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Abstract

A prediction of the steady state reconnection electric field in asymmetric reconnection is obtained 

by maximizing the reconnection rate as a function of the opening angle made by the upstream 

magnetic field on the weak magnetic field (magnetosheath) side. The prediction is within a factor 

of 2 of the widely examined asymmetric reconnection model (Cassak & Shay, 2007, https://

doi.org/10.1063/1.2795630) in the collisionless limit, and they scale the same over a wide 

parameter regime. The previous model had the effective aspect ratio of the diffusion region as a 

free parameter, which simulations and observations suggest is on the order of 0.1, but the present 

model has no free parameters. In conjunction with the symmetric case (Liu et al., 2017, https://

doi.org/10.1103/PhysRevLett.118.085101), this work further suggests that this nearly universal 

number 0.1, essentially the normalized fast-reconnection rate, is a geometrical factor arising from 

maximizing the reconnection rate within magnetohydrodynamic-scale constraints.

Plain Language Summary—To understand the evolution of many space and astrophysical 

plasmas, it is imperative to know how fast magnetic reconnection processes the magnetic flux. 

Researchers found that reconnection in both symmetric and asymmetric geometries exhibits a 

normalized reconnection rate of order 0.1. In this work, we show that this nearly universal value in 

asymmetric geometry is also the maximal rate allowed in the magnetohydrodynamic scale. This 

result has applications to the transport process at plasma boundary layers like Earth’s 

magnetopause.

1. Introduction

Magnetic reconnection at Earth’s magnetopause not only allows the transport of solar wind 

plasmas into Earth’s magnetosphere but also enhances the convection of magnetic flux to 

Earth’s nightside (Dungey, 1961). The magnetic fields and plasma conditions on the two 
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sides of the magnetopause current sheet are typically different (e.g., Phan & Paschmann, 

1996), a feature that also applies to current sheets in planetary (Fuselier et al., 2014; 

Masters, 2015), solar (Murphy et al., 2012), laboratory (Yoo et al., 2014), fusion (Mirnov et 

al., 2006), and turbulent (Servidio et al., 2009; Zhdankin et al., 2013) plasmas. Reconnection 

with these different upstream conditions is commonly called asymmetric. To model the 

global circulation of magnetospheric plasmas around Earth and the magnetic energy release 

therein, it is crucial to understand how fast the magnetic flux is processed by asymmetric 

reconnection at Earth’s magnetopause (Borovsky, 2008; Borovsky & Birn, 2013).

One measure of the reconnection rate is the strength of the reconnection electric field inside 

the reconnection diffusion region that, according to Faraday’s law, is proportional to the 

magnetic flux change rate at the diffusion region. In the symmetric limit, simulations and 

theories suggest a normalized rate of an order 0.1 (Birn et al., 2001; Cassak et al., 2017; 

Comisso & Bhattacharjee, 2016; Hesse et al., 1999; Liu et al., 2017; Parker, 1973; Shay 

etal., 1999). At Earth’s magnetopause, directly measuring the reconnection electric field has 

been conducted although it remains challenging (e.g., Chen et al., 2017; Mozer & Retinό, 

2007; Vaivads et al., 2004). A good proxy of the reconnection rate is the convective electric 

field upstream of the diffusion region induced by the inflowing plasma. Such an electric field 

was inferred from the ion velocity into the ion diffusion region (e.g., Fuselier et al., 2005; 

Mozer & Hull, 2010; Phan et al., 2001; Wang etal., 2015), or from the electron velocity into 

the electron diffusion region (Chen et al., 2017). The reconnection rate can also be estimated 

from the magnitude of reconnected magnetic fields downstream of the ion diffusion region 

(Phan et al., 2001) using Sweet-Parker scaling (Parker, 1957; Sweet, 1958) or from the 

energy conversion rate (Rosenqvist etal., 2008).

Observational evidence (Fuselier etal., 2016; Mozer&Hull, 2010; Wang etal., 2015) suggests 

that the strength of the reconnection electric field follows the scaling

ECS = 2
B1B2

B1 + B2

Vout
c

δ
L eff

1

that is derived using conservation laws in an asymmetric geometry (Cassak & Shay, 2007). 

