Letter

VU6007477, a Novel M₁ PAM Based on a Pyrrolo[2,3-b]pyridine Carboxamide Core Devoid of Cholinergic Adverse Events

Julie L. Engers,†,‡ Elizabeth S. Childress,†,‡ Madeline F. Long,†,‡ Rory A. Capstick,†,‡ Vincent B. Luscombe,^{†,‡} Hekyung P. Cho,^{†,‡} Jonathan W. Dickerson,^{†,‡} Jerri M. Rook,^{†,‡} Anna L. Blobaum,†,‡ Colleen M. Niswender,†,‡,[⊥] Darren W. Engers,†,‡ P. Jeffrey Conn,†,‡,[⊥] and Craig W. Lindsley^{*,†,‡,§,||}

†Vanderbilt Center for Neur[oscie](#page-4-0)nce [D](#page-4-0)rug Discovery, ‡Department of Pharmacology, [§]Department of Chemistry, [∥]Department of Biochemistry, and [⊥]Vanderbilt Kennedy Center, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States

S Supporting Information

ABSTRACT: Herein, we report the chemical optimization of a new series of M_1 positive allosteric modulators (PAMs) based on a novel pyrrolo[2,3-b]pyridine core, developed via scaffold hopping and iterative parallel synthesis. The vast majority of analogs in this series proved to display robust cholinergic seizure activity. However, by removal of the secondary hydroxyl group, VU6007477 resulted with good rat M₁ PAM potency (EC₅₀ = 230 nM, 93% ACh max), minimal M₁ agonist activity (agonist EC₅₀ > 10 μ M), good CNS penetration (rat brain/plasma K_p = 0.28, K_{p,uu} = 0.32; mouse K_p = 0.16, K_{p,uu} = 0.18), and no cholinergic adverse events (AEs, e.g., seizures). This work demonstrates that within a chemical series prone to robust M₁ ago-PAM activity, SAR can result, which affords pure M_1 PAMs, devoid of cholinergic toxicity/seizure liability.

KEYWORDS: Positive allosteric modulator (PAM), muscarinic acetylcholine receptor 1 (M_1), cholinergic toxicity, VU6007477

 \bf{M} uscarinic acetylcholine receptor subtype 1 (M_1) positive
allosteric modulators (PAMs) hold great promise for the treatment of cognitive impairment, schizophrenia, and Alzheimer's disease.^{1−7} Originally, the clinical promise of M_1 as a target was derailed by M_1 agonists lacking true M_1 selectivity, $1,2,8$ and later, by ro[bu](#page-4-0)s[t](#page-4-0) M_1 ago-PAMs that overstimulated the M_1 receptor, resulting in cholinergic toxicity and adverse ev[ent](#page-4-0)[s](#page-5-0) (AEs).^{9−18} While these ago-PAMs, represented by 1−4 (Figure 1), dampened enthusiasm for the translational utility of selective M_1 ac[ti](#page-5-0)v[ati](#page-5-0)on, next generation M_1 PAMs 5 and 6, de[void of](#page-1-0) [ag](#page-1-0)onism in cells and native systems (and without cholinergic toxicity/seizures), provided a new path to the clinic. 14,19 However, due to the voluminous literature with ago-PAMs 1− 4, multiple new M_1 PAMs are required for the communit[y to](#page-5-0) evaluate the safety and efficacy of the "pure" M_1 PAM mechanism and independently embrace the therapeutic potential of M_1 PAMs. Herein, a novel series of M_1 PAMs featuring a pyrrolo[2,3-b]pyridine carboxamide core is described, including the design, SAR, DMPK properties, pharmacology, and cholinergic adverse effect profiles to provide the community with another new, pure M_1 PAM tool for in vivo efficacy and tolerability studies.

Scaffold-hopping has been a major strategy in the M_1 PAM arena, and this approach led to the discovery of the benzomorpholine-based pure M_1 PAM $6.^{19}$ We once again held the key carboxamide and heterobiaryl tail moieties of 3, 5, and 6 constant while surveying new hetero[biaryl cores, as in](#page-5-0) 7, that might engender pure M_1 PAM pharmacology (Figure 2). From this exercise, a novel pyrrolo $[2,3-b]$ pyridine carboxamide core, represented generically by 8, resulted, with a s[pectrum o](#page-1-0)f M_1 pharmacology from potent ago-PAMs to pure PAMs.

