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Only for ergodic processes will inferences based on group-level
data generalize to individual experience or behavior. Because
human social and psychological processes typically have an in-
dividually variable and time-varying nature, they are unlikely to be
ergodic. In this paper, six studies with a repeated-measure design
were used for symmetric comparisons of interindividual and
intraindividual variation. Our results delineate the potential scope
and impact of nonergodic data in human subjects research.
Analyses across six samples (with 87–94 participants and an equal
number of assessments per participant) showed some degree of
agreement in central tendency estimates (mean) between groups
and individuals across constructs and data collection paradigms.
However, the variance around the expected value was two to four
times larger within individuals than within groups. This suggests
that literatures in social and medical sciences may overestimate
the accuracy of aggregated statistical estimates. This observation
could have serious consequences for how we understand the con-
sistency between group and individual correlations, and the gen-
eralizability of conclusions between domains. Researchers should
explicitly test for equivalence of processes at the individual and
group level across the social and medical sciences.

research methodology | replicability | idiographic science |
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Inferences made in social and medical research typically result
from statistical tests conducted on aggregated data. The im-

plicit assumption is that group-derived estimates can be applied
to understanding individual phenomenology, physiology, and
behavior. However, statistical findings at the interindividual
(group) level only generalize to the intraindividual (person) level
if the processes in question are ergodic (1). Ergodic processes
are equivalent for groups and individuals (homogeneity crite-
rion) when their mean and variance remain consistent over time
(stationarity criterion) (2). Because psychological and biological
phenomena are organized within persons over time, generaliza-
tions that rely on group estimates are nonergodic if there are
individual exceptions.
Group estimates can be derived from a cross-sectional mea-

surement of individuals at one point in time, but intraindividual
analyses require data collected over time—as the sample size
becomes the number of repeated observations. Just as a random
sample is required to be representative of a population to sup-
port generalizable claims about that population, the data sam-
pled within an individual in time must be representative of that
individual generally (i.e., stationary). When group generaliza-
tions obscure genuine individual differences, we may fail to de-
scribe natural processes and their natural kinds (3). If scientific
consilience (4) and completeness (5) are our goals, this scenario
should be avoided.
In this paper, we contend that (i) nonergodicity—specifically,

the lack of generalizability from group to individual statistical
estimates—is a threat to human subjects research, because we do
not know the full scope of the problem and are not adequately
studying it; and (ii) that scientists need to demonstrate the

consistency between individual and group variability before
generalizing results across levels of analysis. We will refer to this
latter condition as the “group-to-individual generalizability” of a
given statistical estimate. However, whether couched in prosaic
terms, or within formal mathematical theorems, researchers have
not systematically examined such generalizability in extant lit-
eratures, despite a number of calls to do so throughout the years
(cf. refs. 6–11). Hitherto, the highest-impact publications in
medical and social sciences have been largely based on data
aggregated across large samples, with best-practice guidelines
almost exclusively based on statistical inferences from group
designs. The worst-case scenario—a global, uniform absence of
group-to-individual generalizability due to nonergodicity in the
social and medical sciences—would undermine the validity of
our scientific canon in these domains. However, even moderate
incongruities between group and individual estimates could re-
sult in imprecise or potentially invalid conclusions. We argue
that this possibility should be formally tested, wherever possible,
to be ruled out.

Ergodicity, the Ecological Fallacy, and Simpson’s Paradox
The ergodic theorem is a general and formal mathematical ex-
pression that deals with the generalizability of statistical phe-
nomena across levels and units of analysis. [While a more
thorough explication of the ergodic theorem is outside of the
scope of the present paper, readers are referred to Molenaar (1)
for a comprehensive mathematical treatment of ergodicity in
human subjects research.] Ergodic theory postulates that the
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necessary—although not always sufficient—conditions for ergo-
dicity in human subjects data are that the structures of in-
terindividual and intraindividual variation are asymptotically
equivalent (1). The ergodic theorem can be understood as a
general frame of reference to identify specific cases of statistical
incongruity and inferential errors, including Simpson’s paradox
and the ecological fallacy. Simpson’s paradox (12) is a statistical
effect in which trends in subgroups differ from (or are even in-
verse to) the aggregate trend when the groups are combined. The
ecological fallacy is a common and problematic statistical in-
terpretation error, in which statistical inferences from groups are
inappropriately generalized to individuals (13). An intuitive ex-
ample is provided by Hamaker (14), who describes the correlation
between typing speed and typos. At the group level, the correla-
tion is negative, as experienced typists are both faster and more
proficient. However, within individuals, the correlation is positive—
the faster a given individual types, the greater the number of
mistakes she or he will make relative to their own performance at
slower speeds. Thus, the aggregation of the data produces an
example of Simpson’s paradox, and we would commit an eco-
logical fallacy by concluding that the relationship observed at the
group level represents any of the individuals in the group. Both
Simpson’s paradox and the ecological fallacy remind us that the
individual level and group level are not necessarily related. The
effects of nonergodicity in a given dataset should therefore be
directly tested before any extrapolations are made.
Unfortunately, applied tests of ergodicity are uncommon in the

