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Abstract
Banana peel (BP) is a major waste produced by fruit processing industries. Pre-treatment of BP at different temperatures led 
to 40% reduction in saponin at 100 °C (from 9.5 to 5.7 mg/g). Sequential mixed culture of Phanerochaete chrysosporium 
(P. chrysosporium) and Candida utilis (C. utilis) gave highest protein enrichment (88.93 mg/g). There is 26% increase in 
protein synthesis (from 88.93 to 111.78 mg/g) after media screening. Inclusion of KH2PO4, FeSO4·7H2O, wheat flour and 
sucrose in the media contributed positively to protein synthesis, while elevated concentration of urea, peptone, K2HPO4, KCl, 
NH4H2PO4, and MgSO4.7H2O are required to reach optimum protein synthesis. Total soluble sugar (TSS), total reducing 
sugar (TRS) and total carbohydrate (CHO) consumption varied with respect to protein synthesis in all experimental runs. 
Optimum protein synthesis required 6 days and inclusion of 5% sucrose, 0.6% NH4H2PO4, 0.4% KCl, and 0.5% MgSO4·7H2O 
as concentration media constituents to reach 140.95 mg/g protein synthesis equivalent to 300% increase over the raw banana 
peel protein content (35.0 mg/g).
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Introduction

Fruits wastes generation is increasing in developing nations 
due to agricultural subsidies and supermarkets quality speci-
fications. In fact, the Food and Agricultural Organization 
(FAO) reported over 6.5 million tons of banana wastes in 
India alone (Arumugam and Manikandan 2011). Similar 
trend is obvious in other developing economies of sub-Saha-
ran Africa and Southeast Asia. The phenomenal increase in 
banana peels and other fruits wastes by hospitality industry 

alone is a concern to governments (Jayabalan et al. 2010; 
Saheed et al. 2016).

Fruit wastes from food processing industries could be 
abundant but contain some nitrogen, vitamins and miner-
als. This poor nutritional composition restricted the wastes 
as basal feed ingredient (Kasapidou et al. 2015). Banana 
peel (BP)—a common solid waste contains sugars, miner-
als (potassium, sodium, calcium and iron), lignin, cellulose 
and hemicellulose. The nutrient composition suggests that 
BP could support microbial growth if inherent saponin that 
inhibits fungus growth in fermentation processes is reduced. 
Therefore, pretreatment step is a necessary prior to protein 
enrichment via solid-state fermentation (SSF).

In SSF of agro-residues, the most commonly used 
method involves monoculture cultivation of edible fungi. A 
novel approach to ensure robust consumption of nutrients, 
improved microbial growth and product synthesis is sequen-
tial fungal-yeast co-culture with assumption of synergistic 
actions under SSF. Sequential SSF co-culture involves cul-
tivation of two microbes such that the second microbe is 
inoculated days after the first. Interestingly, sequential culti-
vation of physiologically different fungi or bacteria cultures 
abound in literature but information concerning performance 
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of fungal-yeast sequential culture requires further study 
especially for protein enrichment of BP under SSF (Ahmed 
et al. 2010; Rajoka et al. 2011).

Edible bacidiomycete fungi and yeast cells could function 
wholly as animal feed supplement due to their high content 
of vitamin B-complex and low nucleic acid (Zayed 2018). 
Lignin degrading microorganisms have attracted interests 
due to their profound lignin degradation under SSF. Phan-
erochaete chrysosporium (P. chrysosporium), is capable 
of producing biomass rich in most essential amino acids 
at acceptable standards (Nitayavardhana et al. 2013). The 
lignolytic fungi could synthesize lignin degrading extracel-
lular enzymes such as lignin peroxidase, manganese per-
oxidase and polyoxal oxidase (Castoldi et al. 2014). These 
three industrially important lignolytic enzymes are effec-
tive in degrading cellulose, xylan and plant polymer lignin 
(Elisashvili et al. 2008). The mechanism of fungal lignin 
degradation entails the release of carbon dioxide (CO2) and 
water (H2O) after depolymerization in the presence of free 
oxygen molecules (Cameron et al. 2000).