The synthesis of diverse analogs 13 (Scheme 1) proved straightforward with readily available starting materials from commercial sources.²⁰ 4-Chloro-1H-pyrrolo $[2,3-b]$ pyridine-6carbonitrile 9 could be alkylated with various R_1 moieties, but we first explored methy[l. Conversion to the boronate ester under](#page-5-0) standard conditions provided 10 in >90% yield for the two steps. Suzuki coupling with either benzyl halides or heteroaryl methyl halides 11 generated derivatives 12 in 50−84% yield. Finally,

Received: June 7, 2018 Accepted: September 4, 2018 Published: September 4, 2018

Figure 1. Structures of representative M1 PAMs 1−6. Of these, 1−4 are robust ago-PAMs in high expressing cell lines and native systems, resulting in severe seizures/cholinergic AEs due to overstimulation of M_1 . M_1 PAMs 5 and 6 are devoid of seizures/cholinergic AEs and show little to no M_1 agonism in high expressing cell lines and native systems.

Figure 2. Scaffold hopping approach based on M_1 PAMs 3, 5, and 6, which led to the discovery of a novel pyrrolo $[2,3-b]$ pyridine carboxamide-based series of M_1 ago-PAMs and pure PAMs, 8.

^aReagents and conditions: (a) R₁I, NaH, DMF, 0 °C−rt, 85−90%; (b) bis(pinacolato)diboron, KOAc, Pd(dppf)Cl₂, 1,4-dioxane, 100 °C, 16 h, >98%; (c) benzyl chloride, Cs_2CO_3 , Pd(dppf)Cl₂, THF/ H2O, 90 °C, 16 h; 50−84%; (d) conc. HCl, reflux, 2 h, >98%; (e) amine, HATU, DIEA, DMF, rt, 20 min, 35−66%.

hydrolysis of the nitrile and standard HATU amide coupling reactions delivered the putative M₁ PAMs 13 in 35–66% yield.²⁰

We then surveyed this new core with a variety of heterobiaryl tails and amide congeners, grouped based on internal knowled[ge](#page-5-0) regarding SAR to engender robust M_1 ago-PAM versus PAM activity. The first amide moiety surveyed was the (3S,4R)-3 hydroxy-4 amino tetrahydropyranyl (THP) amide, well documented to engender potent M_1 PAMs, but with undesired potent M_1 agonist activity.^{11,13–17,19} As we previously reported, M_1 PAM potencies below 100 nM, coupled with M_1 agonist activity, generally lead [to](#page-5-0) r[obus](#page-5-0)t cholinergic AEs.¹⁹ As anticipated, analogs 14 (Table 1) with diverse southern

^aCalcium mobilization assays with rat M_1 -CHO cells performed in the presence of an EC_{20} fixed concentration of acetylcholine for PAM, and no exogenous ACh for the agonist EC_{50} ; values represent means from three $(n = 3)$ independent experiments performed in triplicate.

heterobiaryl tails provided potent M_1 ago-PAMs. Analog 14b stands out as a 14 nM M_1 PAM (86% ACh max), with an agonist EC_{50} of 575 nM (67% ACh max) and a direction not worthy of further pursuit, as overstimulation of M_1 would definitely result.

As the analogous cyclohexyl congener 15 of THP 14 generally afforded a lower degree of M_1 agonism, we next evaluated such analogs. As shown in Table 2, analogs 15 were also potent M_1 ago-PAMs (15a-c), but with reduced M_1 agonism relative to $14,^{11,13-17,19}$ as well [as a mo](#page-2-0)derately potent M₁ PAM (15d). Interestingly, both 15b and 15c were not CNS penetrant in rat, wi[th](#page-5-0) K_p K_p [valu](#page-5-0)es below level of quantitation (BLQ), despite favorable CNS MPO scores $(4-5)$.²¹ Previously, we have shown that the secondary hydroxyl moiety engenders poor CNS penetration in rodents, and futu[re analogs would avoid this](#page-5-0) moiety.¹⁹

Thus, we evaluated the profile of simple, unsubstituted pyranyl [a](#page-5-0)mides, as we hoped this would engender a balance between M_1 PAM potency (and diminished M_1 agonism) and

Table 2. Structures and M_1 Pharmacology for Analogs 15^a

^aCalcium mobilization assays with rM_1 -CHO cells performed in the presence of an EC_{20} fixed concentration of acetylcholine for PAM, and no exogenous ACh for the agonist $EC₅₀$; values represent means from three $(n = 3)$ independent experiments performed in triplicate.