social, behavioral, and medical sciences. While others have
observed that processes within persons over time differ from
processes sampled across persons (cf. refs. 1, 15, and 16), explicitly
quantifying the scope and potential threat of this discrepancy in
psychosocial and medical domains should be a routine focus of
scientific inquiry. Whereas Pearl (17, 18) has demonstrated that
there is no single diagnostic or correction for Simpson’s paradox,
we propose that there is a relatively easy way to directly test for
nonergodicity and, thus, group-to-individual generalizability in
statistical analyses. Quite simply, comparisons of the first and
second moments (mean and variance) of intraindividual and in-
terindividual distributions can inform us about the accuracy of
generalizations between groups and individuals. To thoroughly
examine group-to-individual generalizability across the social and
medical sciences, prodigious collaborative efforts across all areas
of human subjects research would be required. In the meantime,
individual researchers can address the suitability of their data for
generalizations from aggregated results to individual participants
through apposite research designs and data collection paradigms.
Specifically, scientists who endeavor to generalize findings between
interindividual and intraindividual levels of analysis should collect
many measurements within subjects over time—whether or not the
research question is explicitly longitudinal. Moreover, sharing data
and results could alleviate the burden to comprehensively test for
ergodicity in future studies. Fortunately, as data resources become
increasingly available through open access, we can begin to collec-
tively confront this challenge. To determine the importance of this
effort, we use six independent datasets of repeatedly sampled in-
dividuals to draw comparisons between intraindividual and
interindividual variation.

What Exactly Should We Be Testing, and How? To generalize group
findings to individuals, we should be interested in measures of
central tendency and measures of covariation. The central ten-
dency, typically represented as the mean or median, reflects the
expected value of a distribution—the most likely value for a
variable—and, thus, is a common proxy for the nature of the
variable en masse. For a group-to-individual generalization to
apply, the central tendency within individuals sampled over time
should be the same as between individuals. Conveniently, common

metrics are available for determining the similarity (vs. dissimilarity)
of the respective central tendencies.
A common use of the sample mean is to determine whether

one group is statistically different from another group as a
function of the ratio between the mean difference and the spread
around that difference (the SE). This is a signal-to-noise ratio:
Signals that are roughly twice the size of the respective noise are
considered to be statistically significant. In turn, the SE, which
constitutes the denominator in this ratio, is a function of the
sample size and the SD—the average deviation from the mean,
across the sample. Thus, mean values should always be viewed in
the context of SDs, and both should be examined when testing
for nonergodicity.
As readers will recall, the SD is the square root of the variance,

and the variance, in turn, is one-half of the joint variability—the
“covariance” between two variables. The covariance represents the
bedrock of quantitative analyses in social, behavioral, and medical
sciences. The entire body of classical statistics based on the general
linear model, including regression, analysis of variance, multilevel
modeling, and structural equation modeling, all use the covariation
between variables to support statistical inferences. For statistical
estimates to generalize from groups to individuals, it is imperative
that the relations among intraindividual variables are equivalent to
the relations among interindividual variables.
Thus, because the central tendency is often employed to rep-

resent the overall data, tests that measure the validity of group-to-
individual generalizations should examine the consistency of the
mean across groups and individuals. Because the “signal” that the
mean represents is only as strong as its relation to the variance, we
should be equally concerned with equivalence in the variance (and
SD). Finally, statistical inferences that are drawn from relations
between variables should be tested for consistency in the bivariate
and multivariate covariation among those variables.

What Is at Stake? The consequences of neglecting ergodic theory
in social, behavioral, and medical fields may have substantial
epistemic and practical consequences. In the absence of quan-
titative examination at the individual level, the consequences
could range from zero if we are lucky to find one of the few
ergodic processes in nature (19), to catastrophic if a process is
quite nonergodic. In clinical research, diagnostic tests may be
systematically biased and our classification systems may be at
least partially invalid. In terms of theory development, we may
have a misleading impression about the nature of psychological
variables and their interactions. Regarding experiments, we may
not design and employ research designs necessary to adequately
diagnose these issues. Overall, we may need to reconsider how
we communicate statistical principles to students and researchers
and encourage them to design studies capable of making explicit
tests of the consistency of intraindividual and interindividual
variation across settings, paradigms, and constructs. Here, we
begin to examine the stakes.

Comparison of Intraindividual and Interindividual
Distributions
Across six previously published datasets, we quantified intra-
individual and interindividual variation and covariation across
multiple samples and constructs. We made roughly symmetric
comparisons, calculating intraindividual and interindividual es-
timates across equivalent numbers of individual and cross-sectional
datasets. Given the repeated-measures paradigms employed in each
of the studies, multiple cross-sectional datasets were constructed
from the between-subject aggregations of within-subject data on an
observation-by-observation basis. That is, the concatenation of the
set of first rows for each individual’s repeated-measures data in
a given sample yielded a cross-sectional dataset with n = number
of participants. The concatenation of all second rows likewise
yielded a cross-sectional dataset with n = number of participants,
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and so forth (see Method for complete details). This allowed us
to go beyond single-point estimates to compare the distributions
of comparable cross-sectional and intraindividual means and
variances—both of the univariate descriptives for study variables,
and of bivariate associations among those variables.

Method
The present study comprises a set of analyses of six previously published
datasets at the group and individual levels. All study procedures were
approved by the relevant institutional review boards and conducted in ac-
cordance with ethical standards.

