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The link between sudden unexplained death in individuals with 

mental health problems who are administered antipsychotic drugs 

has been recognised for over a century.1 A clear relationship has 

emerged over the past 25 years between antipsychotic drugs, 

prolongation of the QT interval of the ECG, atypical polymorphic 

tachycardia known as torsade de pointes (TdP) and sudden cardiac 

death (SCD). A number of antipsychotic drugs have been temporarily 

or permanently withdrawn from the market – or their use restricted 

– because of a concern over QT and QT corrected for heart rate 

(QTc) prolongation and development of TdP. In some cases, close 

follow-up with an ECG has been recommended or a modification of 

label imposed. The list of antipsychotic drugs implicated includes 

pimozide, sertindole, thioridazine, mesoridazine, promazine, 

triflupromazine, droperidol, moperone, pipamperone, sultopride 

and ziprasidone. A link between clinical use of antidepressants and 

the development of arrhythmias was first suggested following the 

Cardiac Arrhythmia Suppression Trial (CAST),2 based on the sodium 

channel-blocking properties of a number of antidepressant drugs 

including imipramine. Tricyclic antidepressants were subsequently 

shown to inhibit potassium channels and thus to prolong the QT 

interval and induce TdP. These effects of tricyclic antidepressants 

are generally observed when combined with other QT-prolonging 

agents or in cases of overdose. In addition, a number of case reports 

have linked tricyclic antidepressants as well as antipsychotic drugs 

to drug-induced Brugada syndrome (BrS), leading to syncope and 

SCD as a result of the development of rapid polymorphic ventricular 

tachycardia (VT) and VF.

Our focus in this article is on mechanisms and predisposing factors 

underlying the development of cardiac arrhythmias and SCD associated 

with antidepressant and antipsychotic drugs in clinical use. 

Drug-induced Long QT Syndrome and 
Torsade de Pointes by Antidepressant and 
Antipsychotic Agents
The QT interval is a measure of the time interval between the start of 

depolarisation and the end of repolarisation. QTc intervals above 450 

ms in men and 460 ms in women are considered to be abnormally 

prolonged. TdP, from the French for ‘twisting of the points’, is an 

atypical VT characterised by oscillations of the points or R wave peaks 

(‘pointes’) around the main axis of the ECG, giving rise to a unique 

morphology. Since the original work of François Dessertenne,3 it has 

been well recognised that many conditions are capable of causing 

prolonged or abnormal repolarisation, giving rise to QT prolongation, 

abnormal T/U wave morphologies and the development of TdP.4 

Although a prolonged QT interval is essential for the development of 

TdP, it is generally not considered sufficient to induce TdP. An increased 

risk for TdP is recognised when the QTc exceeds 500 ms and whenever 

a drug increases QTc by >60–70 ms, especially when the increase 

develops rapidly.4–6 In addition to QTc prolongation, the risk of TdP 

is associated with the dispersion of transmural repolarisation and 

excitability. TdP arrhythmias can degenerate into VF, leading to SCD. 

TdP can be caused by either congenital or acquired long QT syndrome 

(LQTS). Congenital LQTS is subdivided into 10 genotypes distinguished 
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by mutations in at least 17 different genes encoding for cardiac ion 

channels and structural anchoring proteins. In the different genotypes, 

cardiac events may be precipitated by physical or emotional stress 

(LQT1), a startle (LQT2), or may occur at rest or during sleep (LQT3). 

Acquired LQTS refers to a syndrome caused by circumstances other 

than genetic factors, including exposure to drugs that prolong the 

duration of the ventricular action potential (AP),7 or secondary to 

cardiomyopathies such as dilated or hypertrophic cardiomyopathy, as 

well as to abnormal QT prolongation associated with bradycardia or 

electrolyte imbalance.8–13 The acquired form of the disease is far more 

prevalent than the congenital form, and in some cases may have a 

genetic predisposition.

Table 1, modified from www.CredibleMeds.org, lists the antidepressant 

and antipsychotic drugs that have been shown to prolong QT interval and 

induce TdP. Among the antidepressant agents, amitriptyline, imipramine, 

and maprotiline are the agents most commonly associated with TdP 

the greatest prolongation of QT interval is observed with maprotiline).14 

Table 1 shows the relative risk of TdP for distinct antidepressants and 

antipsychotics by classifying the drugs in TdP risk categories ranging 

from the highest risk of TdP; known risk of TdP (KR), to possible risk of 

TdP (PR) and conditional risk of TdP (CR). As shown in Table 1, most 

antidepressants are classified as CR, with a low risk of TdP. Vieweg 

and Wood14 reported 13 cases of TdP induced by antidepressants. As 

is typical of acquired LQTS, most cases (12 of 13) involved women. 