CNS penetration. Our initial evaluation produced pyranyl amide 16 and the spiro-cyclic congener 17 (Figure 3); importantly,

both proved to be pure M_1 PAMs (agonist EC_{50} s > 10 μ M). However, M_1 PAM potency was modest (16: rM₁ PAM EC₅₀ = 560 nM, $pEC_{50} = 6.25 \pm 0.05$, ACh max = 89 \pm 1; 17: rM₁ PAM $EC_{50} = 604$ nM, $pEC_{50} = 6.22 \pm 0.04$, ACh max = 91 \pm 1). Still, similar pyranyl amides (lacking the secondary hydroxyl moiety) in other series (such as 5 and 6) were inactive or weak, suggesting this is a unique core. To further optimize M_1 PAM potency with the pyranyl amide, we next explored alternative heterobiaryl tails.

Surprisingly, while holding the pyranyl amide moiety constant in analogs 18 and varying the heterobiaryl tail (Table 3), the lack

Table 3. Structures and M_1 Pharmacology for Analogs 18^a

 a Calcium mobilization assays with rM₁-CHO cells performed in the presence of an EC_{20} fixed concentration of acetylcholine for PAM, and no exogenous ACh for the agonist EC_{50} ; values represent means from three $(n = 3)$ independent experiments performed in triplicate.

of M_1 agonism in these des-hydroxy congeners proved to be a generally conserved pharmacological property. Of these, 18c emerged as an attractive M_1 PAM (EC₅₀ = 230 nM, 93% ACh max; log $K_b = -4.82$; log $\alpha\beta = 2.6$) with minimal to no agonism in our high expressing cell line (M_1 agonist EC₅₀ > 10 μ M).²⁰ Replacement of the N-Me pyrazole in 16 for an oxazole analog (e.g., 18f) provided an M₁ PAM of comparable potency (EC₅₀ [=](#page-5-0) 760 nM, 88% ACh max) to 16 and still devoid of M_1 agonism. Regioisomeric pyridyl pyrazole heterobiaryls 18b and 18c showed similar M_1 PAM activity, but 18b displayed weak M_1 agonism (∼34% @ 10 μM). An N-linked pyrazole congener, 18a, displayed similar PAM potency and weak M_1 agonism (\sim 26% at 10 μ M) as well, highlighting the sensitivity of this series for M_1 agonist activity.

A larger amide scan of the pyrazole regioisomers 19 based on the 18b heterobiaryl tail motif (Table 4) similarly identified a

Table 4. Structures and M_1 Pharmacology for Analogs 19^a

^aCalcium mobilization assays with rM_1 -CHO cells performed in the presence of an EC_{20} fixed concentration of acetylcholine for PAM, and no exogenous ACh for the agonist $EC₅₀$; values represent means from three $(n = 3)$ independent experiments performed in triplicate.

number of pure M_1 PAMs and ago-PAMs (with novel amides), but none showed advantages over analogs highlighted in Tables 1−3. However, unlike predecessor series 1−4, this scaffold afforded pure M_1 PAMs, devoid of agonist activity i[n high](#page-1-0) [ex](#page-1-0)[pre](#page-2-0)ssing M_1 cell lines.

Prior to assessing physiochemical and DMPK properties, we wanted to ensure good species alignment for key M_1 PAMs at both human and rat M_1 . Gratifyingly, there was high species conservation (Table 5), indicating translational potential for this novel series of M_1 PAMs.

The M_1 PAMs highlighted in Table 5 displayed favorable physiochemical properties (MWs < 450, cLogPs between 1.2 and 4.0, TPSAs $\overline{89-102}$ \AA^2 , CNS MPO scores between 3.2 and

Table 5. Human and Rat M_1 PAM Activities for Select Analogs 14−18

performed in the presence of an EC_{20} fixed concentration of acetylcholine for PAM; values represent means from three $(n = 3)$ independent experiments performed in triplicate.