B1 and B2 are the reconnecting component of magnetic fields at the magnetosheath and 

magnetosphere sides, respectively. The outflow speed Vout = B1B2/4πρ 1/2 is the hybrid 

Alfvén speed based on a hybrid density ρ = B1ρ2 + B2ρ1 / B1 + B2  Here (𝛿/L)eff is the 

effective aspect ratio of the diffusion region, which is a free parameter in this model for 

collisionless reconnection. Observations suggest that (𝛿/L)eff is of order 0.1. Numerical 

simulations have also confirmed this scaling and demonstrated that (𝛿/L)eff ~ 0.1; these 

include local magnetohydrodynamic (MHD) simulations with a localized resistivity (Birn et 

al., 2008), local two-fluid (Cassak & Shay, 2008) and local particle-in-cell (PIC) (Malakit et 

al., 2010; Pritchett, 2008) simulations, global magnetospheric MHD simulations (Borovsky, 

2008; Borovsky & Birn, 2013; Komar & Cassak, 2016; Ouellette et al., 2013; Zhang et al., 

2016), and global Vlasov simulations (Hoilijoki et al., 2017). This scaling along with (𝛿/L)eff 

~ 0.1 was then employed to develop a quantitative model of the coupling between the solar 
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wind and Earth’s magnetosphere (Borovsky, 2008; Borovsky & Birn, 2013). Given these 

successes of equation (1), it remains not understood why the effective aspect ratio in this 

model should be of order 0.1. This obviously requires an explanation.

In this Letter, we provide a theoretical explanation for the collisionless asymmetric 

reconnection rate. We generalize the approach discussed in Liu et al. (2017) that was used to 

model the symmetric reconnection electric field. Through analyzing force balance at the 

inflow and outflow regions, we cast the reconnection electric field into the form of a 

function of the opening angle made by the upstream magnetic field on the weak field side. A 

prediction is then obtained by maximizing this rate as a function of this opening angle, 

which we find to agree with Ecs within a factor of 2, with agreement in the scaling sense 

over a wide range of upstream plasma parameters. This comparison demonstrates that this 

nearly universal effective aspect ratio of order 0.1 in the collisionless limit (Cassak & Shay, 

2008) can also be explained by geometrical constraints on the MHD scale, independent of 

the dissipation mechanism.

2. Constraint on the Reconnecting Field

We consider the geometry and notation illustrated in Figure 1. The asymptotic field Bx2 on 

side 2 is larger than the asymptotic value Bx1 on side 1.Thus, sides 1 and 2 nominally 

correspond to typical conditions at the magnetosheath and magnetosphere, respectively. 

Unlike the model in Cassak and Shay (2007), the strength of the reconnecting field 

immediately upstream of the ion diffusion region can be different from the asymptotic field 

on each side. We use a subscript “m” in Bxmi to indicate the microscopic ion diffusion 

region scale, and i = 1,2 indicates the two inflow sides. Vout,m is the outflow speed 

immediately downstream of the diffusion region. During the nonlinear stage of reconnection, 

the angle θi,· (as sketched for side 1) made by the upstream magnetic field lines opens out 

on each side. This geometry unavoidably induces a tension force B ·∇BZ /4π directed away 

from the x line (as sketched for side 1), which is mostly balanced by the magnetic pressure 

gradient force − ∇B2/8π z directed toward the x line (as sketched for side 1). Such a finite 

magnetic pressure gradient requires the reduction of the reconnecting magnetic field 

immediately upstream of the diffusion region. This effect is modeled in Liu et al. (2017) that 

results in an expression

Bxmi ≃ Bxi
1 − Si

2

1 + Si
2 2

Here Si = tan|θi| is the slope of the upstream magnetic field line on each side, as sketched for 

side 1 in Figure 1. From equation (2), the reconnecting magnetic field Bxmi vanishes as the 

opening angle approaches 45° (i.e., Si → 1). In the 2-D approximation, we can write 

B = ∇ × Avy + Bvy The sample field lines in Figure 1 are evenly spaced contours of the flux 

function Ay; hence, the “line density” illustrates the strength of the in-plane magnetic field. 

The field lines approaching the diffusion region become less dense (i.e., weaker) compared 
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with its asymptotic value on each side, illustrating the reduction of the reconnecting field 

due to the opening out of the upstream magnetic field lines.

The reconnected field immediately downstream of the diffusion region scales as

Bzm ≃ BxmiSi 3

This assumes that the reconnected field calculated from sides 1 and 2 is identical, which 

naturally leads to a larger opening angle on side 1, as illustrated in Figure 1. This also means 

that the reduction of reconnecting magnetic field on the weaker field side has a stronger 

effect in limiting the reconnection rate.