One case involved a child. In addition to female sex, risk factors 

include age (peaking in adolescence), bradycardia, metabolic inhibitors, 

hypokalemia, hypomagnesaemia, drug overdose and co-administration 

of QT-prolonging drugs (Table 2). QRS duration of the ECG, measured in 

five of 13 cases, showed prolongation in two and no change in three, 

suggesting that QT prolongation with antidepressants may be a result 

of sodium as well as potassium channel blockade. In a recent study, 

Danielsson and colleagues confirmed that antidepressants with KR or PR 

of TdP were associated with a higher risk than those classified as CR of 

TdP.15 Selective serotonin reuptake inhibitors (SSRIs), including citalopram, 

escitalopram, fluoxetine, paroxetine, sertraline and venlafaxine have 

been shown to exhibit a higher risk than tricyclic antidepressants, 

especially considering that an increase in dose of SSRIs, but not that 

of tricyclic antidepressants, markedly increases the risk of sudden 

death.16 For the most commonly used antidepressants in the elderly, 

the following risk ranking was observed, from highest to lowest; mirta

zapine;citalopram;sertraline;amitriptyline.15 In 2011, the Food and Drug 

Administration (FDA) issued a warning concerning the antidepressant 

citalopram (Celexa®, Allergan) and its potential risk for TdP at doses 

greater than 40 mg (FDA, drug safety communication). Providers were 

asked to use doses less than 20 mg in patients over 60 years of age with 

hepatic dysfunction, as well as in poor CYP2C19 metabolisers or those 

taking concomitant CYP2C19 inhibitors. The maximum daily dosage 

of citalopram is now 40 mg in the non-elderly adult population. Most 

studies show that – in contrast to antipsychotics – antidepressants, 

including SSRIs, induce QT prolongation and TdP arrhythmias in cases 

of overdose, but rarely at therapeutic concentrations. However, QT 

prolongation may occur in elderly patients at therapeutic doses.16

Among the newer non-SSRIs, QT prolongation has rarely been reported 

with venlafaxine at therapeutic doses or with overdose. Bupropion has 

been linked to QT prolongation in overdose situations. In elderly patients 

with a number of high-risk comorbidities, mirtazapine demonstrated 

higher risk of SCD and ventricular arrhythmias than paroxetine.16 Jasiak 

Table 1: Drugs that Prolong the QT Interval and 
Induce Torsade de Pointes

Drug Clinical Use TdP 

Category

References

Antidepressants 14, 92

Tricyclic Antidepressants 136–141

Amitriptyline Depression CR

Amoxapine Depression CR

Clomipramine Depression CR

Desipramine Depression CR

Citalopram Depression CR

Doxepin Depression CR

Imipramine Depression PR

Nortriptyline Depression CR

Protriptyline Depression CR

Trimipramine Depression PR

Isradipine Depression PR

Other Antidepressants

Lithium Depression PR

Fluoxetine Depression CR

Sertraline Depression CR

Venlafaxine Depression PR

Citalopram Depression KR

Escitalopram Depression KR

Promethazine Depression PR

Antipsychotics 17–19, 142

Chlorpromazine
Levomepromazine

Schizophrenia
Schizophrenia

KR
KR

Clozapine Schizophrenia PR

Haloperidol
Droperidol

Schizophrenia
Schizophrenia

KR
KR

Pimozide Tourette’s tic
Women>Men

KR

Quetiapine Schizophrenia CR

Risperidone Schizophrenia PR

Sertindole* Schizophrenia PR

Thioridazine Schizophrenia KR

Flupentixol Schizophrenia KR

Ziprasidone Schizophrenia PR

Cyamemazine Schizophrenia KR

Dromperidone Schizophrenia KR

Sulpiride Schizophrenia KR

Levosulpiride Schizophrenia KR

Sultopride Schizophrenia KR

Zotepine Schizophrenia KR

Prothipendyl Schizophrenia PR

Pimavanserin Schizophrenia PR

Benperidol Schizophrenia PR

*Withdrawn from the market. Risk Category: Drug List KR: These drugs prolong 
the QT interval and are clearly associated with a known risk of TdP, even as taken as 
recommended. Drug List PR: These drugs cause QT prolongation but lack evidence for 
a risk of TdP when taken as recommended. Drug List CR: These drugs are associated 
with TdP but only under certain conditions (for example, excessive dose, in patients 
with conditions such as hypokalemia, or when taken with interacting drugs) or by 
creating conditions that facilitate or induce TdP (for example, by inhibiting metabolism 
of a QT-prolonging drug or by causing an electrolyte disturbance that facilitates the 
development of TdP). (Table 3). CR = conditional risk; KR = known risk; PR = possible risk; 
TdP = torsade de pointes. Source: Modified from www.crediblemeds.org.
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et al. concluded that, based on the current literature, risk of QT/QTc 

prolongation with most newer non-SSRI antidepressants at therapeutic 

doses is low.16 The highest risk for QT prolongation appears to exist in 

overdose situations with venlafaxine and bupropion. They note that, 

given the few controlled studies and confounding variables in case 

reports, it is difficult to draw conclusions on QT prolongation risk with 

many of the newer non-SSRI antidepressants.

Antipsychotic drugs, especially those in the phenothiazine group, can 

also induce QT prolongation and TdP. Mehtonen et al. surveyed cases 

of sudden death by antidepressant or antipsychotic drugs and found 

49 cases of sudden death (31 women and 18 men) associated with the 

use of these agents.17 A therapeutic dose of phenothiazine was involved 

in 46 of the 49 cases. Thioridazine was the only antipsychotic drug 

administered in 15 of the 49 cases. Figure 1 displays a case of a marked 

QT prolongation and TdP induced by the antipsychotic agent flupentixol.

Antipsychotic drugs generally have a higher torsadogenic potential 

(category KR and PR) than antidepressants (category CR) (Tables 1  

and 3). As a consequence, antidepressant-induced TdP is more typically 

observed in the presence of drug combinations. Ray et al. conducted a 

retrospective cohort study of half a million Medicaid patients between 

1988 and 1993, before the introduction of atypical antipsychotics, 

and observed that the risk for sudden death increased 2.39 times in 

individuals receiving antipsychotic drugs compared with those who 

did not receive these agents.18 Although the study did not demonstrate 

causality, it suggested that the potential adverse cardiac effects of 

antipsychotics should be considered in clinical practice, particularly 

for patients with cardiovascular disease. Hennessy et al. in a study of 

90,000 patients, observed that those treated for schizophrenia had a 

higher incidence of cardiac arrest and ventricular arrhythmias than non-

schizophrenia patients.19 The drugs used were clozapine, haloperidol, 

risperidone, and thioridazine. In a study of nursing home residents 

in six states, Liperoti et al. observed that the use of conventional 

antipsychotics led to a twofold increase in risk of hospitalisation for 

ventricular arrhythmias and cardiac arrest, especially in patients with 

pre-existing cardiac disease.20 In the elderly, haloperidol has been 

associated with high risk of TdP.15 The IV form of haloperidol is thought 

to carry a higher risk of QTc prolongation and TdP than the oral form.21,22 

In 11 cases of fatal TdP, eight occurred with IV haloperidol. The FDA now 

recommends cardiac monitoring for all patients receiving haloperidol. 