4.3) and acceptable in vitro DMPK profiles (Table 6).²⁰ The majority show modest predicted hepatic clearance in human and

Table 6. In Vitro DMPK Data and PBL Data for Sele[ct](#page-5-0) [M](#page-5-0)₁ PAMs $14-18^a$

property	14a	14c	15 _b	15c	16	18c
MW	445	446	443	444	427	430
cLogP	2.40	1.22	4.02	2.84	5.21	1.77
TPSA	89.7	102.1	80.5	92.9	60.3	81.9
In Vitro PK Parameters						
rat CL_{HEP} (mL/min/kg)	39.1	42.0	49.6	27.3	47.9	44.2
human CL_{HFP} $(mL/min/kg)$,	6.97	10.6	17.8	9.3	10.7	6.78
rat $f_{\rm u}$ (plasma)	0.03	0.02	0.03	0.06	0.04	0.06
human $f_{\rm u}$ (plasma)	0.02	0.02	0.12	0.04	0.02	0.04
rat f_n (brain)	0.01	0.01	0.04	0.07	0.01	0.08
Rat PBL $(IV, 0.2 \text{ mg/kg})$						
K_{p}	0.11	0.21	BLO	BLO	BLO	0.28
$K_{p,\text{uu}}$	0.05	0.13	BLO	BLO	BLO	0.32
Mouse PBL $(IP, 100 \text{ mg/kg})$						
K_{p}	0.09	ND	0.28	0.03	ND	0.16
$K_{\rm p,uu}$	0.04	ND	0.17	0.04	ND	0.18
${}^{\alpha}$ BLQ: brain concentration is below limit of quantitation (BLQ) in						
low dose rat cassette (0.2 mg/kg) . ND = not determined.						

rat, good free fraction (human, rat, and rat brain homogenate binding), but low to modest CNS penetration in rat (rat brain/ plasma K_p s and $K_{p,\text{uu}}$ s \leq 0.3). Moreover, as we have seen significant variations between brain penetration in mice and rats, we also assessed mouse K_p at 100 mg/kg ip. Despite low but measurable K_p in mice, brain levels were high (both total and unbound). The low $K_p s$ were driven by very high plasma concentrations (Supplemental Figure 1).²⁰

As we have documented previously,^{11,13-17,19} robust agoPAM activity ca[n lead to over stimulat](http://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.8b00261/suppl_file/ml8b00261_si_001.pdf)i[on](#page-5-0) of the M_1 receptor and/or induce M_1 agonist-dependent l[ong-t](#page-5-0)e[rm d](#page-5-0)epression in the prefrontal cortex leading to cognitive dysfunction and, in mice (the most susceptible species to excessive M_1 activation), Racine scale 4 to 5 seizures.^{11,14,17,19} Thus, a quick phenotypic screen in mice (at 100 mg/kg IP) to assess seizure liability has become a proven method [of choice](#page-5-0) to eliminate compounds from the lead progression flow-chart and deem them nondevelopable. Interestingly, this pyrrolo[2,3-b]pyridine carboxamide-based series showed a pronounced tendency for cholinergic adverse effect liability in the mouse seizure model

(Figure 4), with all analogs showing robust Racine scale seizures within 30 min of IP administration (100 mg/kg), save 18c

Figure 4. Phenotypic mouse seizure assay with compounds dosed at 100 mg/kg i.p. VU6007477 (18c) was devoid of seizure liability (mouse brain levels: 7 μ M total, 546 nM unbound), whereas 14a, 14c, 15b, and 15c elicited robust Racine scale $4/5$ seizures.²⁰

(VU6007477). These data further highlight the range of clean versus adverse event (AE) in vivo pharmacology that can occur within a highly conserved chemical series of M_1 PAMs (and the value of an informative phenotypic triage screen). $14,19$

Due to the significant AE liability within this series, we were hesitant to further advance this series do[wn t](#page-5-0)he lead optimization flow-chart; however, additional characterization quickly led to a no-go decision for both 18c and this series. While 18c was highly selective for M₁ (M₂−M₅ EC₅₀s > 30 μ M, Supplemental Figure 2), 20 it proved to be a human P-gp substrate ($ER = 4.5$), with only moderate permeability ($Papp =$ 1.2×10^{-5} [cm/s\). Thus,](http://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.8b00261/suppl_file/ml8b00261_si_001.pdf) 18c is a new in vitro/in vivo rodent M₁ "pure" PAM tool compou[nd](#page-5-0) [but](#page-5-0) [is](#page-5-0) [not](#page-5-0) [suitable](#page-5-0) [for](#page-5-0) [translation](#page-5-0) [to](#page-5-0) the clinic.