Yeasts are widely consumed in fermented foods such as 
Tofu (the cheese of Asia from soy) and Tempe (soy product) 
(Bakar et al. 2011). Moreover, Candida utilis (C. utilis), a 
hydrolytic enzyme producing yeast, is extensively cultivated 
on agro-residues for its aromatic flavor, higher nutritive 
value and non-toxigenic properties. Its extracellular enzymes 
are capable of degrading mono-saccharides, disaccharides 
and lignolytic agro wastes materials (Ke et al. 2011; Ionuț 
et al. 2017).

This investigation focused on the conversion of BP to pro-
tein rich biomass by edible bacidiomycete fungi and yeast 
under sequential SSF after environmental friendly substrate 
pretreatment. Next step involves design and optimization 
of the nutritional need of the cultivated microorganisms for 
improved protein synthesis.

Materials and methods

Substrate collection, pre‑treatment and preparation 
for solid state fermentation

Fresh banana peels were collected from local banana juice 
processors in Kuala Lumpur, Malaysia and was oven dried 
immediately at 60 °C for 48 h to arrest any form of decay 
by microbial enzymes or adverse chemical reactions. After 
drying, raw BP was placed in 500 ml beaker up to 70% v/v, 
filled with tap water before subjecting independent triplicate 
samples to temperature treatment from 20 to 100 °C at 20 °C 
interval for 60 min in temperature controlled water bath. 
The saponin content released was then determined accord-
ing to method described (Hudson and Ei -Difrawi 1979). 
Dried (10–12% moisture content) pre-treated peels were 

grinded into pre-optimized 2 mm pore size with a grinding 
machine (Model D-79219 Staufen, IKA-WERKE GMBH 
& Co KG Germany) and stored in airtight container for 60 
days at most.

Inoculum preparation

The fungi culture (Phanerochaete chrysosporium ATCC 
20696 and Panus tigrinus M609RQY) was grown on potato 
dextrose agar (PDA, Merck, Germany) plates at 32 °C for 
7 days, washed with 25 ml sterilized distilled water, then 
filtered with Whatman No.1 filter paper and spore suspen-
sion was collected in 100 ml Erlenmeyer flask. A haemocy-
tometer was used to maintain the spore density at 1.0 × 108 
spores/ml. Excess inoculum was stored at 4 °C for further 
use. Yeast culture (Candida utilis) maintained on PDA plates 
for 4–5 days and was washed with 25 ml of pre-sterilized 
distilled water into 250 ml Erlenmeyer flask without prior 
filtration. One loop full of cells was grown for 24 h on yeast 
extract 1%, peptone 0.5% and glucose 1% (YEPG) solution 
and cell density corrected to 1.0 × 107 and stored at 4 °C in 
a chiller.

Solid state fermentation and media development

Solid state fermentation (SSF) process comprise 6.0 g sub-
strate (30%) and 14.0 g total liquid (70%) containing inocu-
lum (added after sterilization), mineral supplements (0.1% 
KH2PO4 and 0.25% NH4H2PO4) to maintain 70% moisture 
content in 250 ml Erlenmeyer flasks of 20 g working vol-
ume. Sequential SSF of P. chrysosporium and each of the 
three yeast cells involves cultivation of P. chrysosporium for 
3 days after which yeast cells (C. cylindracea, S. cerevisae 
and C. utilis) are inoculated and both allowed grow until the 
end of fermentation period. Media constituent was screened 
using Plackett Burman design to determine high and low val-
ues of each constituent (Plackett and Burman 1946). Eleven 
factors comprising nitrogen source (organic and inorganic), 
carbon source and mineral source were selected and the 
experiment carried out in triplicate was designed accord-
ingly (Table 1).

Analytical methods

Protein content and total soluble sugar (TSS) content of the 
product were determined according to described methods 
(Lowry et al. 1951; Dubois et al. 1956). Total carbohy-
drate (CHO) content of the product was determined using 
phenol–sulphuric acid method. 100 mg of the sample was 
hydrolysed with 2.5 N HCl for 3 h the solution was neu-
tralized with sodium carbonate. Phenol–sulphuric acid rea-
gent were added and absorbance read at 490 nm (Dubois 
et al. 1956). Total reducing sugar (TRS) was determined as 
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described (Miller 1959). 100 mg of sample was extracted 
with 80% hot ethanol. DNS reagent was added and the mix-
ture was boiled (~ 100 °C) for 5 min on a temperature regu-
lated water heater, samples were cooled before absorbance 
was measured at 510 nm. Ash content of BP and product was 
determined according to the suggested method (Poorter and 
Bergotte 1992) while moisture content (MC) was measured 
according to AOAC Official Method 950.46.