Drug-induced Brugada Syndrome Phenotype by 
Antidepressant and Antipsychotic Agents
BrS was introduced as a new clinical entity by Pedro and Josep Brugada 

in 1992.23 The syndrome has been associated with a high risk of sudden 

death, especially in men as they enter their third and fourth decades of 

life. A consensus report published in 2002 delineated diagnostic criteria 

for the syndrome.24,25 A second consensus conference report published 

in 2005 focused on risk stratification schemes and approaches to 

therapy.26,27 The most recent expert consensus report focused on 

emerging concepts, advances in risk stratification and approaches to 

therapy for both Brugada and early repolarisation syndrome (ERS), the 

so-called J wave syndromes.28

BrS is characterised by an electrocardiographic pattern of right bundle 

brunch in right precordial leads, ST-segment elevation in the right 

precordial leads, relatively normal QTc interval, coupled with syncope 

and sudden death caused by VT/VF in patients with no or minimal 

structural disease. 

Three types of repolarisation patterns in the right precordial leads are 

recognised.24,25 Type 1 ST-segment elevation is diagnostic of BrS and 

is characterised by a coved ST-segment elevation ≥2 mm (0.2 mV) 

followed by a negative T wave. Type 2 ST-segment elevation has a 

saddleback appearance with a high take-off ST-segment elevation of  

≥2 mm, followed by a trough displaying ≥1 mm ST elevation, followed 

by either a positive or biphasic T wave. Type 3 ST-segment elevation has 

either a saddleback or coved appearance with an ST-segment elevation 

of <1 mm. These three patterns may be observed sequentially in the 

same patient or following the introduction of specific drugs, particularly 

sodium channel blockers. Type 2 and type 3 ST-segment elevation are 

not considered to be diagnostic of BrS. BrS is definitively diagnosed 

only when a type 1 ST-segment elevation (Brugada ECG) is observed 

in more than one right-precordial lead (V1–V3), in the presence or 

absence of sodium channel-blocking agent, and in conjunction with 

one or more of the following; documented VF, polymorphic VT; a family 

history of SCD (<45 years old); coved type ECGs in family members; 

inducibility of VT with programmed electrical stimulation; syncope; or 

nocturnal agonal respiration.24–27

The average age at the time of cardiac arrest in patients with BrS 

is approximately 45 years, but most develop symptoms between 

20 and 65 years.29–31 BrS in children is rare, but sudden death in this 

population is reported.32,33 Men are at increased risk for development 

of a spontaneous type I Brugada ECG and SCD.34,35

Table 2: Risk Factors for Torsade de Pointes and Brugada 
Syndrome by Antidepressant and Antipsychotic Drugs

Risk Factor Increased Risk  

for TdP

Increased Risk  

for BrS

Sex Female Male

Bradycardia + +

Hypokalemia + -/+

Hypomagnesaemia + -

Drug interaction (QT-prolonging 
agents)

+ -

Drug interaction (sodium or 
calcium channel blockers, 
parasympathetic agonists)

- +

Drug interaction (slow metabolism 
by CYP inhibitors 2D6,1A2,3A4)

+ +

Hepatic dysfunction (increased 
drug concentration)

+ +

Genetic predisposition Congenital LQTS Congenital BrS

TdP: torsade de pointes; BrS: Brugada syndrome; CYP: cytochrome 450; LQTS: long QT syndrome.

Figure 1: Flupentixol-induced Marked QT Prolongation and 
Torsade de Pointes

Marked prolongation of the QT interval leading to episodes of polymorphic VT displaying 
features of TdP. TdP = torsade de pointes; VT = ventricular tachycardia.
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In a recent study, women comprised 42 % of a cohort of 542 patients 

who presented with a spontaneous or drug-induced Brugada type  1 

pattern on the ECG.36 Women with BrS present more benign clinical 

characteristics, less spontaneous type  1 ECG pattern, and are more 

likely to be asymptomatic than men.35

BrS has been associated with variants in 19 different genes. The gene 

most often associated with BrS is SCN5A, accounting for 11–28  % 

of cases, depending largely on geographic location. Over 300 BrS-

related variants in SCN5A, the gene encoding the alpha subunit of 

the cardiac sodium channel, have been reported.37–40 Loss-of-function 

mutations in SCN5A contribute to the development of both BrS and 

ERS, as well as to various conduction diseases, Lenegre’s disease and 

sick sinus syndrome.