Because the field strength of the reconnecting field on side 1 is weaker than that on side 2, 

all possible solutions of this model must be found in the range 0 < S1 < 1. Therefore, we 

write Bzm as a function of S1:

Bzm S1 ≃
1 − S1

2

1 + S1
2 S1Bx1 4

3. Constraint on the Outflow Speed

To estimate the reconnection electric field, Ey ≃ BzmVout,m/c, we need to calculate the 

outflow speed Vout,m. We consider the notation and geometry in Figure 2. The dimension of 

the diffusion region is 2L x 2𝛿. Lines a - c and a - d represent the separatrices on side 2 and 

side 1, respectively, and “a” marks the x line. We first derive the outflow density ρ as a result 

of mixing of plasmas from two sides. The integral form of Gauss’ law fora 2-D system is ∮ 
B⋅dl = 0 where dl is along the perimeter of a closed 2-D area. By applying this rule to the 

triangle area a - b - c in Figure 2, we get ∫
a

b
Bzdx + ∫

b

c
Bxdz + ∫

c

a
B ⋅ dl = 0 The last integral 

vanishes identically because the magnetic separatrix passes the upper right corner at point 

“c.” Thus, Bzm/2 L ≃ Bxm2/2 δ2 The factor of 2 in the denominator arises from the 

assumption that Bx and Bz vary linearly with distance along z and x, respectively. A similar 

exercise reveals BzmL ≃ Bxm1δ1 Combined with the relation δ1 + δ2 = 2δ, we get

Bzm = 2
Bxm1Bxm2

Bxm1 + Bxm2

δ
L 5

We now estimate the mass density as in Cassak and Shay (2007), taking care to note that the 

conservation laws are evaluated at the microscopic “m” scale. Mass conservation gives 

2ρVoutδ ≃ ρ1Vzm1L + ρ2Vzm2L In a 2-D steady state, the out-of-plane electric field Ey is 

uniform around the diffusion region and hence 
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V _ { z m 1 } B _ { X m 1 } =Vzm2Bxm2 = V  out , mBzm Eliminating the velocities gives the 

hybrid mass density (Cassak & Shay, 2007),

ρ ≃
Bxm1ρ2 + Bxm2ρ1

Bxm1 + Bxm2
6

Now we have enough information to derive the outflow speed from the momentum equation 

in the outflow direction x, which is written as (ρ/2)∂xVx
2 ≃ Bz∂zBx/4π − ∂xB2/8π Note that we 

have ignored the thermal pressure gradient by the same reasoning discussed in Birn et al. 

(2010). To get an averaged outflow speed, we follow a process similar to Swisdak and Drake 

(2007); we apply ∫0

L
dx∫−δ

δ
dz to the momentum equation, assuming 

Bz = Bz(x), Bx = Bx(z), Vx = Vx(x), and a uniform density ρ = ρ inside the diffusion region. 

These lead to (ρ/2)Vout
2 2δ ≃ Bzm/2 L Bxm2 + Bxm1 /4π − Bzm

2 2δ/8π Substituting equation (5) 

for Bzm, we get

V  out , m ≃
Bxm1Bxm2

4πρ 1 − 4
Bxm1Bxm2

Bxm1 + Bxm2
2

δ
L

2
7

The first term inside the square brackets results from the averaged magnetic tension force 

and is the speed obtained in previous studies (Cassak & Shay, 2007; Swisdak & Drake, 

2007). The reduction of the reconnecting field discussed in the previous section decreases 

the tension force that drives the outflow away from the diffusion region. The second term 

proportional to (𝛿/L)2 is a new term that arises from the magnetic pressure gradient, and it 

further reduces the outflow speed. However, the prefactor dependent on Bxm1 and Bxm2 is 1 

for the symmetric case (Cassak et al., 2017; Liu et al., 2017) and decreases for increasing 

field asymmetries, so the correction by the magnetic pressure gradient to the outflow speed 

is weakened even more for asymmetric reconnection than symmetric reconnection (Liu et 

al., 2017).

We cast the outflow speed into a function of S1(≃ 𝛿1/L) instead,

Vout, m S1 ≃
Bxm1Bxm2 − S1

2Bxm1
2

4πρ 8

The associated reconnection electric field is

Ey S1 ≃ Bzm S1 V  out , m S1 /c 9
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which is a function of S1 using equations (2), (4), (6), and (8). We hypothesize that the 

reconnection rate corresponds to the maximum allowable value. Our prediction of the 

reconnection electric field is ER = max(Ey), which can be found in the range 0 ≤ S1 ≤ 1.