Participants.
Sample 1. The first sample comprises 43 individuals with principal generalized
anxiety disorder (GAD) and/or major depressive disorder (MDD), and
35 healthy control participants. Details regarding recruitment procedures,
screening, and diagnostic interviewing are provided by Fisher et al. (20). The
78 participants were predominantly female (n = 48, 62%) and white (n = 35,
45%). Following study enrollment, participants’ mobile phone numbers
were entered into a secure web-based survey system. Four times a day for
30 d, participants received a text message containing a hyperlink to a web-
based survey (each with a time stamp). Participants rated their experience of
each item over the preceding hours using a 0–100 visual analog slider with
the anchors “not at all” (=0) and “as much as possible” (=100). In addition to
the extant Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition (DSM-5) (21) criteria for GAD and MDD, the surveys included an
additional 11 items gauging positive affect (PA) (positive, energetic, enthusi-
astic, and content), negative affect (NA) (angry, afraid, and dwelled on the
past), and behavioral avoidance (avoided people, avoided activities, sought
reassurance, and procrastinated). This study was approved by the University of
California Institutional Review Board (Committee for Protection of Human
Subjects protocol no. 2014-03-6138; Committee for Protection of Human
Subjects protocol title: Personalized Interventions for Anxiety and Depression).
Written informed consent was obtained before participation.
Sample 2. Participants from sample 2 took part in a polysomnography study
conducted at the National Center for Post-Traumatic Stress Disorder (PTSD) in
Menlo Park, California. The present study only uses the data on heart rate
(HR) and respiratory sinus arrhythmia (RSA). Complete details regarding
recruitment procedures, screening, diagnostic interviewing, and physiological
data collection and methodology (including electrocardiography signal cleaning
and preparation) are published in the study by Fisher and Woodward (22). The
present sample comprised 69 individuals, 16 healthy controls, 23 individuals with
PTSD, 14 individuals with panic disorder, and 16 individuals with co-occurring
PTSD and panic disorders. No group differences were found for HR or RSA (22).
This study was authorized by the Stanford/Veterans Affairs (VA) Palo Alto Hu-
man Research Protection Program. All participants provided written informed
consent.
Sample 3. Participants from sample 3 were taken from an ecological mo-
mentary assessment study of individuals with clinically diagnosed personality
disorders (23, 24). Participants (n = 101) completed ratings of psychosocial
and interpersonal experiences once per day for 100 d. Complete details re-
garding recruitment, diagnosis, and study procedures can be found in the studies
by Wright et al. (23) and Wright and Simms (24). The present study utilized a
subsample of 83 participants who completed a minimum of 83 surveys (Analytic
Approach) on the scale-level variables PA and NA, using a subset of the Positive
and Negative Affect Schedule (PANAS) (25) items assessed on a five-point scale
(very slightly or not at all, a little, moderately, quite bit, and very much) “over the
last 24 h.” Daily PA was measured as the mean of the items: active, alert, at-
tentive, determined, and inspired. Daily NA was measured as the mean of afraid,
ashamed, hostile, nervous, and upset. To be consistent with the affect measure
employed in sample 6 (below), it should be noted that the indicators for PA
and NA in sample 3 are consistent with high-arousal PA and NA, specifically.
This study was approved by the University at Buffalo, State University of
New York Institutional Review Board. Written informed consent was
obtained before participation.
Sample 4. Participants from sample 4 were taken from a randomized con-
trolled trial (RCT) for clinical depression in which 64 individuals were ran-
domized to receive imipramine or placebo (26). Before treatment, participants
took part in an intensive repeated-measures paradigm in which they com-
pleted surveys 10 times per day for 6 d. These data have been described in
detail elsewhere (cf. refs. 26 and 27). Participant mean age was 42.5 y (SD, 9.1),
and the majority of the sample was female (74%). The present study uses the
PA scale (mean of energetic, cheerful, satisfied, alert, calm, enthusiastic,
strong, and happy) and NA scale (mean of hostile, depressed, tense, lonely,

anxious, insecure, guilty, harried, and irritable). All study procedures were
approved by the Medical Ethics Committee of Maastricht University Medical
Centre, and all participants signed an informed consent form.
Sample 5. The fifth sample was drawn from a RCT for mindfulness-based
cognitive therapy (MBCT), in which 64 individuals were randomized to
MBCT and 66 were randomized to waitlist control (28). The present study
utilized only those individuals randomized to MBCT. Consistent with sample
4, participants completed a daily survey paradigm before treatment. Each
participant was given a digital wristwatch and assessment forms for com-
pleting daily self-reports. The watches were programmed to signal partici-
pant at random intervals within each of 10 90-min blocks between 7:30 AM
and 10:30 PM. Assessments were completed for 6 consecutive days, with a
maximum of 60 signals per study period. At each signal, participants were
instructed to complete the self-assessment forms. Current mood and context
were rated on seven-point Likert scales. Consistent with samples 3 and 4, the
present study utilized scales for PA (mean of happy, satisfied, strong, en-
thusiastic, curious, animated, and inspired) and NA (mean of feeling down,
anxious, lonely, suspicious, disappointed, insecure, and guilty). All study
procedures were approved by the Medical Ethics Committee of Maastricht
University Medical Centre, and all participants signed an informed consent form.
Sample 6. The final sample was taken from the ongoing naturalistic study
“How Nuts are the Dutch” (HoeGekIsNL), in which 975 participants filled out
diaries three times a day for 30 d. Complete study methodology and pro-
cedures can be found in van der Krieke et al. (29). In this subsample, the
mean number of diary responses was 60.53 (SD, 18.10). The sample was 82%
female (n = 449), and the mean age was 40.68 (SD, 13.53). The variables
employed in the present study were high-arousal PA and NA and low-
arousal PA and NA, as calculated from daily diary questions 5–16 (see ref.
29, p. 129). The present study included the 535 participants (55%) who
completed at least 44 surveys. The HND study protocol was assessed by the
Medical Ethical Committee of the University Medical Centre Groningen and
judged to be exempted from the Medical Research Involving Human
Subjects Act (in Dutch: WMO) because it concerned a nonrandomized
open study targeted at anonymous volunteers in the general public
(registration no. M13.147422).

