

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Epidemiological data of falciparum malaria in Ado-Odo/Ota, Southwest Ogun State, Nigeria

I.Ruth Diji-geske, I.Grace Olasehinde*, Irawo Fadinad, Damola Arogundade, Precious Darby

Department of Biological Sciences, Covenant University, Ota, Nigeria

ARTICLE INFO

Article history: Received 4 April 2018 Received in revised form 10 May 2018 Accepted 5 June 2018 Available online 9 June 2018

Keywords: Malaria Prevalence Plasmodium falciparum Resistance genes

ABSTRACT

In this data article, Blood and corresponding saliva samples from subjects presenting with fever and parasetaemia ≥ 2000 were obtained from selected hospitals in Ado-Odo/Ota, Ogun State over a period of two years and analyzed using Polymerase chain reaction-Restriction fragment Length Polymorphism (PCR/Nested PCR-RFLP) to detect genetic mutations of *Plasmodium falciparum* chloroquine resistance transporter (*Pfcrt*), *Plasmodium falciparum* multidrugs resistance (*Pfmdr1*) and non-synonymous Pkelch (pk13) mutated genes. The study confirmed the presence of resistance genes in the blood and saliva samples collected from the study site. © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Specification Table

Subject area	Microbiology
More specific subject area	Epidemiolog
Type of data	Tables and g
How data was acquired	Sample colle
Data format	Raw, analyze

licrobiology pidemiology of malaria ables and graph ample collection, Microscopy, PCR analysis aw, analyzed

Abbreviations: PCR, Polymerase chain reaction; RFLP, Restriction fragment length polymorphism * Corresponding author.

E-mail addresses: ruth.diji-geske@stu.cu.edu.ng (I.R. Diji-geske),

https://doi.org/10.1016/j.dib.2018.06.002

2352-3409/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

grace.olasehinde@covenantuniversity.edu.cu.ng (I.G. Olasehinde), fadinad.irawo@stu.cu.edu.ng (I. Fadinad), damola.arogundade@stu.cu.edu.ng (D. Arogundade), precious.darby@stu.cu.edu.ng (P. Darby).

Experimental factors	DNA extraction from blood and saliva samples of subjects presenting with fever and parasitaemia of \geq 2000 parasites/ul of blood in selected health facilities.
Experimental features	PCR was used to detect of <i>Plasmodium falciparum</i> parasites and resistance genes.
Data source location	Medical diagnostics laboratory Covenant University Medical center and Molecular Research laboratory, Covenant University, Ota, Nigeria.
Data accessibility	Within this research
Related research article	Olasehinde GI, Ojurongbe OO, Fagade EO, Ruchi S, Egwari LO, Ajayi AA, Adeyeba OA. Detection of Molecular Markers of Antimalarial Drug Resistance in Plasmodium Falciparum from South-Western Nigeria. <i>Covenant Journal of Physical and Life Sciences</i> ; 2014 1(2): 61-75.

Value of the data

- The data provides an epidemiology on falciparum malaria and resistance genes in the study site.
- The data set provides researchers with a platform for enhanced studies in the production of noninvasive malaria test kit using saliva.
- The data establishes the need for improvement of existing drugs/ development of new ones.

1. Data

This data article presented and analyzed incidence and prevalence of *Plasmodium falciparum* and resistance genes (*Pfcrt, Pfmdr1 and Pk*13) in ADO-Odo/Ota, Ogun State. It also examined the prospective of saliva to serve as a non-invasive diagnostic method for malaria diagnosis [1]. This data will encourage pragmatic monitoring and surveillance of falciparum malaria in the research area as recommended by the WHO's recommendation [2]. It also provides researchers with a platform for enhanced studies in the production of non-invasive malaria test kit using saliva.

2. Experimental design, materials and methods

Samples of blood and corresponding saliva from subjects were collected from various hospitals in Ado-Odo Local government area of Ogun State for three years. The study group for the research cut across sexes of different age groups of patients presenting with fever and parasitaemia of ≥ 2000 parasites/ul of blood. Ethical approval for this study was obtained from the Covenant University Biological Sciences Ethical Review Committee (CUBIOSCREC). Informed consent was obtained from all participants. Where participant was a minor, consent was obtained from participant's guardian. Parasite identification and infective stage was determined using microscopy study. For molecular studies, Parasite DNA from blood and saliva was extracted using a genomic DNA extraction kit. Nested PCR-RFLP using the specific primers - Pfcrt, Pfmdr1 and Pk13 gene was carried out [3–5]. Amplicons were sequenced directly by using each primer for target gene amplification. Data were analysed and presented as follows; Table 1 shows the incidence of P. falciparum infection in Ado-Odo/Ota Local government area of Ogun State, Nigeria in the year 2015. Table 2 shows the incidence of falciparum malaria in the year 2016. Table 3 shows the incidence of falciparum malaria in the year 2017. Table 4 shows the prevalence of falciparum malaria within two years. Table 5 shows the prevalence of resistance genes. Fig. 1 presents the incidence of *P. falciparum* malaria infection in males and females. Fig. 2 presents the resistance genes detected in blood and saliva samples. Fig. 3 presents Pfcrt gene detected in blood and exact number of corresponding saliva samples.

	faiciparum maia	aria in Ado-Odo/O	ta, Ogun State (2015).				
Number of samples collected				Number of	Number of positive cases			
AGE	Male	Female	Total	Male	Female	Total	% Incidence	
≤ 5 10-20 ≥ 20 Total	43 233 126 402	56 276 132 464	99 509 258 866	24 144 47 215	20 114 33 167	44 258 80 382	44.44 50.69 31.01 44.11	

Table 1 Incidence of falcinarum malaria in Ado-Odo/Ota Ogun State (2015)

Table 2

Incidence of falciparum malaria in Ado-Odo/Ota, Ogun State (2016).