In summary, a scaffold-hopping exercise identified a novel pyrrolo[2,3-b]pyridine carboxamide-based series of M_1 PAMs that displayed a range of potent ago-PAM and pure PAM pharmacology. While congeners possessing the prototypical (3S,4R)-3-hydroxy-4 amino tetrahydropyranyl (THP) amide moiety (or the cylcohexyl analog) engendered a range of M_1 ago-PAM activity, they also resulted in severe Racine scale 4/5 seizures that correlated with the presence of M_1 agonist activity (which is predicted to result in overstimulation of M_1). In contrast, a simple pyranyl amide derivative, 18c (VU6007477), was a pure M_1 PAM in high expressing cell lines (M_1) agonist $EC_{50} > 10 \mu M$), displayed improved CNS penetration over the hydroxylated congeners, and was devoid of seizure liability in mice. While 18c was not advanceable as a clinical candidate, it remains an important new rodent tool compound to study selective M_1 activation without concern for cholinergic toxicity and related AEs. The optimization of other pure M_1 PAMs, devoid of cholinergic toxicity and adverse effect liability, with translational potential, will be reported in due course.

■ ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsmedchemlett.8b00261.

[General methods for t](http://pubs.acs.org)he synthesi[s and characterization of](http://pubs.acs.org/doi/abs/10.1021/acsmedchemlett.8b00261) [all com](http://pubs.acs.org/doi/abs/10.1021/acsmedchemlett.8b00261)pounds, and methods for the in vitro and in vivo DMPK protocols and supplemental figures (PDF)

■ AUTHOR INFORMATION

Corresponding Author

*Phone: 1 615-322-8700. Fax: 1 615-936-4381. E-mail: craig. lindsley@vanderbilt.edu.

ORCID[®]

[Craig W. Lindsley:](mailto:craig.lindsley@vanderbilt.edu) 0000-0003-0168-1445

Author Contributions

C.W.L., C.M.N., P.J[.C., H.P.C., and J.M](http://orcid.org/0000-0003-0168-1445).R. drafted/corrected the manuscript. J.L.E., E.S.C., M.F.L., R.A.C., and D.W.E. performed the chemical synthesis. C.W.L., P.J.C., C.M.N., J.K.R., and H.P.C. oversaw the medicinal chemistry and target selection and interpreted the biological data. V.B.L. and H.P.C. performed the in vitro molecular pharmacology studies. A.L.B. performed the in vitro and in vivo DMPK studies. J.M.R. oversaw the in vivo experiments. J.W.D. performed the in vivo studies. All authors have given approval to the final version of the manuscript.

Notes

The authors declare the following competing financial interest(s): Hold IP on M1 PAMs.

■ ACKNOWLEDGMENTS

The authors would also like to thank William K. Warren, Jr. and the William K. Warren Foundation who funded the William K. Warren, Jr. Chair in Medicine (to C.W.L.). Studies were supported by the NIH (NIMH, MH082867 and MH108498).

■ ABBREVIATIONS

PAM, positive allosteric modulator; PBL, plasma/brain level; AE, adverse event; dppf, 1′-ferrocenediyl-bis- (diphenylphosphine); HATU, 1-[Bis(dimethylamino) methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate; DIEA, diisopropylethyl amine; DMPK, drug metabolism and pharmacokinetics; MPO, multiparameter optimization

■ REFERENCES

(1) Melancon, B. J.; Tarr, J. C.; Panarese, J. D.; Wood, M. R.; Lindsley, C. W. Allosteric modulation of the M_1 muscarinic acetylcholine receptor: improving cognition and a potential treatment for schizophrenia and Alzheimer's disease. Drug Discovery Today 2013, 18, 1185−1199.

(2) Bridges, T. M.; LeBois, E. P.; Hopkins, C. R.; Wood, M. R.; Jones, J. K.; Conn, P. J.; Lindsley, C. W. Antipsychotic potential of muscarinic allosteric modulation'. Drug News Perspect. 2010, 23, 229−240.

