Skip to main content
. 2018 Sep 11;6:399. doi: 10.3389/fchem.2018.00399

Table 1.

Summary of recent researches on graphene hybrid materials sensor for sensing of fault characteristic gases in oil-immersed equipment.

Gas Hybrid material Temp. (°C) Detection range (μL/L) Conc. (μL/L) Response type Sensor response τresrec (s/s) References
H2 Pd/G RT 1,000 1,000 ΔG/Gair 26% 40/490 Alfano et al., 2017
Pt/G 320 1,000–20,000 10,000 ΔR/Rair 1.6% ~1/0.72 Harley-Trochimczyk et al., 2015
Pd/Ag/G 105 100-5,000 500 ΔR/Rair 9.96% 102/– Sharma and Kim, 2018
MoO3/G RT 0.5–1,000 1,000 Rair/Rgas 20.5 ~10/30 Yang et al., 2017
CuO/rGO/CuO RT 50–1,500 100 ΔR/Rair 4.2% <80/60 Zhang et al., 2017c
Pd/WO3/G RT 1,000–5,0000 1,000 ΔI 12 μA ~17/– Chen et al., 2018
CO rGO RT 10–30 30 ΔR/Rair ~71% <30/– Panda et al., 2016
NiO/G 100 5–100 100 ΔR/Rair ~120% 20/152 Khaleed et al., 2017
CuO/rGO RT 0.25–1,000 1 ΔR/Rair 2.56% 70/160 Zhang et al., 2017a
ZnO/rGO 200 1–1,000 1,000 ΔR/Rair 85.2% 9/10 Ha et al., 2018
GdInO3/rGO 90 20–100 20 ΔR/Rgas 48% 14/15 Balamurugan et al., 2016
Pd/SnO2/rGO RT 50–1,600 1,500 ΔR/Rair 4% 70/80 Shojaee et al., 2018
CO2 rGO RT 100–1,000 1000 ΔR/Rair 1.65% Nemade and Waghuley, 2014b
rGO RT 0–1,500 1,500 ΔR/Rair 71% ~4 min Nemade and Waghuley, 2014a
Sb2O3/G RT 0–50 50 ΔR/Rair ~22% 16/22 Wu et al., 2016
Al2O3/G 125 0–200 100 ΔR/Rair ~8.1% 14/22 Hafiz et al., 2014
Y2O3/G RT 0–35 35 ΔR/Rair 1.08% Nemade and Waghuley, 2013
CH4 PANI/rG RT 10–3,200 100 Rair/Rgas ~3 85/45 Wu et al., 2013
NiO/rGO 260 100–6,000 100 ΔR/Rair ~2.2% 6/16 Zhang et al., 2016
ZnO/rGO 190 100–4,000 1000 ΔR/Rair ~12% ~200 Zhang et al., 2015b
SnO2/rGO 150 1,000–10,000 1000 ΔR/Rair 47.6% 61/330 Navazani et al., 2018
Pd/SnO2/rGO RT 800–16,000 14,000 ΔR/Rair 9.8% 5/7 min Nasresfahani et al., 2017
C2H2 SnO2/rGO 180 0.5–500 50 Rair/Rgas 12.4 54/23 Jin et al., 2016
Ag/ZnO/rGO 150 1–1,000 100 Rair/Rgas 21.2 25/80 Uddin et al., 2015b
Ag/SnO2/rGO 90 5–500 50 ΔR/Rair 15.44 235/160 Jiang et al., 2017

G, graphene; rGO, reduced graphene oxide; PANI, polyaniline; RT, room temperature; ΔI, which is calculated as the current change of gas sensitive response; ΔG = |Gair - Ggas|, where Ggas is the conductance exposure to target gas concentration and Gair is the conductance exposure to air or nitrogen; ΔR = |Rair - Rgas|, where Rgas is the resistance exposure to target gas concentration and Rair is the resistance exposure to air or nitrogen.