Number of samples collected			Number o	Number of positive cases			
Age	Male	Female	Total	Male	Female	Total	% Incidence
≤5	8	15	23	5	8	13	56.52
10-20	39	35	74	31	21	52	70.27
≥ 20	38	30	68	14	23	37	54.41
Total	85	80	165	50	52	102	61.82

Table 3

Incidence of falciparum malaria in Ado-Odo/Ota, Ogun State (2017).

Number of samples collected			Number o	Number of positive cases			
Age	Male	Female	Total	Male	Female	Total	% Incidence
≤5	17	9	26	7	5	12	46.15
10-20	41	47	88	12	18	30	34.09
≥ 20	27	41	68	8	12	20	29.41
Total	85	97	182	27	35	62	34.07

Table 4

Prevalence of falciparum malaria in Ado-Odo/Ota, Ogun State (2015-2017).

Number of samples collected			Number of positive cases				
Age group	Male	Female	Total	Male	Female	Total	% Total
≤5	68	80	148	36	33	69	46.62
10-20	313	358	671	187	153	340	50.67
≥ 20	191	203	394	69	68	137	34.77
Total	572	641	1213	292	254	546	45.01

Table 5

Prevalence of resistance genes in Ado-Odo/Ota, Ogun State.

GENES	No of samples		Positive sam	ples	Incidence (%)	
	Blood	Saliva	Blood	Saliva	Blood	Saliva
Pfcrt	71	35	34	11	47.89	31.43
Pfmdr	46	30	16	8	34.78	26.67
PfK13	87	18	19	8	21.84	44.44
Total	204	83	69	27	33.82	32.53

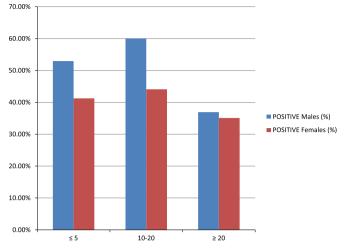


Fig. 1. Incidence of *P. falciparum* malaria infection in males against females.

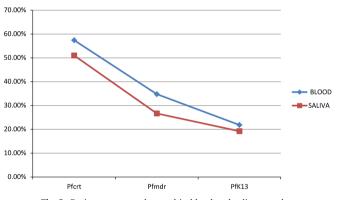


Fig. 2. Resistance genes detected in blood and saliva samples.

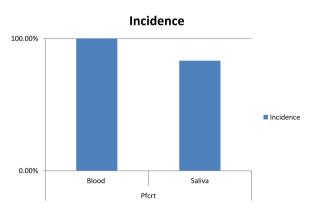


Fig. 3. Pfcrt gene in blood and corresponding saliva samples.

Acknowledgement

Covenant University Center for Research and Discovery (CUCRID), and all staffs of the Covenant University Molecular research laboratory, for their immense support in this research.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/ 10.1016/j.dib.2018.06.002.

References

- O.M. Kenji, T.Y. Samuel, F.E. Livo, N.B. Obase, Y. Jessica, C.D. Jean, D.M. Calixt, W.T. Diane, R.N. Vivek, F.L. Rose, Detection of Plasmodium falciparum DNA in saliva samples stored at room temperature: potential for a non-invasive saliva-based diagnostic test for malaria, Malar. J. 16 (2017) 434.
- World malaria report, Geneva: World Health Organization, http://www.who.int/malaria/publications/world_malaria_report_2014/en/, (Accessed 10 March 2018), 2014.
- [3] G.I. Olasehinde, O.O. Ojurongbe, E.O. Fagade, S. Ruchi, L.O. Egwari, A.A. Ajayi, O.A. Adeyeba, Detection of molecular markers of antimalarial drug resistance in Plasmodium falciparum from South-Western Nigeria, Covenant J. Phys. Life. Sci. 1 (2) (2014) 61–75.
- [4] C.V. Plowe, Monitoring antimalarial drug resistance: making the most of the tools at hand, J. Exp. Biol. 206 (2003) 3745-3752.
- [5] O. Ojurongbe, T.O. Ogungbamigbe, A.F. Fagbenro-Beyioku, R. Fendel, P.G. Kremsner, J.F. Kun, Rapid detection of Pfcrt and Pfmdr1 mutations in Plasmodium falciparum isolates by FRET and in vivo response to chloroquine among children from Osogbo, Nigeria, Malar. J. 6 (2007) 41.