HTR antagonists and the synergic potential in combination with HMAs 
justify their rapid translation to clinical experimentation.

Methods
Primary samples.  Primary MDS and CMML samples were obtained from patients diagnosed with MDS 
and CMML at Hospital Clínic of Barcelona (Spain) and Hospital Germans Trias i Pujol (Badalona, Spain). 
Alternatively, MDS and CMML samples were obtained from the Sample collection located at the Hematology 
Laboratory of IJC (ref#C0000886). MDS and CMML diagnosis and classification was based on standard WHO 
criteria4,47. Main MDS/CMML patient’s characteristics are summarized in Tables 2 and S1. Samples were obtained 
from bone marrow and mononuclear cells (MNCs) were isolated by Ficoll density gradient centrifugation (GE). 
All patients provided written informed consent in accordance with the Declaration of Helsinki, and the study was 
approved by the Ethics Committee of Hospital Clínic of Barcelona and Hospital Germans Trias i Pujol; thus, all 
methods were performed in accordance with relevant guidelines and regulations. Healthy donor samples were 
obtained from the Banc de Sang i Teixits of Barcelona (Spain).

AML cell lines and cell cultures.  AML cell lines HL-60 (ACC-3), and MonoMac-1 (ACC-252) were 
obtained from DSMZ. MDS-L34,35 was kindly provided by Dr. Starczynowski (Cincinnati Children’s Hospital 
Medical Centre, OH, USA). AML cell lines were cultured in RPMI medium (Biowest) supplemented with fetal 
bovine serum (FBS, Lonza), 2 mM L-Glutamine (Lonza) and/or 0.1 mM non-essential amino acids (Lonza) 
according to manufacturers’ recommendations. Primary MDS and CMML blasts were cultured in IMDM 
(Biowest) supplemented with 3% heat-inactivated FBS, 2 mM L-Glutamine, 20% BIT 9500 Serum Substitute 
(StemCell Technologies), 5 ng/ml IL3 (Peprotech), 1 mM sodium pyruvate and 5 × 10−5 M β-mercaptoethanol 
(Sigma-Aldrich,) and 0.1 mM non-essential amino acids (Lonza).

Drugs and antibodies.  All drugs were resuspended in H2O or DMSO (Sigma-Aldrich) according to manu-
facturer’s instructions and were stored at −80 °C at 10 mM (Table S2). Antibody information is found in Table S3.

Surface phenotype.  Ficolled-primary samples were stained for DRD1, DRD2, DRD3, DRD4, DRD5, 
HTR1A or HTR1B on the surface, using the antibodies listed in Table S3, simultaneously with APC-conjugated 
anti-human CD45 (clone HI30) (BD Bioscience) and the live-dead discriminator dye 7-AAD (eBioscience). Cells 
were acquired in a FACSCanto II cytometer (BD). In patient samples, the analysis was performed within the live 

Sample 
code Age Gender WHO 2016 Karyotype IPSS-R

% Blasts 
BM

#143 69 M MDS/MPN (MDS/MPN-RS-T) 46,XY[13] Low <2

#145 83 M MLD 45,X, −Y[18]/46,XY[2] Low 3

#149 64 F MDS with isolated del(5q) 46,XX del(5)(q15q33)[20] Low 1,6

#151 53 F MDS-EB2 N/A High 12

#154 79 F MDS-EB-1 46,XX[20] Int 6

#161 69 M CMML-1 46,XY[20] N/A N/A

#162 54 M MDS-EB2 46,XY,t(16;17)(q24;q22) Very high 12

#166 73 M MDS-MLD 46,XY[2] Low 2

#170 58 M MDS-SLD 46,XY,inv(2)(p23q13),del(5)(q13q32) Low 1

#176 70 F MDS-MLD 46,XX[20] Very low 1

#181 73 F MDS-MLD 46,XX,add(9)(p24),16qh+c[7]/46,XX,16qh+c[7] Low <2

#186 62 M MDS-MLD 45,X,(−Y)[10]/46,XY[1] Very low 1

#187 84 F MDS-MLD 46,XX[14] Very low 2,1

#188 80 M MDS-MLD 46,XY[20] Low 0

#195 72 M MDS-MLD 46,XY[20] Very Low <2

#197 N/A M CMML N/A N/A N/A

#210 59 F MDS with isolated del(5q) 46,XX,del(5)(q22q31–32)[5]/46,XX[15] Low 2

#211 75 F MLD 46,XX, −5, −14, +mar1, +mar2[16]/45,XX,del(5)(q13q33), −6[2]/46,XX[8] High 1

#212 66 M CMML-0 46,XY[20] N/A 4

#213 83 F MDS-EB-1 del(7)(q22q31) Very high 5

#214 30 F MLD 46,XX[20] Vey low 2

Table 2.  Patients’ information. M, male; F, female. Int, intermediate. N/A, not available.
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blast gate (CD45dim − SSClow/int)48,49, whereas HD samples were gated based on CD45pos based on the absent of a 
blast population, using FlowJo software (TriStar).

Cytotoxicity assay.  4 × 104 cells per mL were cultured in 96-well plates in complete medium and all drugs 
were added at the indicated concentration. 72 h after, cell viability was measured by 7-AAD (eBioscience) exclu-
sion and Hoechst33342 (Sigma-Aldrich) positivity staining by flow cytometry, and cell count was obtained by 
volume in a FACSCanto II cytometer (BD). Statistical analysis was calculated in GraphPad (Prism software). 
FlowJo software (TriStar) was used for flow cytometry analysis.

Differentiation assay.  Primary samples were treated at the indicated drug concentration for 72 h. 
PE-conjugated anti-human CD11b (clone ICRF44) (BD Pharmingen) was used as differentiation marker. Samples 
were measured by flow cytometry (FACSCanto II, Becton-Dickinson) and analyzed in FlowJo software (Tristar).

Clonogenicity assay.  50 × 103 primary CMML cells were treated at the indicated concentration for 18 h, 
and cultured in 1 mL of MethoCult H4034 Optimum (StemCell Technologies). Colonies were screened based on 
morphology (monocyte/granulocyte-like cells) and cellularity (clusters of >40 cells) at day 14.

Statistical Analysis.  Unpaired two-tailed t student analysis was completed to identify the statistical signifi-
cance in Figs 2, 4, 5A–D, and 6. Data presented in Figs 1, 2, and 5E–G was analysis using a Mann-Whitney U-test. 
Statistical analysis was performed using the Prism GraphPad software.
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