Variants in genes encoding the calcium channels including CACNA1C 

(Cav1.2), CACNB2b (Cavbeta2b) and CACNA2D1 (Cavalpha2delta) have 

been reported in up to 13 % of probands.41–44 Mutations in glycerol-3-

phosphate dehydrogenase 1-like enzyme gene (GPD1L), SCN1B (beta1-

subunit of sodium channel), KCNE3 (MiRP2), SCN3B (beta3-subunit 

of soduim channel), KCNJ8 (Kir6.1), KCND3 (Kv4.3), RANGRF (MOG1), 

SLMAP, ABCC9 (SUR2A), (Navbeta2), PKP2 (plakophillin-2), FGF12 

(FHAF1), HEY2, SEMA3A (semaphorin) and KCNAB2 (Kvbeta2) are 

relatively rare.45–56 An association of BrS with SCN10A, a gene encoding 

a neuronal sodium channel, was first reported in 2014.56–58 There is 

controversy as to the pathogenicity of many SCN10A mutations with 

yields ranging from 5.0 % to 16.7 %.57–59 Mutations in all of these genes 

lead to loss of function in sodium (INa) and calcium (ICa) channel currents, 

as well as to a gain of function in transient outward potassium current 

(Ito) or ATP-sensitive potassium current (IK-ATP).58,60

New susceptibility genes proposed and awaiting confirmation include 

the transient receptor potential melastatin protein 4 gene (TRPM4)61 

and the KCND2 gene. Variants in KCNH2, KCNE5, SEMA3A, although not 

causative, have been identified as capable of modulating the substrate 

for the development of BrS.62–65 KCNE4 has recently been added to 

this group (unpublished observation, Clatot and Antzelevitch). Loss-of-

function mutations in HCN4 (prominently expressed in the sinus node) 

have been associated with BrS but may be modulatory by acting to 

unmask BrS by reducing heart rate.66 

A large number of factors modulate the electrocardiographic and 

arrhythmic manifestations of BrS. ST-segment elevation in BrS is often 

dynamic. The Brugada ECG may be concealed, but can be unmasked or 

modulated by sodium channel blockers, a febrile state, vagotonic agents, 

alpha adrenergic agonists, beta adrenergic blockers, tricyclic or tetracyclic 

antidepressants, first generation antihistamines (dimenhydrinate), 

a combination of glucose and insulin, hyperkalemia, hypokalemia, 

hypercalcaemia, and by alcohol and cocaine toxicity.67–77 These agents 

may also induce acquired forms of BrS. Propafenone, typically prescribed 

for the treatment of AF, is a common example of a drug that can unmask 

BrS.78–81 Lithium, a widely used antidepressant agent, has been recently 

added to the list of drugs to avoid in patients with BrS. Lithium is a potent 

blocker of cardiac sodium channels and can unmask a type 1 ECG in 

patients with BrS.82 Propofol, a short-acting, IV-administered sedative-

hypnotic and antiepileptic agent with anaesthetic properties, may cause 

a rare condition called propofol infusion syndrome, characterised by 

unexplained lactic acidosis, lipaemia, rhabdomyolysis, cardiovascular 

collapse and Brugada-like ECG pattern following high-dose propofol 

infusion over prolonged periods of time.83,84 

Table 3 lists the antidepressants and antipsychotic agents reported 

to induce the Brugada ECG pattern. All cases of BrS pattern induced 

by antidepressants and antipsychotics displayed a type 1 ST-segment 

elevation (Figure 2). A study of 98 patients experiencing an overdose 

of tricyclic antidepressants reported that 15 of these displayed an ECG 

consistent with BrS.71 The overall mortality was 3.0 % among all patients, 

but 6.7 % among patients who displayed a Brugada phenotype. Rouleau 

et al. described three cases of psychotropic drug-induced Brugada 

Table 3: Drugs that Induce Brugada ECG Pattern (Type 1 
ST-Segment Elevation) and that Should be Avoided  
in Patients with Brugada Syndrome 

Drug Class Clinical use References

Antidepressants

Tricyclic 
Antidepressant

Amitriptyline IIA Depression 85, 87

 Desipramine IIA Depression 70, 86

Nortriptyline IIA Depression 72, 88

Clomipramine IIA Depression/
obsessive 
compulsive 
disorder

Imipramine IIA Depression/
anxiety

Tetracyclic 
Antidepressant

Maprotiline IIA Depression/
anxiety

87

Others Lithium  IIB Depression 82

Bupropion 
Cyamemazine 
Dosulepin 
Doxepin  
Fluoxetin  
Fluvoxamine 
Maprotiline 
Paroxetine 
Lamotrigine 

IIB Depression
Depression
Depression
Depression
Depression
Depression
Depression
Depression
Depression
Epilepsy, 
bipolar 
disorder

143

Antipsychotics Trifluoperazine 
IIA

IIA Anxiety, 
psychotic 
disorders

85

Loxapine IIA Psychotic 
conditions 
including 
hallucinations, 
delusions, and 
confusion

144

Clotiapine 
Cyamemazine 
Thioridazine 

IIB Psychotic 
disorders

Antiepileptic Propofol IIA Sedative, 
hypnotic and 
antiepileptic

83, 84

Recommendation class: Class I: There is evidence and/or general agreement 
that a given drug is potentially arrhythmic in BrS patients. Class IIA: There 
is conflicting evidence and/or divergence of opinion about the drug, but the 
weight of evidence/opinion is in favour of a potentially arrhythmic effect in 
BrS patients. Class IIB: There is conflicting evidence and/or divergence of 
opinion about the drug, and the potential arrhythmic effect in BrS patients is 
less well established by evidence/opinion. BrS = Brugada syndrome. Source: 
Modified from www.brugadadrugs.org.
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ECG,85 occurring during concomitant administration of amitriptyline 

and a phenothiazine (case 1), overdose of fluoxetine (case 2), and 

co-administration of trifluoperazine and loxapine (case 3). Babaliaros 

and Hurst described a Brugada pattern in patients receiving increasing 

doses of imipramine.70 Akhtar and Goldschlager reported a case of BrS 

following massive ingestion of desipramine and clonazepam.77 Chow 

et al. reported a similar case involving desipramine.86 Bolognesi et al. 

described a Brugada ECG pattern following overdose of amitriptyline 

and with maprotiline.87 Additional cases of BrS were reported following 

overdose with nortriptyline72,88 or lithium.82,89

The available data suggest that most cases of antidepressant and 

antipsychotic-induced BrS phenotype occur as a consequence of drug 

overdose or drug combination.