Note that writing Bxm2 as an explicit function of S1 can be done, but there is no simple 

expression for it. We need to use the relation Bxm2S2 = Bxm1 S1 and equation (2) to derive 

S2(S1) first, which involves finding the roots of a cubic function 

Ey S1 ≃ Bzm S1 V  out , m S1 /c is then plugged into equation (2) to get Bxm2(S1). These 

calculations can be performed numerically in a straightforward fashion.

4. Prediction

In the following, we find the maximum reconnection electric field ER from equation (9) 

numerically. The result for a wide parameter range of magnetic field ratio Bx1/Bx2 and 

density ratio n1/n2 is shown in Figure 3. The predicted opening angles on the two sides of 

the current sheet are shown in Figures 3a and 3b. The opening angle θ1 of the upstream 

magnetic field line on side 1 increases mildly from ≃18.2° in the symmetric limit to ≃21.5° 

in the strong field asymmetry limit. In the same limit, the field line opening angle θ2 on side 

2 becomes small (→0°) because the magnetic field is much stiffer on side 2 compared to 

that on side 1. This qualitatively agrees with all previous asymmetric reconnection 

simulations, which show θ1 >θ2. In Figure 3c, the reconnection electric field 

ER ≡ CER/V A × 1Bχ1 is normalized to the Alfvén speed V A × 1 ≡ Bχ1/ 4πρ1 and the field 

strength Bx1 at the magnetosheath (side 1).The normalized rate ÊR is ≃ 0.2 in the symmetric 

limit (i.e., log(ÊR) ≃ −0.7 when n1/n2 = 1 and Bx1/Bx2 = 1), as expected from Liu et al. 

(2017). In Figure 3d, we compare our prediction to ECS with (𝛿/L)eff = 0.1. It is important to 

learn that this prediction agrees with ECS within a factor of 2, and they scale together over a 

wide range of parameter space. In conjunction with the symmetric case discussed in Liu et 

al. (2017), this consistency in the asymmetric limit suggests that the geometrical factor, (𝛿/

L)eff ≃ 0.1, left unexplained in equation (1), also arises from the MHD-scale constraints 

imposed at the inflow and outflow regions.

To understand better the difference in different models, we plot the predictions as a function 

of Bx1 /Bx2 with a fixed n1 /n2 = 1 in Figure 4a and as a function of n1/n2 with a fixed 

Bx1/Bx2 = 1 in Figure 4b. Red curves show the value of ECS normalized to VAx1 Bx1/c, solid 

black curves are ÊR (our prediction), dashed black curves are the maximum of equation (9) 

using V  out m S1 ≃ Bxm1Bxm2/4πρ 1/2 instead of equation (7); that is, the reduction of the 

outflow speed from the magnetic pressure gradient is not considered. The red and solid 

black curves exhibit a similar scaling, as suggested in Figure 3d. The dashed black curve is 

very close to the solid black curve in each panel, suggesting that the reduction of the 

reconnecting field, rather than the reduction in Vout,m due to the magnetic pressure gradient 

force, is the dominant mechanism that constrains the rate.
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5. Summary and Discussion

In this Letter, we derive the collisionless asymmetric magnetic reconnection rate using a new 

approach. The prediction is obtained through maximizing a model rate that considers the 

MHD-scale constraints at both the inflow and outflow regions. The predicted value is found 

to be within factor of 2 of the collisionless asymmetric reconnection rate that was widely 

examined (Cassak & Shay, 2007, 2008). This comparison suggests that constraints at the 

MHD scale explain the geometrical factor (𝛿/L)eff of order 0.1 inferred but not explained in 

the rate model of Cassak and Shay (2008), putting the scaling in equation (1) on solid 

footing. The analysis further shows that the dominant limiting effect that constrains the 

maximum reconnection rate is the field reduction at the weakfield (magnetosheath) side.

We have assumed that the system self-selects the maximum energy conversion rate, that is, 

that it assumes the maximum possible reconnection rate. We acknowledge that this is an 

assumption ultimately requiring a rigorous proof at some future time. In the meantime, we 

point out that Birn et al. (2008) showed, in the framework of MHD with a localized 

resistivity, that the maximum possible asymmetric reconnection rate is capped by the value 

of order 0.1, no matter how strong a localized dissipation is employed. By comparing 3-D 

and 2-D PIC simulations, Liu et al. (2015) showed that the x line orientation in a 3-D system 

can be determined by finding the oblique 2-D plane that maximizes the reconnection rate. 