Analytic Approach. We sought to quantify the degree to which group data can
describe individual participants by comparing intraindividual and interindividual
variation and covariation across multiple samples and constructs. We used in-
tensive repeated-measures data to compare the univariate distributions of each
variable, as well as the distributions of bivariate correlations calculated within
subjects vs. those calculated between subjects. As outlined below, the same data
(participants and variables) were utilized to make interindividual vs. intra-
individual comparisons, so that we could directly assess the degree to which
aggregations reflect their constituent individuals.
Temporal dependence. As has been discussed in detail elsewhere, statistical es-
timates of repeated-measures data can be biased due to temporal dependence
(cf. refs. 30 and 31). That is, individuals will tend to correlate with themselves
over time, leading to correlated errors in models that do not account for the
underlying autocorrelation. Although one common way to handle the tem-
poral dependence in repeated measures is to employ a multilevel model that
partitions the variance of dependent variables into fixed and random effects
(32), these models do not represent true intraindividual variation (33). Instead,
they reflect individual deviations (in intercept and slope) from aggregated
estimates. To isolate the true intraindividual variation and covariation, we
used the Durbin–Watson test (34) to assess the degree of temporal de-
pendence in each intraindividual variable.

Sources of lagged and cross-lagged temporal dependence were examined
for each bivariate pair analyzed below. Regression models were constructed
in which each intraindividual variable was regressed on its first-order
autoregression (i.e., lag-1) and the first-order cross-lag for any bivariate
pairs. For instance, because we examined separate bivariate correlations for
depressedmoodwith anhedonia, and depressedmoodwithworry (sample 1),
two regression models were conducted for the variable depressed mood, one
with cross-lagged measurements of anhedonia, and one with cross-lagged
measurements of worry. For any bivariate pair X and Y, the associated re-
gression models are expressed algebraically as follows:

Yt = β1Yt−1 + β2Xt−1 + et,

Xt = β1Xt−1 + β2Yt−1 + et.

The Durbin–Watson test was employed to assess the degree of temporal
dependence in the residuals of each regression model.
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Inclusion of first-order lagged and cross-lagged variables effectively
removed the temporal dependence from (i.e., whitened) the majority of
individual data for each of the behavioral variables from samples 1, 3, 4, 5,
and 6 (range, 86–99%; mean percentage, 97%). However, after conducting
first-order regression models, temporal dependence remained in a handful
of these behavioral data and the majority of the psychophysiological data
from sample 2. For each intraindividual variable that yielded a Durbin–Watson
test statistic of P < 0.05, additional regression models were conducted—each
with an additional set of lagged and cross-lagged parameters—until the
residuals for the regression model were found to be effectively whitened.
Models that included lag-2 variables effectively whitened the remainder of
all but one intraindividual behavioral variable, 57% of intraindividual HR
data, and 72% of RSA data. Models with three or more lags were required
for one intraindividual PA variable from sample 4, 39% of HR data, and 16%
of RSA data from sample 2. SI Appendix, Table S1 presents the complete
results of the temporal dependence tests for each variable.

Once a regression model yielded a nonsignificant Durbin–Watson test
statistic, the residuals were retained for further analysis. We refer to these
data as the AR residuals. Thus, for each bivariate correlation reported below,
we report the means and SDs for intraindividual estimates derived from the
raw data, as well as from the AR residual data.
Constructing interindividual cross-sections. As noted above, the present study
sought to compare cross-sectional, aggregated data to individual, time-
varying data to investigate the degree to which aggregations represent
their constituent individuals. To make such comparisons, we required
multiple intraindividual time series and interindividual cross-sections, which
should be composed of the same individuals. The extant data from the six
studies were composed of the former: individual time series ranging in length
from 69 to 900 observations. These time series thus comprise repeated
observations in time, collected on a minimum of 69 separate occasions. To
make cross-sectional comparisons, each repeated observation was doubly
employed: as a single observation within an individual time series and as a
single participant in an aggregated cross-section. That is, if 100 individuals
participate in a study and each individual provides 100 observations over
time, we can represent the entire sample of data in a 100 (observations) × 100
(individuals) matrix. We can thus consider each row to be a sample of
100 separate individuals measured on one occasion, and each column to be
the time series for a single individual, measured 100 times. Extending this to
a multivariate space, if each individual’s time series is organized such that
observations in time are in rows and variables are in columns, the concate-
nation of the set of first rows will yield a cross-sectional dataset with

between-subjects sample size of n = 100. The concatenation of all second
rows will likewise yield a cross-sectional dataset with n = 100, and so forth.

For each sample, we endeavored to make comparisons that were
symmetric in scale and maximally powered. Symmetry was pursued to limit
the degree to which differences in statistical power affected the comparison
of interindividual and intraindividual variation. Exceptions to symmetry are
described below. For each sample, we identified the number of participants
and rows per participant that would yield the maximum number of intra-
individual and interindividual datasets.