Effects of antidepressants and antipsychotics 
on ion channels
Antidepressants and antipsychotics are reported to modulate the 

cardiac AP by blocking a variety of cardiac ion channels. In the ventricle 

they inhibit the fast sodium channel inward current (INa), the inward 

calcium current (ICa), and one or more outward potassium currents (IK), 

particularly the rapidly activating delayed rectifier current (IKr). Drug-

induced IKr block has attracted considerable attention in recent years 

because of the association of IKr block with QT interval prolongation in 

the ECG and life-threatening cardiac arrhythmias such as TdP. Drug-

induced INa and ICa block underlie the development of the BrS phenotype 

in experimental models of BrS.90,91

Table 4 illustrates the IC50 values for block of IKr, ICa and INa derived from 

heterologous expression systems (for example, HEK and CHO cells) 

and/or native cardiac myocytes for a number of antidepressants 

and antipsychotics that have been shown to induce arrhythmias.92 

The available studies suggest that most antidepressants inhibit both 

inward and outward currents, these include imipramine, amitriptyline, 

and fluoxetine, all of which block both IKr and ICa. Imipramine and 

amitriptyline also block INa. The ability of antidepressants to block both 

outward and inward currents is associated with lack of correlation 

between the degree of IKr block and QT prolongation because calcium 

and/or sodium channel inhibition limit the effects of IKr block to prolong 

AP duration (APD) and thus to prolong the QT interval. In contrast to 

antidepressants, antipsychotic drugs produce more of an outward 

current inhibition. QT prolongation is most commonly secondary to 

inhibition of IKr. A 30-fold difference between the effective plasma 

concentration and the IC50 for inhibition of IKr has been suggested as 

an adequate margin of safety for avoiding the development of TdP as 

an adverse effect.93

Mechanisms of Arrhythmias in  
Long QT Syndrome
Amplification of spatial dispersion of repolarisation within the ventricular 

myocardium has been identified as the principal arrhythmogenic 

substrate in both acquired and congenital LQTS. The accentuation of 

spatial dispersion – typically secondary to an increase of transmural, 

trans-septal or apico-basal dispersion of repolarisation – and the 

development of early afterdepolarisation (EAD)-induced triggered 

activity, underlie the substrate and trigger, respectively, for the 

development of TdP arrhythmias observed under LQTS conditions.94,95 

Models of the LQT1, LQT2, LQT3, LQT5, LQT6, LQT7, and LQT8 forms of 

the LQTS have been developed using the canine arterially-perfused 

left ventricular wedge preparations.96–99 These models suggest that in 

the first three forms of LQTS preferential prolongation of the M cell 

APD leads to an increase in the QT interval, as well as an increase in 

transmural dispersion of repolarisation (TDR), which contributes to the 

development of TdP (Figure 3).100–102 The unique characteristics of the M 

cells are at the heart of the LQTS. The hallmark of the M cell is the ability 

of its AP to prolong more than that of endocardium or epicardium in 

response to a slowing of rate.103–105 This feature of the M cell is a result 

of weaker repolarising current during phases two and three of the AP, 

secondary to a smaller IKs and a larger late INa and INa-Ca.106–108 

These ionic distinctions also sensitise the M cells to a variety of 

pharmacological agents. Agents that block IKr (such as antidepressants 

and antipsychotics), IKs, or increase ICa or late INa, generally produce 

a much greater prolongation of the APD of the M cell than that of 

epicardial or endocardial cells. The duration of the M cell AP therefore 

determines the QT interval, whereas the duration of the epicardial AP 

generally determines the QT peak interval. 

Figure 4 presents our working hypothesis of the mechanisms 

underlying LQTS-related TdP. The hypothesis presumes the presence 

of electrical heterogeneity in the form of spatial dispersion of 

repolarisation in the form of transmural and trans-septal dispersion 

of repolarisation under baseline conditions, and the amplification of 

Figure 2: Brugada Syndrome Phenotype in a 42-year-old 
Man Treated with Lithium

ECG displays downsloping ST elevation (type 1) in leads V1–V2. Lithium plasma concentration 
was 1.4 mEq/l (reference range 0.8–1.4 mEq/l). Source: Modified from Pirotte, et al., 200889, 
with permission from Elsevier.

Table 4: IC50 Values for Block of IKr, ICa and INa by 
Antidepressant and Antipsychotic Drugs

Drug IKr IC50  

(μM)

ICa IC50 

(μM)

INa IC50 

(μM)

References

Antidepressants

Amitriptyline* 4.78 3.75 >1.0 92, 145–148

Imipramine* 3.4 4.0 5.0 92, 147, 149

Fluoxetine* 1.5–3.1 2.8 92, 147, 150, 151

Citalopram 3.97 92

Antipsychotics

Chlorpromazine 1.47 ± 0.03 152, 153 

Clozapine 2.63 ± 0.12 152, 153

Haloperidol 1.0 154

Sertindole† 2.9 154

Thioridazine 1.07 ± 0.06 152, 153

*Drugs with mixed ion channel block92. † Drug withdrawn.
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TDR by agents that reduce net repolarising current via a reduction 

in IKr or IKs (or augmentation of ICa or late INa). Pharmacological 

agents or other conditions that cause a reduction in IKr lead to a 

preferential prolongation of the M cell AP. As a consequence, the 

QT interval prolongs and is accompanied by a dramatic increase in 

TDR, creating a vulnerable window for the development of re-entry. 