Results and discussion

Substrate pre‑treatment

Pretreatment process is an important unit operation when 
converting lignocellulosic agro-residues to new products. 
Microbial growth inhibiting agent—saponin had profound 
removal as result showed increased saponin removal by 
aqueous pretreatment at elevated temperature (Table 2). 
Mere washing removed 5.3% saponin from BP while 20% 
reduction happened when soaked in tap water at room tem-
perature for 60 min. Gradual but increased reduction was 
recorded in the plant glycoside as pretreatment tempera-
ture reached 100 °C at 20 °C interval. Saponin is tempera-
ture, salt concentration, and pH sensitive in aqueous phase 
(Güçlü-Üstündağ and Mazza 2007). The saponin reduction 
in BP could be caused by high glycoside solubility in water, 
concentration gradient and possible lignocellulosic fibers 
modification (Oberoi et al. 2011; Salihu et al. 2015).

Effect of saponin concentration on microbial growth

To ascertain the effect of saponin on the growth of selected 
microorganisms, the strains were inoculated on raw dried 
BP. Result showed that only P. chrysosporium successfully 
grow on the un-treated substrate (Table 3). The inability of 
other microbes to grow on raw BP could be attributed to the Ta
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Table 2   Pre-treatment of banana peels at different treatment and 
physical conditions

Treatment Saponin 
concentration 
(mg/g)

Raw 9.50 ± 1.41
Normal washing 9.00 ± 0.21
Soaking 7.50 ± 0.07
After fermentation 1.65 ± 0.58
Treatment at 20 °C 7.90 ± 1.06
Treatment at 40 °C 6.50 ± 0.71
Treatment at 60 °C 6.50 ± 0.71
Treatment at 80 °C 6.17 ± 0.35
Treatment at 100 °C 5.70 ± 1.77
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presence of branched-chain tri-saccharide moiety without 
oxygen-containing groups at C2 and C12 of the saponin mol-
ecules (Miyakoshi et al. 2000; Francis et al. 2002). However, 
P. chrysosporium demonstrated ability to metabolize recal-
citrant chemicals via extracellular secretion of enzymes that 
can breakdown complex organics but not plant sterols (Zac-
chi et al. 2000; Shi et al. 2014). However, all selected strains 
grew well at 40% saponin reduction (from 9.5 to 5.70 mg/g) 
after boiling BP at 100 °C for 60 min.

Effects of microbial grouping on protein synthesis

Protein synthesis increased in all treatments as the fer-
mentation period increased but sequential SSF of P. 
chrysosporium and C. utilis gave the highest (88.93 mg/g) 
protein synthesis. Synthesis by P. chrysosporium and Sac-
charomyces cerevisiae (S. cerevisiae) followed, while 

combination of P. chrysosporium and Candida cylindri-
sae (C. cylindrisae) produced least protein (Table 4). P. 
chrysosporium and C. utilis protein enrichment reached 
150% increase compared with control. This performance 
suggested synergistic metabolism of sugars present in BP. 
Similar trend was reported when Archnioutus sp. and Can-
dida utilis were grown by sequential SSF on corn stover 
(Ahmed et al. 2010). The high protein synthesis could be 
influenced by extracellular production of lignocellulosic 
enzymes (lignin peroxidase and manganese peroxidase) 
by P. chrysosporium leading to the conversion of com-
plex sugar to forms that are easily consumed by yeast 
cells (Villas-Bôas et al. 2003; Ke et al. 2011). The was 
no measurement of protein synthesis profile of C. utili 
alone, S. cerevisiae alone and C. cylindricea alone since 
no growth was recorded for them even after pretreatment 
to remove saponin.