Samples 1, 2, and 3 contained sample sizes of 78, 69, and 101 individuals,
respectively. The data collection paradigms for each study yielded individual
time series with an average of 130, 925, and 90 observations each. Because the
length of the time series in samples 1 and 2 were longer than the number of
participants for each study, we generated random number strings to select a
random subset of 78 and 69 rows from each intraindividual dataset in samples
1 and 2, respectively. As described above, each randomly selected row was
extracted from each of the intraindividual datasets and concatenated across
participants to yield a cross-sectional, interindividual dataset. For sample 1, the
comparisons of interindividual to intraindividual variation was conducted be-
tween 78 intraindividual datasets with an average time series length of
130 observations, and 78 interindividual datasets, eachwith a between-subjects
sample size of n = 78. The comparison for sample 2 included 69 intraindividual
datasets with an average time series length of 925 observations, and
69 interindividual datasets, each with a between-subjects sample size of n = 69.

Sample 3 contained a greater number of participants (101) than average
observations per participant (mean, 89). We identified the maximum number
of participants with an equivalent minimum number of observations per
participant at 83, and took the first 83 observations of each intraindividual
dataset to construct the cross-sectional comparison datasets. Thus, for sample
3, the comparison of interindividual to intraindividual variation was con-
ducted between 83 intraindividual datasets with an average time series
length of 94 observations, and 83 interindividual datasets, each with a
between-subjects sample size of n = 83.

Samples 4 and 5 contained 63 and 64 participants, who each completed 30–
60 observations. To generate symmetric comparisons for these samples, we
allowed the interindividual datasets to have variable sample sizes. That is,
for both samples, interindividual datasets 1–30 contained 63 and 64 partici-
pants, respectively. As the number of interindividual datasets increased, the
overall sample size for each set decreased. For sample 4, the minimum
interindividual sample size was n = 58, and for sample 5, the minimum
interindividual sample size was n = 52.

Table 1. Means and SDs for variables as calculated from intraindividual distributions (left) and interindividual
distributions (right)

Intraindividual Interindividual

Sample/variable Mean SD Mean SD IAV:IEV ratio

Sample 1
Depressed mood 30.59 22.01 30.16 2.77 7.95
Anhedonia 28.94 20.00 28.01 2.34 8.55
Worry 38.21 24.60 37.83 2.48 9.92
Fear 23.05 20.05 21.70 2.34 8.57
Avoidance 29.41 19.49 29.12 2.77 7.04

Sample 2
HR 65.03 8.94 67.80 1.82 4.91
RSA 7.32 4.08 6.78 0.52 7.85

Sample 3
PA 2.67 0.74 2.68 0.08 9.25
NA 1.77 0.64 1.78 0.07 9.14

Sample 4
PA −0.29* 0.66 −0.53* 0.05 13.20
NA 0.27 0.91 0.47 0.09 10.11

Sample 5
PA 3.74 0.93 3.67 0.21 4.43
NA 1.90 0.72 2.00 0.19 3.79

Sample 6
PA 56.35 11.34 55.33 1.71 6.63
NA 27.42 13.13 27.04 2.04 6.44

Note: IAV:IEV ratio, ratio of intraindividual SD to interindividual SD. Significant difference between interindividual and intra-
individual estimates at *P = 0.003.
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Finally, sample 6 contained 975 participants with time series that ranged
from 0 to 93 observations. Symmetric comparisons between intraindividual
and interindividual data would require discarding more than 800 partici-
pants. Consideration was given to (i) the minimum number of observations
to yield robust estimates of the bivariate correlations for each individual,
and (ii) the maximum number of participants with an equivalent minimum
number of observations per participant. A sample size of 44 was selected as
the minimum threshold for intraindividual correlations, yielding a sample of
535 intraindividual datasets, with an average of 68 observations per indi-
vidual. Regarding interindividual comparisons, we identified 58 participants
with a minimum of 85 observations. The first 85 consecutive rows of
these 58 intraindividual datasets were concatenated to generate 85 interin-
dividual datasets, each with a sample size of 58. Thus, for sample 6, sym-
metry was abandoned to analyze the full set of 535 selected time series. The
comparison of interindividual to intraindividual variation was conducted
between 535 intraindividual datasets with an average time series length of
68 observations, and 85 interindividual datasets, each with a between-
subjects sample size of n = 58.

Results
Univariate Distributions. We first examined the univariate distri-
butions of each of the 15 study variables at the interindividual and
intraindividual levels. The means and SDs for each variable, at
each level of analysis, are presented in Table 1. The mean esti-
mates were statistically equivalent across 14 of the 15 variables
(all p’s > 0.05), with the relative interindividual and intra-
individual means falling within 7% of each other (mean dis-
crepancy, 3%). The mean estimates for intraindividual and
interindividual PA in sample 4 exhibited a significant discrepancy
of 45% (P = 0.003). However, despite the consistency across
mean estimates, the SDs for intraindividual and interindividual

estimates exhibited marked discrepancies, with the former at
least 3.79 times larger than the latter across all 15 variables (min
ratio, 3.79:1; max ratio, 13.20:1; mean ratio, 7.85:1).