The reduction in net repolarising current also predisposes to the 

development of EAD-induced triggered activity and, in rare cases, 

delayed afterdepolarisation-induced, triggered activity in M and 

Purkinje cells, which provide the extrasystole that triggers TdP when 

it falls within the vulnerable period. Betaadrenergic agonists further 

amplify transmural heterogeneity in the case of IKs block, as well as 

(transiently) in the case of IKr block, but reduce it in the case of INa 

agonists.102,109 Inhibition of IKr is the most common cause of reduction 

in net outward current by antidepressant and antipsychotic drugs. 

The presence of other IKr blockers (combination of an antidepressant 

and antipsychotic drug) or agents that reduce IKs or augment ICa or late 

INa can accentuate the reduction in repolarisation forces and increase 

the probability of arrhythmia.

Mechanisms of Arrhythmia in  
Brugada Syndrome 
The development of prominent J waves, appearing as ST-segment 

elevation in the right precordial leads of BrS patients, is believed to 

be a result of accentuation of the right ventricular (RV) epicardial 

AP notch secondary to an outward shift in the balance of currents 

active at the end of phase 1.110 A spike and dome morphology, 

displaying a prominent notch in ventricular epicardium but not 

endocardium, generates a transmural voltage gradient that results in 

the electrocardiographic J wave.111 

The cellular basis for BrS is thought to involve an outward shift of 

net transmembrane current active at the end of phase 1 of the RV 

epicardial AP. The Ito has been shown to be most prominent in the 

right ventricle, particularly in the region of the RV outflow tract 

(RVOT).112 Such a shift can accentuate the AP notch and lead to all-

or-none repolarisation at the end of phase 1 (Figures 5 and 6). When 

phase 1 repolarises beyond the voltage range at which L-type Ca+2 

channels activate, the Ca+2 channels fail to activate, resulting in loss 

of the AP dome. Conduction of the AP dome from epicardial sites 

at which it is maintained to sites at which it is lost gives rise to 

phase 2 re-entry that generates a closely coupled extrasystole that 

precipitates VT/VF.110,113,114

Although genetic mutations are equally distributed between sexes, 

the clinical phenotype is 8– to10–times more prevalent in men than in 

women. The basis for this sex-related distinction is a more prominent 

Ito in the RV epicardium of men versus women.115 The more prominent 

Ito-mediated AP notch causes the end of phase 1 of the RV epicardial 

AP to repolarise to more negative potentials in tissue and arterially-

perfused wedge preparations from men, facilitating loss of the AP 

plateau and the development of phase 2 re-entry and polymorphic VT.

The cellular mechanisms underlying BrS have long been a matter 

of debate.116,117 Two principal hypotheses have been proposed; the 

repolarisation hypothesis and the depolarisation hypothesis. 

The repolarisation hypothesis described above maintains that an 

outward shift in the balance of currents in RV epicardium can lead 

to repolarisation abnormalities, resulting in the development of the 

substrate for re-entrant activity as well as the development of phase 2 

re-entry, which generates closely coupled premature beats capable of 

precipitating VT/VF. The depolarisation hypothesis suggests that slow 

conduction in the RVOT, as a result of fibrosis, reduces Cx43 expression 

leading to discontinuities in conduction. Conduction slowing is not 

necessarily limited to the RVOT area.

Leong et al. recently reported a study in which the magnitude of ST 

elevation correlated with the degree of ajmaline-induced conduction 

delay in the RVOT of patients with type I Brugada ECG, seemingly 

supporting the depolarisation hypothesis.118 The study included 11 

patients with concealed type I BrS ECG and two healthy controls 

undergoing ECG imaging before and after ajmaline infusion. Activation 

maps and activation recovery intervals were derived from electrograms 

recorded from the epicardial surface of the heart, including the RV, 

RVOT, and left ventricle (LV). Conduction time was recorded from 3.5 cm 

segments within these regions of the heart before and after ajmaline and 

correlated with J point (ST-segment) elevation observed in the surface 

Figure 3: Polymorphic VT Displaying Features of Torsade 
de Pointes Induced by D-sotalol (100 μM) in an Arterially 
Perfused Canine Left Ventricular Wedge Preparation

Each trace shows action potentials simultaneously recorded from M and epicardial (Epi) 
cells together with a transmural ECG. The preparation was paced from the endocardial 
surface at a basic cycle length of 2000 ms (S1). Spontaneous TdP occurred in this model. 
The first groupings show spontaneous ventricular premature beat (or couplets) that fail to 
induce TdP, and a second grouping show spontaneous premature beats that succeed. The 
premature response appears to originate in the deep subendocardium (M or Purkinje cells).
TdP = torsade de pointes; VT = ventricular tachycardia. Source: Modified from Shimzu and 
Antzelevitch., 2000102, with permission from Elsevier. 
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 Source: Modified from Antzelevitch and Shimizu., 2000,95 with permission. 
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ECGs. Ajmaline increased conduction delay by 5.4 ± 2.8 ms in the RVOT, 

2.0 ± 2.8 ms in RV free wall and 1.1 ± 1.6 ms in LV free wall. Conduction 

delay in the RVOT, but not RV or LV, correlated with the degree of J point 

elevation in BrS patients. The authors’ conclusion that the magnitude 

of J point (ST-segment) elevation in patients with the type I BrS pattern 

is attributable to conduction delay in the RVOT was challenged by 

Antzelevitch and Patocskai who demonstrated that ajmaline can induce 

prominent ST-segment elevation by accentuation of the RV epicardial AP 

notch.119 They further pointed out that according to the depolarisation 

hypothesis for ST-segment elevation associated with BrS, RVOT activation 

delay, relative to activation of the RV, must be roughly equivalent to the 

duration of the ST segment elevation (typically >200 ms)116 and that the 

3.4 ms reported by Leong et al. falls far short of that requirement, thus 

discounting the depolarisation hypothesis as a cause. 