(3) Levey, A. I.; Edmunds, S. M.; Koliatsos, V.; Wiley, R. G.; Heilman, C. J. Expression of M1-M4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervations. J. Neurosci. 1995, 15, 4077−4092.

(4) Levey, A. I. Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 13541−13546.

(5) Felder, C. C.; Porter, A. C.; Skillman, T. L.; Zhang, L.; Bymaster, F. P.; Nathanson, N. M.; Hamilton, S. E.; Gomeza, J.; Wess, J.; McKinzie, D. L. Elucidating the role of muscarinic receptors in psychosis. Life Sci. 2001, 68, 2605−2613.

(6) Caccamo, A.; Oddo, S.; Billings, L. M.; Green, K. N.; Martinez-Coria, H.; Fisher, A.; LaFerla, F. M. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 2006, 49, 671−682.

(7) Conn, P. J.; Lindsley, C. W.; Meiler, J.; Niswender, C. M. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for the treatment of CNS disorders. Nat. Rev. Drug Discovery 2014, 13, 692−708.

(8) Bender, A. M.; Jones, C. K.; Lindsley, C. W. Classics in Chemical Neuroscience: Xanomeline. ACS Chem. Neurosci. 2017, 8, 435−443.

(9) Ma, L.; Seager, M.; Wittman, M.; Bickel, N.; Burno, M.; Jones, K.; Graufelds, V. K.; Xu, G.; Pearson, M.; McCampbell, A.; Gaspar, R.; Shughrue, P.; Danzinger, A.; Regan, C.; Garson, S.; Doran, S.; Kreatsoulas, C.; Veng, L.; Lindsley, C. W.; Shipe, W.; Kuduk, S.; Jacobson, M.; Sur, C.; Kinney, G.; Seabrook, G. R.; Ray, W. J. Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 15950− 15955.

(10) Shirey, J. K.; Brady, A. E.; Jones, P. J.; Davis, A. A.; Bridges, T. M.; Jadhav, S. B.; Menon, U.; Christain, E. P.; Doherty, J. J.; Quirk, M. C.; Snyder, D. H.; Levey, A. I.; Watson, M. L.; Nicolle, M. M.; Lindsley, C. W.; Conn, P. J. A selective allosteric potentiator of the M_1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and can restore impairments of reversal learning. J. Neurosci. 2009, 29, 14271−14286.

(11) Moran, S. P.; Dickerson, J. W.; Plumley, H. C.; Xiang, Z.; Maksymetz, J.; Remke, D. H.; Doyle, C. A.; Niswender, C. M.; Engers, D. W.; Lindsley, C. W.; Rook, J. M.; Conn, P. J. M₁ positive allosteric modulators lacking agonist activity provide the optimal profile for enhancing cognition. Neuropsychopharmacology 2018, 43, 1763.

(12) Ghoshal, A.; Rook, J.; Dickerson, J.; Roop, G.; Morrison, R.; Jalan-Sakrikar, N.; Lamsal, A.; Noetzel, M.; Poslunsey, M.; Stauffer, S. R.; Xiang, Z.; Daniels, J. S.; Niswender, C. M.; Jones, C. K.; Lindsley, C. W.; Conn, P. J. Selective potentiation of M_1 muscarinic receptors reverses deficits in plasticity and negative and cognitive symptoms in repeated phencyclidine treated mouse model of schizophrenia. Neuropsychopharmacology 2016, 41, 598−610.

(13) Grannan, M. D.; Mielnik, C. A.; Moran, S. P.; Gould, R. W.; Ball, J.; Bubser, M.; Ramsey, A. J.; Abe, M.; Cho, H. P.; Nance, K. D.; Blobaum, A. L.; Niswender, C. M.; Conn, P. J.; Lindsley, C. W.; Jones, C. K. Prefrontal cortex-mediated impairments in a genetic model of NMDA receptor hypofunction are reversed by the novel M_1 PAM VU6004256. ACS Chem. Neurosci. 2016, 7, 1706−1716.

(14) Rook, J. M.; Abe, M.; Cho, H. P.; Nance, K. D.; Luscombe, V. B.; Adams, J. J.; Dickerson, J. W.; Remke, D. H.; Garcia-Barrantes, P. M.; Engers, D. W.; Engers, J. L.; Chang, S.; Foster, J. J.; Blobaum, A. L.; Niswender, C. M.; Jones, C. K.; Conn, P. J.; Lindsley, C. W. Diverse effects on M_1 signaling and adverse effect liability within a series of M_1 Ago-PAMs. ACS Chem. Neurosci. 2017, 8, 866−883.