While this is not a proof in the strict sense, these results indicate that our assumption is 

reasonable.

Additional caveats need to be kept in mind when applying this theory. An out-of-plane guide 

field does not affect the in-plane tension force but can contribute to the magnetic pressure 

gradient in the force balance. The same prediction applies to a general case with a guide 

field only if the reconnection process does not significantly alter the guide field strength near 

the x line. The normalized rate remains to be ~ 0.1 in the strong guide field limit, at least, for 

symmetric cases (Liu et al., 2014). This model does not include the effect of the diamagnetic 

drift driven by the combination of the pressure gradient across the sheet and a finite guide 

field. The diamagnetic drift can suppress magnetic reconnection (Beidler&Cassak, 2011; Liu 

& Hesse, 2016; Swisdak et al., 2003,2010). Flow shear commonly present at the flank of the 

magnetopause can also reduce the reconnection rate (Cassak & Otto, 2011; Doss et al., 

2015). Potential 3-D and turbulence effects (Daughton et al., 2014; Ergun et al., 2016; Le et 

al., 2017; Liu et al., 2015; Price et al., 2016) are not included in this 2-D analysis. Finally, 

while this theory works in most models, including PIC, hybrid, two-fluid models, and MHD 

with a localized resistivity, it does not apply to MHD systems with a uniform resistivity; a 

uniform resistivity does not seem to support the maximum rate allowed by the constraints 

imposed at the upstream and downstream regions. Researchers found that a fast-growing 

plasmoid instability enhances the reconnection rate in high-Lundquist number MHD 

simulations (Biskamp, 1986; Cassak et al., 2009; Huang & Bhattacharjee, 2010; Loureiro et 

al., 2007; Murphy et al., 2013; Samtaney et al., 2009; Uzdensity et al., 2010). The relation of 

this instability to the present results remains to be explored.

Nevertheless, by comparing with the well-established scaling (Cassak & Shay, 2007, 2008) 

previously found in the asymmetric limit of collisionless plasmas, the consistency 
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demonstrated in this Letter confirms the capability of this new approach (Cassak et al., 2017; 

Liu et al., 2017) in explaining the fast reconnection rate in a more general configuration. 

This result is timely to the study of collisionless magnetic reconnection in Earth’s 

magnetosphere. The high cadence electric field measurement on board of NASA’s 

Magnetospheric Multiscale spacecraft and their close deployment provide an invaluable 

opportunity to study the reconnection rate (Chen et al., 2017) and perhaps the effective 

aspect ratio of diffusion region in both the magnetopause and magnetotail.
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Key Points:

• The asymmetric reconnection rate is modeled as a function of the opening 

angle made by the weaker upstream magnetic field

• The maximum rate exhibits the same scaling ofthe widely studied asymmetric 

reconnection rate over a wide parameter regime

• The normalized maximum rate of order 0.1 is limited by the constraints 

imposed at MHD scales
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Figure 1. 
The geometry of magnetic fields upstream of the diffusion region for asymmetric 

reconnection. The orange box marks the diffusion region. <DI>S1 = tan|𝜃1|10, </DI> | marks 

the slope of the magnetic field line on side 1. The strength of the magnetic field is illustrated 

by the field line density.
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Figure 2. 
The geometry and dimension of the diffusion region. The strength of the magnetic field is 

illustrated by the field line density. Here<DI> &λ + δ2 = 25.</DI> The label “a” marks the 

reconnection x line.
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Figure 3. 
(a) The predicted opening angle made by the upstream magnetic field on side 1 is plotted as 

a function of Bx1 /Bx2 and n1 /n2. (b) The predicted opening angle made by the upstream 

magnetic field on side 2. (c) The contour of the predicted reconnection electric field 

normalized by the side 1 (magnetosheath) value. (d) The ratio of the predicted reconnection 

electric field to the prediction in equation (1) assuming 𝛿/L = 0.1.
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Figure 4. 
The predicted reconnection electric field normalized by the side 1 (magnetosheath) 

conditions is plotted as a function of Bx1 /Bx2 with a (a) symmetric density and as a function 

of n1 /n2 with a (b) symmetric reconnecting magnetic field. The prediction is shown in solid 

back, the prediction of equation (1) in red, and the prediction without the outflow correction 

in dashed black.
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