Figure 5 displays an example of amitriptyline-induced BrS phenotype 

in the presence of the Ito agonist NS5806 in a canine right ventricular 

wedge model.120 Amitriptyline (0.2 μm) caused loss of the AP dome in 

the AP of Epi1 but not in that of Epi2. Phase 2 re-entry developed as the 

epicardial AP dome propagated from sites at which it was maintained 

to sites at which it was lost. This mechanism generates closely coupled 

extrasystoles and the development of a polymorphic VT. 

Genetic Predisposition
The degree to which a genetic predisposition contributes to the 

clinical manifestation of antidepressant- and antipsychotic-induced 

arrhythmogenesis is not well defined.

Congenital LQTS has been associated with 17 different genes (Table 5).  

Drugs are by far the most common cause of acquired forms, 

including drug-induced forms, of LQTS. Mounting evidence suggests 

that drug-induced LQTS also has a significant heritable component, 

and recent studies have made advances in identifying the genetic 

substrate underlying drug-induced LQTS. Advances in next-generation 

sequencing technology and molecular biology techniques have 

identified genetic variants underlying the acquired form of LQTS.121 

Acquired LQTS characterised by QT prolongation and TdP triggered 

by drugs, hypokalemia or bradycardia are usually reversed upon 

elimination of the triggers. In some cases the LQTS phenotype persists, 

suggesting the presence of an underlying genetic substrate. 

Itoh et al. reported that a third of acquired LQTS patients carry 

congenital LQTS mutations, with variants in KCNH2 being the most 

common.122 In a recent study, Strauss et al. demonstrated that a genetic 

QT score comprising 61 common genetic variants can account for a 

significant proportion of the variability in drug-induced QT prolongation 

and is a significant predictor of drug-induced TdP.123 The authors 

indicate that these findings highlight an opportunity for such genetic 

discoveries to improve individualised risk–benefit assessment for 

pharmacologic therapies. Of note, replication of these findings in larger 

samples is needed to more precisely identify the individual variants 

that drive these effects.123

Abbott et al. were among the first to show that a polymorphism (a 

genetic variation that is present in greater than 1 % of the population) 

in an ion channel gene is associated with a predisposition to drug-

induced TdP.124 They identified a polymorphism (T8A) of the KCNE2 

gene encoding for MiRP, a beta subunit of the IKr channel, that is 

present in 1.6 % of the population and is associated with TdP related 

to quinidine and to sulfamethoxazole/trimethoprim administration. 

This finding suggests that common genetic variations may increase 

the risk for development of drug-related arrhythmias. Yang et al. 

showed that DNA variants in the coding regions of congenital long 

QT disease genes predisposing to acquired LQTS can be identified 

in approximately 10–15  % of affected subjects, predominantly in 

genes encoding ancillary subunits, providing further support for 

the hypothesis that subclinical mutations and polymorphisms may 

Figure 5: Amitriptyline (0.2 μM)-induced Brugada 
Phenotype in the Presence of the Transient Outward 
Potassium Channel Current Agonist NS5806

Each panel shows transmembrane APs simultaneously recorded from 1 endocardial (Endo) 
and 2 epicardial (Epi) sites together with a pseudo-ECG. NS5806 (8 μM) accentuates the AP 
notch and J wave, but does not induce arrhythmic activity. Addition of amitriptyline (0.2 μM) 
leads to the development of a closely coupled phase 2 re-entrant extrasystole. The phase 
2 re-entrant extrasystole with the briefer coupling interval precipitates polymorphic VT. 
AP = action potential; VT = ventricular tachycardia.  
Source: Modified from Minoura, et al., 2012,120 with permission.
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Figure 6: Brugada Syndrome

Proposed mechanism for the BrS. A shift in the balance of currents serves to amplify existing 
heterogeneities by causing loss of the AP dome at some epicardial, but not endocardial, 
sites. A vulnerable window develops as a result of the dispersion of repolarisation and 
refractoriness within epicardium, as well as across the wall. Epicardial dispersion leads to 
the development of phase 2 re-entry, which provides the extrasystole that captures the 
vulnerable window and initiates VT/VF via a circus movement re-entry mechanism. AP = 
action potential; BrS = Brugada syndrome; VF = Ventricular tachycardia. Source: Modified 
from Antzelevitch., 2001,110 with permission from Oxford University Press and the European 
Society of Cardiology.
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predispose to drug-induced TdP.125 Splawski et al. further advanced 

this concept by identifying a heterozygous polymorphism involving 

substitution of serine with tyrosine in codon 1103 (S1103Y) in 

the sodium channel gene SCN5A (S1102Y in the shorter splice 

variant of SCN5A) among Africans and African-Americans that 

increases the risk for acquired TdP.126 The polymorphism was present 

in 57 % of 23 patients with pro-arrhythmic episodes, but in only 13 % 

of controls. 