Bivariate Correlations.
Sample 1. To compare the relative distributions of intraindividual
covariation and interindividual covariation, we selected three
bivariate correlations from sample 1: (i) depressed mood and
anhedonia, (ii) depressed mood and worry, and (iii) avoidance of
activities and fear. Depressed mood and anhedonia are the
principal symptoms of MDD, and at least one of the two is re-
quired for a clinical diagnosis. Worry is the cardinal symptom of
GAD, a disorder that has the highest rate of co-occurrence with
MDD (35). Behavioral avoidance is a common feature of both
mood and anxiety symptomatology, typically thought to be neg-
atively reinforced via temporary reductions in fear and anxiety,
thereby maintaining the symptoms over time (36).
Bivariate correlations between the three selected variable

pairs were conducted across the 78 intraindividual datasets and
78 interindividual datasets. Fig. 1 presents the histograms for the
intraindividual correlations (red) and interindividual correlations
(blue), with results calculated from raw data (top) and AR re-
sidual data (bottom). The solid lines reflect the mean correla-
tion, and the dashed lines reflect the median correlation. The
mean intraindividual correlations (with SD in brackets) were r =
0.47 (0.23), r = 0.40 (0.22), and r = 0.23 (0.23) for raw data, and
r = 0.41 (0.22), r = 0.33 (0.21), and r = 0.19 (0.21) for AR re-
siduals. The mean interindividual correlations were r = 0.75
(0.07), r = 0.71 (0.08), and r = 0.46 (0.11). The disparities between
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Fig. 1. Histograms for intraindividual (red) and interindividual (blue) correlations for four bivariate relationships in sample 1. Top depicts intraindividual
correlations calculated from raw data. Bottom depicts intraindividual correlations calculated from data with temporal dependence removed.

E6110 | www.pnas.org/cgi/doi/10.1073/pnas.1711978115 Fisher et al.

www.pnas.org/cgi/doi/10.1073/pnas.1711978115


intraindividual and interindividual correlations were r = 0.28,
r = 0.31, and r = 0.22 for raw data, and r = 0.34, r = 0.38, and r =
0.27 for AR residuals, with an average difference of r = 0.27 for
raw data and r = 0.33 for AR residual data. Moreover, across
the three comparisons, intraindividual SDs were 2.71 times larger
than interindividual SDs for raw data and 2.46 times larger for
AR residual data. These results reflect a substantially wider range

of variability across intraindividual estimates, regardless of
adjustment for temporal dependence.
Sample 2. For sample 2, a single comparison was calculated for
the bivariate correlation between HR and RSA, two of the most
common variables employed in psychophysiological research
(37). Fig. 2 presents the histograms from the intraindividual
(red) and interindividual (blue) correlations between HR and
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Fig. 2. Histograms for intraindividual (red) and interindividual (blue) correlations for RSA and HR. Left depicts intraindividual correlations calculated from
raw data. Right depicts intraindividual correlations calculated from data with temporal dependence removed.
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5. Top depicts intraindividual correlations calculated from raw data. Bottom depicts intraindividual correlations calculated from data with temporal
dependence removed.
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RSA, with intraindividual estimates derived from raw data on
the left and intraindividual estimates derived from AR residuals
on the right. The mean intraindividual correlation (and SD) for
HR and RSA in sample 2 was r = −0.35 (0.22) for raw data, and
r = −0.18 (0.13) for AR residual data. The mean interindividual
correlation was r = −0.39 (0.08). The disparity between means
was r = 0.04 for raw data and r = 0.21 for AR residual data.
Of note, whereas the intraindividual SD for raw data was
2.75 times larger than the interindividual SD, the SD for AR
residual data was only 1.63 times larger, a reduction in magni-
tude of 59%.

Because the symmetric analysis eliminated more than 800
potential interindividual comparison cases, we reran the in-
terindividual analysis with a sample size of n = 900. Results were
consistent, with a mean interindividual correlation of r = −0.40
and SD of 0.09.
Samples 3, 4, and 5. Consistent with sample 2, a single comparison
was calculated for samples 3, 4, and 5. Each sample provided
data for PA and NA, although the operationalization of these
variables differed between studies (Method). Fig. 3 presents the
histograms for the intraindividual (red) and interindividual
(blue) correlations between PA and NA for samples 3, 4, and 5
(left to right). The top panels depict comparisons calculated with
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Fig. 4. Density plots for the distributions of correlations in sample 6 between low-arousal positive affect (PA) and negative affect (NA) (Left) and high-
arousal PA and NA (Right). Red indicates distributions related to the 535 individual respondents. Blue indicates the distributions of the 85 cross-sectional
comparison datasets. Intraindividual correlations were calculated from raw data (Top), and data with temporal dependence removed (Bottom).
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raw intraindividual data, and the bottom panels depict compar-
isons calculated with AR residual intraindividual data. The mean
intraindividual correlations for PA and NA in samples 3, 4, and
5 were r = 0.05 (0.23), r = −0.33 (0.28), and r = −0.58 (0.21),
respectively, for raw data, and r = 0.04 (0.21), r = −0.31 (0.24),
and r = −0.55 (0.19), respectively, for AR residual data. The
mean interindividual correlations for sample 3, 4, and 5 were r =
0.01 (0.09), r = −0.26 (0.07), and r = −0.50 (0.09), respectively.
The discrepancy between intraindividual and interindividual
mean estimates were only r = 0.04, r = 0.07, and r = 0.08 for raw
data and r = 0.03, r = 0.05, and r = 0.05 for AR residual data.
However, consistent with sample 1, the intraindividual SDs for
samples 3–5 were substantially larger than the interindividual
SDs, with ratios of 2.56:1, 4:1, and 2.33:1 for raw data and 2.33:1,
3.42:1, and 2.11:1 for AR residual data. The mean SD ratios
across the three studies were 2.96:1 and 2.62:1 for raw and re-
sidual data, respectively.
Sample 6. Finally, for sample 6, we calculated the intraindividual
correlations for two operationalizations of PA and NA, low-
arousal and high-arousal, across 535 participants. Fig. 4 presents
the density plots for the intraindividual correlations of low-
arousal PA and NA (left) and high-arousal PA and NA (right).
The top panels depict comparisons made with raw data, and the
bottom panels depict comparisons made with AR residual data.
Density plots were employed due to the large discrepancy be-
tween intraindividual sample size (n = 535) and interindividual
sample size (n = 85). Density plots reflect the shape of the un-
derlying histograms, independent of the scale of measurement.
The mean intraindividual correlation (and SD) for low-arousal
PA and NA was r = −0.46 (0.21) for raw data and r = −0.42 (0.22)
for AR residual data. The mean interindividual correlation for low-
arousal PA and NA was r = −0.66 (0.07). The disparity between
means was r = 0.20 for raw data and r = 0.24 for AR residual data.
The mean intraindividual correlation (and SD) for high-arousal PA
and NA was r = −0.39 (0.22) for raw data and r = −0.37 (0.22) for
AR residual data. The mean interindividual correlation for high-
arousal PA and NA was r = −0.43 (0.08). The disparity between
means was r = 0.04 for raw data and r = 0.06 for AR residual data.
The ratio of intraindividual SD to interindividual SD was 3:1 for raw
data and 2.75:1 for AR residual data.