Table 3   growth characteristics 
of selected microbial cells on 
the pretreated substrate

Microbial cell Picture Remarks

P. chrysosporium Growth

Panus tigrinus M609RQY No Growth

C. cylindracea No Growth

S. cerevisae No Growth

C. utilis No Growth

Control No Growth

Table 4   Screening of Potential 
Microbes for improved protein 
synthesis

Organisms Protein content (mg/g) dry weight

Day 0 Day 3 Day 6 Day 10

P. chrysosporium 19.68 ± 3.58 40.17 ± 5.59 40.17 ± 0.14 78.27 ± 0.44
P. chrysosporium /C. utilis 8.23 ± 0.32 18.82 ± 0.15 18.82 ± 0.6 88.93 ± 3.38
P. chrysosporium /S. cerevisiae 7.24 ± 1.27 25.29 ± 0.67 25.29 ± 4.52 85.43 ± 4.53
P. chrysosporium/C. cylindricea 13.58 ± 1.60 27.70 ± 0.77 68.41 ± 0.22 84.16 ± 1.35
Control 2.35 ± 0.08 5,4 ± 0.03 8.3 ± 0.08 35.0 ± 1.27
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Selection of media parameters

To identify required media constituents, eleven media 
parameters that cover carbon source, nitrogen and mineral 
salt undergo twelve experimental runs according to Plack-
ett Burman design to determine individual contribution to 
protein synthesis. Highest protein synthesis (111.78 mg/g) 
corresponded to low concentration of five (KH2PO4, solid 
content, FeSO4·7H2O, WF and sucrose) media parameters 
and high concentration of another five (peptone, K2HPO4, 
KCl, NH4H2PO4 and MgSO4·7H2O) in run 7 (Table 1). 
Microbial protein synthesis could depend on the concen-
tration and elemental nature of media components of the 
growing media (Ruqayyah et al. 2011).

Effects and significance of media concentrations 
on protein synthesis

High concentrations of KH2PO4, KCl, NH4H2PO4, 
MgSO4·7H2O and sucrose favoured protein synthesis while 
low levels of FeSO4·7H2O, wheat flour (WF), solid con-
tent, urea, peptone and K2HPO4 are required (Fig. 1). Easy 
metabolism of potassium ion (K+) ammonium ion (NH4

+) 
and phosphate ion (PO4

+) in NH4H2PO4 and KH2PO4 
could trigger growth dependent product synthesis via pro-
found hyphae growth, spore formation and hydrolytic yeast 
cells processes (Rajendran et al. 2007; Jamal et al. 2008; 
Ruqayyah et al. 2011). Positive influence of MgSO4·7H2O 
and FeSO4·7H2O could be caused by increased mycelia 
branching of P. chrysosporium resulting from actions of 
Mg+, Fe3+ and SO4

2− that fovoured secretion of enzymes 
and co-factors (Ikram-ul et al. 2004). Similarly, the positive 
contribution of sucrose to protein synthesis by sequential 
culture of P. chrysosporium and Candida utilis on BP was 
expected since the microbes required the sugar to trigger 
growth and product formation. Similar observation has been 
reported by other researchers (Molla et al. 2004).

Urea, peptone, wheat flour, FeSO4·7H2O and solid 
content contributed negatively to protein synthesis. This 
observation suggested that P. chrysosporium and Candida 
utilis preferred inorganic nitrogen source (NH4H2PO4) 
to organic sources though other white rot fungus could 
respond differently (Ruqayyah et al. 2011). The microbes 
performance was independent of FeSO4·7H2O, K2HPO4 
and solid content. This response of microbes to certain 
micronutrients and substrate moisture could be case 
dependent (Rosma and Cheong 2007; Gad et al. 2010; Hu 
et al. 2012).

Analysis of variance (ANOVA) showed significant con-
tribution of FeSO4·7H2O, MgSO4·7H2O and wheat flour to 
protein synthesis (Table 4). Profound influence contribu-
tion of FeSO4·7H2O and MgSO4·7H2O to protein synthesis 
suggested the importance of micronutrients to growth and 
performance of P. chrysosporium and C. utilis (Jamal et al. 
2008). NH4H2PO4 though contributed to protein synthesis, 
the effect was not significant.

Impact of media screening on chemical analysis 
of fermentation product

Total carbohydrate (CHO), total reducing sugar (TRS), 
total soluble sugar (TSS) and ash content of the product 
varied across experimental runs (Table 5). Sugar concen-
trations varied greatly across experimental runs suggest-
ing a direct relationship between the microbes and the 
substrate sugar under sequential SSF (Saheed et al. 2013, 
2016). CHO and other sugars generally reduced with cor-
responding protein synthesis. However, the reduction pat-
tern differ and this suggested that the fungal-yeast system 
utilization is media design dependent (Yin et al. 2012). 
The ash content varied between 8.17 and 10.57% in the 
product; thus it falls within the acceptable level (AboSiada 
et al. 2017).