Another common polymorphism that has been associated with 

acquired forms of LQTS and TdP is K897T in KCNH2.127 Most functional 

expression studies have reported that K897T reduces IKr,128–130 although 

one study has reported an increase in hERG current.131

Antidepressant drugs have been shown to induce acquired LQTS 

via both direct inhibition of the hERG or IKr channel or via impaired 

trafficking of the channel to the surface membrane, thus mimicking the 

effects of some KCNH2 variants.132

The action of antidepressants to precipitate the BrS may also have 

a genetic disposition. For example, the SCN5A promoter haplotype 

(so-called Hap B) has been shown to be associated with longer PR and 

QRS intervals as well as with a more exaggerated response to sodium 

channel blockers.133

Genetic defects can also contribute to drug-induced channelopathies 

by influencing the metabolism of drugs. In the case of relatively 

pure IKr blockers, there is a clear relationship between plasma 

levels of drug and the incidence of TdP. Genetic variants of the 

genes encoding for enzymes responsible for drug metabolism could 

alter pharmacokinetics so as to cause wide fluctuations in plasma 

levels, thus exerting a significant proarrhythmic influence.134,135 For 

example, in the case of cytochrome CYP2D6, which is involved in the 

metabolism of some QT-prolonging drugs (terodiline, thioridazine), 

multiple polymorphisms have been reported that reduce or eliminate 

its function; 5–10  % of Caucasians and African-Americans lack a 

functional CYP2D6. Numerous proteins, including drug transport 

molecules and other drug metabolising enzymes, are involved in drug 

absorption, distribution and elimination, and genetic variants of each 

of these has the potential to modulate drug concentrations and effects. 

Multiple substrates and inhibitors of the cytochrome P450 enzymes 

have been identified. A comprehensive database can be found at 

http://medicine.iupui.edu/flockhart

Antipsychotic drugs are more commonly associated with QT prolongation 

and TdP than antidepressants are. Most cases of antidepressant-

induced TdP occur following drug overdose or when administered 

in combination with other QT-prolonging agents or conditions. 

Antidepressants, on the other hand, are more likely to predispose to BrS 

phenotype. These proclivities are because antipsychotic drugs generally 

exert a predominant effect to inhibit outward currents, IKr block in 

particular, whereas antidepressants exert a predominant effect to inhibit 

inward currents, such as INa and ICa. Commonly used antipsychotic and 

antidepressant drugs should be used with great care in cases of long QT 

or BrS,or when combined with agents known to prolong QT intervals or 

to predispose to acquired forms of BrS.
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Clinical Perspective
•  Some antipsychotic and antidepressant drugs increase the risk of ventricular arrhythmias and SCD by prolonging the QT interval and 

inducing Torsade de Pointes arrhythmias. These include typical antipsychotics such as chlorpromazine; tricyclic antidepressants such as 

amitriptyline and other antidepressants such as fluoxetine.

•  Other antipsychotic and antidepressant drugs increase the risk of ventricular arrhythmias and SCD by inducing a Brugada Syndrome 

phenotype. These include antipsychotics such as trifluoperazine; tricyclic antidepressants such as amitriptyline or desipramine; and other 

antidepressants such as maprotiline or lithium.

•  Antipsychotic drugs can increase cardiac risk even at low doses, whereas antidepressant drugs generally do it at high doses or in 

combination with other drugs.

•  The newer atypical antipsychotics, including olanzapine, risperidone, quetiapine, prothipendyl, pimavanserin and benperidol display a 

lower level of risk than the older typical antipsychotics, especially those in the phenothiazine category.

•  Antipsychotic and antidepressant drugs should be used with great care in cases of long QT or BrS or when combined with agents known 

to prolong QT intervals or to predispose to acquired forms of BrS. 

Table 5: Genes Associated with Congenital  
Long QT Syndrome

Chromosome Gene Ion 

Channel

LQT1 11 KCNQ1, KvLQT1 ↓IKs 30–35 %

LQT2 7 KCNH2, HERG ↓IKr 20–25 %

LQT3 3 SCN5A, Nav1.5 ↑Late INa 5–10 %

LQT4 4 Ankyrin-B, ANK2 ↑Cai, ↑Late 
INa ?

1–2 %

LQT5 21 KCNE1, MinK ↓IKs 1 %

LQT6 21 KCNE2, MiRP1 ↓IKr Rare

LQT7 * 17 KCNJ2, Kir 2.1 ↓IK1 Rare

LQT8 † 6 CACNA1C, Cav1.2 ↑ICa Rare

LQT9 3 CAV3, Caveolin-3 ↑Late INa Rare

LQT10 11 SCN4B, NavB4 ↑Late INa Rare

LQT11 7 AKAP9, Yatiao ↓IKs Rare

LQT12 20 SNTA1, a1 
Syntrophin

↑Late INa Rare

LQT13 11 KCNJ5, Kir 3.4 ↓IK-ACh Rare

LQT14 14 CALM1, Calmodulin ↑ICa, ↑Late INa Rare

LQT15 2 CALM2, Calmodulin ↑ICa, ↑Late INa Rare

LQT16 19 CALM3, Calmodulin ↑ICa, ↑Late INa Rare

LQT17 19 TRPM4, Transient 
receptor potential 
cation channel

↓Inon-selctive cation 

channel

Rare

*Andersen-Tawill Syndrome, † Timothy Syndrome. LQT = Long QT. Source: Modified from 
Obeyesekere, et al., 2015.155 
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•  In the case of drugs categorised as having a potential to cause significant QT prolongation and/or TdP, ECG monitoring is advisable, 

particularly where the FDA-approved label recommends ECG monitoring. Review of specific antipsychotic or antidepressant therapy, 

including cessation and change of medication should be considered if the ECG shows major prolongation of the QT interval (QTc >500 ms), 

QTc prolongation >60 ms, T wave abnormalities, marked bradycardia, or a BrS phenotype.

•  Finally, high-risk antipsychotics and antidepressants should be avoided in patients with acute systemic disease, including acute MI and 

renal or hepatic disease.
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