(15) Davoren, J. E.; O'Neil, S. V.; Anderson, D. P.; Brodeny, M. A.; Chenard, L.; Dlugolenski, K.; Edgerton, J. R.; Green, M.; Garnsey, M.; Grimwood, S.; Harris, A. R.; Kauffman, G. W.; LaChapelle, E.; Lazzaro, J. T.; Lee, C.-W.; Lotarski, S. M.; Nason, D. M.; Obach, R. S.; Reinhart, V.; Salomon-Ferrer, R.; Steyn, S. J.; Webb, D.; Yan, J.; Zhang, L. Design and optimization of selective azaindole amides M1 positive allosteric modulators. Bioorg. Med. Chem. Lett. 2016, 26, 650−655.

(16) Davoren, J. E.; Lee, C.-W.; Garnsey, M.; Brodney, M. A.; Cordes, J.; Dlugolenski, K.; Edgerton, J. R.; Harris, A. R.; Helal, C. J.; Jenkinson, S.; Kauffman, G. W.; Kenakin, T. P.; Lazzaro, J. T.; Lotarski, S. M.; Mao, Y.; Nason, D. M.; Northcott, C.; Nottebaum, L.; O'Neil, S. V.; Pettersen, B.; Popiolek, M.; Reinhart, V.; Salomon-Ferrer, R.; Steyn, S. J.; Webb, D.; Zhang, L.; Grimwood, S. Discovery of the potent and selective M1 PAM-agonist N-[(3R,4S)-3-hydroxytetrahydro-2Hpyran-4-yl]-5-methyl-4-[4-(1,3-thiazol-4-yl)benzyl]pyridine-2-carboxamide (PF-06767832): Evaluation of efficacy and cholinergic side effects. J. Med. Chem. 2016, 59, 6313−6328.

(17) Moran, S. P.; Cho, H. P.; Maksymetz, J.; Remke, D.; Hanson, R.; Niswender, C. M.; Lindsley, C. W.; Rook, J. M.; Conn, P. J. PF-06827443 displays robust allosteric agonist and positive allosteric modulator activity in high receptor reserve and native systems. ACS Chem. Neurosci. 2018, DOI: 10.1021/acschemneuro.8b00106.

(18) Lange, H. S.; Cannon, C. E.; Drott, J. T.; Kuduk, S. D.; Uslaner, J. M. The M1 muscarinic positive allosteric modulator PQCA improves performance on trans[latable](http://dx.doi.org/10.1021/acschemneuro.8b00106) [tests](http://dx.doi.org/10.1021/acschemneuro.8b00106) [of](http://dx.doi.org/10.1021/acschemneuro.8b00106) [memory](http://dx.doi.org/10.1021/acschemneuro.8b00106) [and](http://dx.doi.org/10.1021/acschemneuro.8b00106) [attention](http://dx.doi.org/10.1021/acschemneuro.8b00106) [in](http://dx.doi.org/10.1021/acschemneuro.8b00106) rhesus monkeys. J. Pharmacol. Exp. Ther. 2015, 355, 442−450.

(19) Rook, J. M.; Berton, J. L.; Cho, H. P.; Gracia-Barrantes, P. M.; Moran, S. P.; Maksymetz, J. T.; Nance, K. D.; Dickerosn, J. W.; Remke,

D. H.; Chang, S.; Harp, J. M.; Blobaum, A. L.; Niswender, C. M.; Jones, C. K.; Stauffer, S. R.; Conn, P. J.; Lindsley, C. W. A novel M1 PAM VU0486846 exerts efficacy in cognition models without displaying agonist activity or cholinergic toxicity. ACS Chem. Neurosci. 2018, DOI: 10.1021/acschemneuro.8b00131.

(20) See Supporting Information for full details.

(21) Wager, T. T.; Hou, X.; Verhoest, P. R.; Villalobos, A. Central [nervous system multiparameter optimiz](http://dx.doi.org/10.1021/acschemneuro.8b00131)ation desirability: application in drug discovery. [ACS Chem. Neurosc](http://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.8b00261/suppl_file/ml8b00261_si_001.pdf)i. 2016, 7, 767−775.