Fig. 1   Main effects of media 
parameters for optimal protein 
production by Placket-Burmann 
experimental design
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Effect of fermentation period and solid content 
on protein synthesis

There was gradual increase in protein synthesis from day 
2 and climaxed at day 6. This trend is typical of a batch 
process and has been reported during sequential SSF of 
Arachniotus sp. and Candida utilis on corn stover (Ahmed 
et al. 2010). The reduced protein synthesis between day 8 
and 10 was consistent with other investigations and could 
be caused by substrate depletion, exhaustion of limiting 
nutrients and cell death (Jamal et al. 2012; Salihu et al. 
2015). Protein enrichment increased sharply between 20 
and 27.5% solid content; then declined (Fig. 2). Similar 
pattern was reported for white rot fungi possibly due to 
the ligninolytic activities of P. chrysosporium and Schzo-
phyllum commune grown on fruit wastes (Saheed et al. 
2013; Jamal et al. 2014).

Effects of micronutrients and sucrose on protein 
synthesis

KCl, NH4H2PO4 and MgSO4·7H2O were selected to deter-
mine individual optimum concentration for improved protein 
synthesis using one-factor-at-a-time (OFAT) method. Grad-
ual increase in KCl concentration resulted in elevated protein 
synthesis until 0.5%; albeit, synthesis dropped sharply with 
further increase in KCl concentration (Fig. 3). NH4H2PO4 
salt concentration of 0.6% supported increased protein syn-
thesis to 112.92 mg/g—the highest value recorded among 
the optimized factors (Fig. 4). The presence of ammonium 
and phosphate (NH4

+, PO4
2−) ions in the salt could trigger 

the high synthesis. NH4
+ and PO4

2− have been reported to 
enhance microbial growth and product synthesis (Rosma 
and Cheong 2007). Optimum protein synthesis due to 
MgSO4·7H2O was recorded at 0.4% inclusion but declined 
at higher concentration (Fig. 5). Increased concentration 
of MgSO4·7H2O under solid state fermentation has been 

Table 5   Result of nutritional 
parameters based on 
experimental design

TSS total soluble sugar, TRS total reducing sugar, CHO total carbohydrate, DW dry weight

Run Protein content 
(mg/g) DW

Ash content (%) TSS (mg/g) TRS (mg/g) CHO (mg/g)

1 98.41 ± 2.47 9.51 ± 0.16 41.44 ± 10.61 161.47 ± 0.97 249.84 ± 10.83
2 106.89 ± 18.00 8.83 ± 0.27 29.56 ± 0.00 168.00 ± 1.88 238.44 ± 2.21
3 87.49 ± 9.45 9.43 ± 0.25 22.34 ± 1.24 167.13 ± 2.92 235.31 ± 0.00
4 98.81 ± 14.40 9.37 ± 0.52 19.28 ± 0.22 167.25 ± 2.74 250.00 ± 12.37
5 83.41 ± 8.32 8.80 ± 0.30 12.53 ± 1.72 163.04 ± 0.09 251.09 ± 3.31
6 93.26 ± 2.70 8.17 ± 0.60 33.53 ± 1.90 194.90 ± 5.97 242.50 ± 7.95
7 111.78 ± 9.90 10.01 ± 0.76 33.53 ± 3.49 186.92 ± 0.84 258.44 ± 5.30
8 106.10 ± 9.22 9.77 ± 0.17 38.88 ± 4.60 185.41 ± 1.06 234.84 ± 13.04
9 88.46 ± 2.47 10.57 ± 0.07 32.63 ± 0.88 174.86 ± 0.63 272.03 ± 13.04
10 101.75 ± 14.85 9.00 ± 0.10 39.31 ± 0.53 181.81 ± 3.49 204.06 ± 16.79
11 103.62 ± 0.22 9.93 ± 0.57 35.13 ± 0.35 179.01 ± 0.09 235.78 ± 0.66
12 106.63 ± 5.62 9.86 ± 0.34 50.38 ± 3.80 171.16 ± 0.27 235.00 ± 0.00