Discussion
In the present study, we made comparisons between intra-
individual and interindividual variation across six independent
samples from the United States and the Netherlands. Using in-
tensive repeated-measures data, we compared the relative dis-
tributions of individual and group correlations across a number
of constructs and data collection paradigms, using both raw data
and data residualized against the first-order autoregression.
Univariate distributions revealed relatively consistent mean es-
timates. However, the ratios of intraindividual to interindividual
SDs ranged from 3.79 to 13.20, with the former 7.85 times larger
than the latter on average. Regarding the expected values of the
distributions of bivariate correlations, we found equivocal results—
those for which group-to-individual generalizability did and
did not apply. That is, we found evidence for the agreement in
the central tendency of four of the nine comparisons, and dis-
agreement in the remaining five comparisons. Specifically, there
was fairly strong agreement in the expected values for the cor-
relation between PA and NA, as operationalized by samples 3, 4,
and 5. Related to this, the operationalization of high-arousal PA
and NA in sample 6 exhibited fairly strong consistency across
intraindividual and interindividual variation. The average dis-
crepancy between intraindividual and interindividual estimates
was r = 0.06 for raw data and 0.04 for AR residual data.
However, regarding the variance around the expected value,

across all six samples and all nine comparisons the intraindividual
covariation exhibited a spread that ranged from 2.09 to 4 times

larger than that observed for interindividual estimates when
calculated from raw data (mean ratio, 2.84:1) and a range of
1.63–3.43 times larger when calculated from AR residual data
(mean ratio, 2.56:1). That is, the SD of correlations for indi-
viduals was, on average, nearly three times higher than for
groups in the raw data and greater than two-and-a-half times
larger in the residual data. Thus, while equivocal support was
found for the group-to-individual generalizability of mean estimates,
the current study found no support for ergodic agreement between
the variances related to intraindividual and interindividual statistical
estimates.
There are two important takeaways from these findings: (i) the

fact that we observe substantial numerical disagreement between
the individual and group estimates, and (ii) the consequences for
generalizing group data to individuals. The former finding is self-
explanatory, but worth emphasizing: Aggregated estimates did
not consistently agree with individual estimates. While prior
work has noted the implausibility of ergodicity in human subjects
research, including the provision of mathematical proof (1), the
present study provides an empirical demonstration of this effect
across multiple settings and constructs. Regarding the general-
izability of aggregate estimates, the present findings indicate that
correlations between variables within individuals exhibit at least
twice as much variation as those found within groups. The pre-
sent findings suggest that, at best, group estimates can be con-
sidered expected values for normally distributed estimates—such
as correlations—accompanied by substantially greater variability
than the group SD. That is, even in the best-case scenario, we
should not think of a correlation in group data as an estimate
that generalizes to any given individual in the population. Stated
bluntly, this implies that the temptation to use aggregate esti-
mates to draw inferences at the basic unit of social and psy-
chological organization—the person—is far less accurate or valid
than it may appear in the literature. Indeed, even the best-case sce-
nario is quite alarming: Only 68% of all individual correlational values
fall within a range that would be predicted by group data to cover
99.7% of all possible correlations—a discrepancy of nearly 32%.
The worst-case scenario is clearly dire: It is plausible that in-

attention to nonergodicity and a lack of group-to-individual
generalizability threaten the veracity of countless studies, con-
clusions, and best-practice recommendations. As our results in
just a few studies illustrate, the nature of the threat varies in
degree and kind across research domains and measurement
modalities. For example, the discrepancies in sample 1 relate to
the assessment, classification, and treatment of psychiatric syn-
dromes. Gold-standard treatments for phobic avoidance are built
on the assumption that the mitigation of avoidance behavior
through exposure—the facilitation of repeated contact between
the individual and the feared stimulus—will reduce the experi-
ence of fear over time. However, our results indicate that, on
average, the strength of the association between fear and
avoidance is weaker than group estimates would imply and that,
for some individuals, there is no relationship between these
phenomena whatsoever. It is thus imperative to test whether
individuals who have no relationship represent a distinct natural
kind that do not respond to treatment.
Similarly, the strong, positive covariation between depressed

