Table 1.
Summary of recent researches on graphene hybrid materials sensor for sensing of fault characteristic gases in oil-immersed equipment.
Gas | Hybrid material | Temp. (°C) | Detection range (μL/L) | Conc. (μL/L) | Response type | Sensor response | τres/τrec (s/s) | References |
---|---|---|---|---|---|---|---|---|
H2 | Pd/G | RT | 1,000 | 1,000 | ΔG/Gair | 26% | 40/490 | Alfano et al., 2017 |
Pt/G | 320 | 1,000–20,000 | 10,000 | ΔR/Rair | 1.6% | ~1/0.72 | Harley-Trochimczyk et al., 2015 | |
Pd/Ag/G | 105 | 100-5,000 | 500 | ΔR/Rair | 9.96% | 102/– | Sharma and Kim, 2018 | |
MoO3/G | RT | 0.5–1,000 | 1,000 | Rair/Rgas | 20.5 | ~10/30 | Yang et al., 2017 | |
CuO/rGO/CuO | RT | 50–1,500 | 100 | ΔR/Rair | 4.2% | <80/60 | Zhang et al., 2017c | |
Pd/WO3/G | RT | 1,000–5,0000 | 1,000 | ΔI | 12 μA | ~17/– | Chen et al., 2018 | |
CO | rGO | RT | 10–30 | 30 | ΔR/Rair | ~71% | <30/– | Panda et al., 2016 |
NiO/G | 100 | 5–100 | 100 | ΔR/Rair | ~120% | 20/152 | Khaleed et al., 2017 | |
CuO/rGO | RT | 0.25–1,000 | 1 | ΔR/Rair | 2.56% | 70/160 | Zhang et al., 2017a | |
ZnO/rGO | 200 | 1–1,000 | 1,000 | ΔR/Rair | 85.2% | 9/10 | Ha et al., 2018 | |
GdInO3/rGO | 90 | 20–100 | 20 | ΔR/Rgas | 48% | 14/15 | Balamurugan et al., 2016 | |
Pd/SnO2/rGO | RT | 50–1,600 | 1,500 | ΔR/Rair | 4% | 70/80 | Shojaee et al., 2018 | |
CO2 | rGO | RT | 100–1,000 | 1000 | ΔR/Rair | 1.65% | – | Nemade and Waghuley, 2014b |
rGO | RT | 0–1,500 | 1,500 | ΔR/Rair | 71% | ~4 min | Nemade and Waghuley, 2014a | |
Sb2O3/G | RT | 0–50 | 50 | ΔR/Rair | ~22% | 16/22 | Wu et al., 2016 | |
Al2O3/G | 125 | 0–200 | 100 | ΔR/Rair | ~8.1% | 14/22 | Hafiz et al., 2014 | |
Y2O3/G | RT | 0–35 | 35 | ΔR/Rair | 1.08% | – | Nemade and Waghuley, 2013 | |
CH4 | PANI/rG | RT | 10–3,200 | 100 | Rair/Rgas | ~3 | 85/45 | Wu et al., 2013 |
NiO/rGO | 260 | 100–6,000 | 100 | ΔR/Rair | ~2.2% | 6/16 | Zhang et al., 2016 | |
ZnO/rGO | 190 | 100–4,000 | 1000 | ΔR/Rair | ~12% | ~200 | Zhang et al., 2015b | |
SnO2/rGO | 150 | 1,000–10,000 | 1000 | ΔR/Rair | 47.6% | 61/330 | Navazani et al., 2018 | |
Pd/SnO2/rGO | RT | 800–16,000 | 14,000 | ΔR/Rair | 9.8% | 5/7 min | Nasresfahani et al., 2017 | |
C2H2 | SnO2/rGO | 180 | 0.5–500 | 50 | Rair/Rgas | 12.4 | 54/23 | Jin et al., 2016 |
Ag/ZnO/rGO | 150 | 1–1,000 | 100 | Rair/Rgas | 21.2 | 25/80 | Uddin et al., 2015b | |
Ag/SnO2/rGO | 90 | 5–500 | 50 | ΔR/Rair | 15.44 | 235/160 | Jiang et al., 2017 |
G, graphene; rGO, reduced graphene oxide; PANI, polyaniline; RT, room temperature; ΔI, which is calculated as the current change of gas sensitive response; ΔG = |Gair - Ggas|, where Ggas is the conductance exposure to target gas concentration and Gair is the conductance exposure to air or nitrogen; ΔR = |Rair - Rgas|, where Rgas is the resistance exposure to target gas concentration and Rair is the resistance exposure to air or nitrogen.