Fig. 2   Optimization of solid 
content for protein production 
(diamond) and relationship with 
total soluble sugar (square), 
total reducing sugar (triangle) 
and total carbohydrate (×)
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Fig. 3   Optimization of potas-
sium chloride concentration 
(KCl) (diamond) and relation-
ship with total soluble sugar 
(square), Total reducing sugar 
(triangle) and total carbohydrate 
(×)
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Fig. 4   Optimization of ammo-
nium Di-hydrogen phosphate 
(NH4H2PO4) (diamond) and 
relationship with total soluble 
sugar (square), Total reducing 
sugar (triangle) and total carbo-
hydrate (×)
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Fig. 5   Optimization of mag-
nesium sulphate concentration 
(MgSO4·7H2O) (diamond) and 
relationship with total soluble 
sugar (square), Total reducing 
sugar (triangle) and total carbo-
hydrate (×)
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reported to hamper protein synthesis of microorganisms 
(Ruqayyah et al. 2011).

Protein synthesis increase slowly as the concentration 
of sucrose increased between 1% and 3% but climaxed at 
5% before decline with further increase (Fig. 6). Overall, 
the amount of protein synthesized as effect of sucrose was 
the highest among all the media factors investigated. This 
profound effect could be due to ease of sucrose metabolism 
by microbes (especially yeast and fungi imperfecti) leading 
to growth and product synthesis (Castillo et al. 1994; Dha-
nasekaran et al. 2011).

There is a direct relationship between microbial growth 
and sugar consumptions since in all cases, the sugar con-
tent of the SSF product decreased either greatly or margin-
ally throughout the fermentation period (Figs. 2, 3, 4, 5, 6). 
Corresponding dip in sugar at optimum protein synthesis 
signaled peak of microbial activity and product synthesis. 
Interestingly, cultivated microbes generally consumed maxi-
mum sugar at optimum sucrose content followed by KCl 
and solid content while least sugar was consumed at opti-
mum MgSO4·7H2O. TSS and CHO are the most susceptible 
to microbial attack and could be responsible for the corre-
sponding increased protein synthesis. TRS metabolism was 
highest at optimum NH4H2PO4 (Table 6). High consumption 

of CHO and TSS at optimal sucrose content suggested ease 
of attack that could trigger cellular growth with correspond-
ing product synthesis (Okamoto et al. 2011). Action of the 
white rot fungi—P. chrysosporium and simple sugar con-
suming yeast (C. utilis) could trigger elevated CHO and 
TSS consumption due to the secretion of lignocellulosic and 
hydrolytic enzymes needed to convert lignin and cellulose 
to simple sugars for microbial growth and product synthesis 
(Ahmed et al. 2010; Shi et al. 2014). Bioethanol and protein 
enriched cassava waste production in a batch SSF process 
involving fungi and yeast cells showed increased sugar con-
sumption as a function of product synthesis (Dhillon 2011; 
Rajoka et al. 2011; Ruqayyah et al. 2013).

Conclusion

The results of this research indicated that bioling of dried 
banana peel under aqueous condition removed sufficient 
amount of saponin that previously hinder fungal-yeast 
growth. Cultivated microbes required micronutrients and 
sucrose to further increase protein enrichment of the sub-
strate in many folds; simple and complex sugars in the sub-
strate serve as carbon source consumed for enhanced product 

Fig. 6   Optimization of sucrose 
(diamond) and relationship with 
total soluble sugar (square), 
Total reducing sugar (triangle) 
and total carbohydrate (×)
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Table 6   Effect of microbial 
protein production on as 
function of sugar consumption

TSS total soluble sugar, CHO carbohydrate, TSS total soluble sugar

Media constituent

Solid content KCl NH4H2PO4 MgSO4·7H2O Sucrose

Protein difference 16.48 32.13 39.03 16.43 33.11
Sugars consumed
 CHO (mg/g) 8.25 37.52 24.52 0.52 39.44
 TRS (mg/g) 5.10 2.85 14.87 3.12 1.52
 TSS (mg/g) 33.75 5.62 28.15 6.87 13.20
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formation at optimum media constituent concentrations. 
Sequential SSF proved efficacious in improving convertion 
of banana peel to high proetein product capabe of use as 
animal feed protein supplement.
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