mood and worry has been so consistently replicated that some
have argued that their respective clinical diagnoses—GAD and
MDD—should belong in the same class of mental disorders (38).
Consistent with this, the expected value for the group correlation
between worry and depressed mood was r = 0.71. However, the
expected value for the correlation between these constructs
within individuals was 44% lower in raw data (r = 0.40), was 55%
lower in AR residual data (r = 0.32), and exhibited an overall
range from r = −0.11 to r = 0.89, suggesting that the putative
covariance between these syndromes in the extant literature may
underestimate the considerable variability in the relationship
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across individuals. Thus, taxonomic decisions based on the pu-
tative group correlation between these dimensions would likely
lack ecological and clinical validity, and may undermine treat-
ment planning and outcomes. These results also suggest that our
taxonomies are unlikely to capture the diversity of natural kinds
that may exist across humans.
Taken together, we believe the results of the present study

point to a continuum of scenarios for identifying nonergodicity
by examining the consistency between group and individual
correlations and the degree to which conclusions from one do-
main can be generalized to the other. By framing such tests
within the ergodic theorem, which stipulates strict and rigorous
conditions for generalizations between levels of analysis, we can
address basic issues in biopsychosocial research. The current
data further reify the dangers of the ecological fallacy, empiri-
cally demonstrating that group-derived estimates should not be
considered accurate proxies of individual processes. Regarding
Simpson’s paradox—that aggregations may misrepresent subgroups
or individuals—the present study was consistent with the recom-
mendation of Kievit et al. (39), who stressed that data should be
explicitly tested for agreement in estimates across levels of analysis.
Importantly, visual inspection of the distributions of correla-

tions for intraindividual and interindividual data revealed that
the latter appeared to better approximate normality than the
former. Thus, tests that assume normality may be more appro-
priate for between-subjects analyses than for within-subjects
analyses, and the standard error of the mean may be a more
appropriate measure for interindividual variability. Moreover, in
addition to incongruities in interindividual and intraindividual
statistical moments, nonergodicity in the natural sciences may
also be driven by variation in temporal dependencies across in-
dividuals in a sample. While our current findings support the
case to more carefully consider nonergodicity in general, they
hold whether or not temporal dependencies are explicitly
accounted for (SI Appendix). However, the presence of this
variation in real-world data may provide further incentive to
thoroughly investigate individual-level variability before making
group-derived inferences.
One possible limitation of the present study is that, for some of

the data sources, we focused on subsamples of the data to match
the relative scale of cross-sectional and intraindividual dimen-
sions. Although this was done to reduce bias when comparing
group to individual data, it is important to note that small sample
sizes may reduce the agreement between individual and group
data because small data batches may not represent the larger
population of observations (40). Explicitly using models that are ap-
plied to large samples, account for variation across time, and model
the influences of covariates may help separate issues due to non-
ergodicity from issues due to unmodeled variation from other sour-
ces. Our results suggest that, for researchers collecting cross-sectional
data, it may be worthwhile to collect subsamples of within-subjects
data to test for potential nonergodicity. Furthermore, it may be im-

portant to apply grouping procedures if categorically different types
of intraindividual variability are observed, facilitating scientific dis-
covery and more appropriate generalization claims.
Importantly, we can use other approaches to consider within-

and between-person variation to support inferences that are more
representative of intraindividual variation where nonergodicity
may be observed. Here, we focused on simple approaches that
measure properties of variance and covariance, which can, in turn,
support more complex data analysis techniques. Numerous, more
sophisticated tools exist to examine variance component models
(41, 42), multilevel models (43), contemporaneous and lagged
structural equation models (44), and time series more generally
(45). Our results suggest that, just as simple measures can exhibit
significant differences in within- vs. between-subject variation,
both the within- and between-subject variation should be explicitly
modeled in any approach, and all models should be evaluated in
terms of how well they represent individual-level processes before
making generalizations from aggregate estimates.
On a final note, with increasing emphasis on the so called

“replication crisis” (46), and an acknowledgment that incentive
structures can lead to harmful scientific practices (47), the pre-
sent paper adds a voice to the chorus of scholars calling for in-
creased transparency and accountability. It is possible that the
emerging emphasis on open data will help us detect and charac-
terize instances of nonergodicity broadly in the life sciences. For
example, open-data efforts have led to increasing researcher inter-
actions and open conversations about replicability and validity in
comparative bioinformatics (40), breast cancer prediction (48), and
massive computational experiments (49). At the very least, open-data
access would allow researchers to examine the extent to which pre-
viously published results may evince varying degrees of nonergodicity.
Our focus on a truly fundamental but rarely considered di-

lemma in human subjects research brings to the fore questions of
scientific accuracy and generalizability. Even if incentives are ad-
justed, our ability to make valid inferences at the level of the in-
dividual will require substantial efforts in person-centered science.
Encouragingly, with the increasing number of publicly available
large-dimensional datasets, we can not only begin to quantify how
pervasive the nonergodic threat may be, we can begin to broaden
our sciences to quantify and articulate both intraindividual and
interindividual differences, and in so doing build models of human
physiology and behavior that improve the quality and accuracy of
statistical inferences across levels and units of analysis.
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