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Summary

The mucosal surface of the respiratory tract encounters microbes, such as

fungal particles, with every inhaled breath. When pathogenic fungi breach

the physical barrier and innate immune system within the lung to estab-

lish an infection, adaptive immunity is engaged, often in the form of

helper CD4 T-cell responses. Type 1 responses, characterized by inter-

feron-c production from CD4 cells, promote clearance of Histoplasma

capsulatum and Cryptococcus neoformans infection. Likewise, interleukin-

17A (IL-17A) production from Th17 cells promotes immunity to Blasto-

myces dermatitidis and Coccidioides species infection by recruiting

neutrophils. In contrast the development of T helper type 2 responses,

characterized by IL-5 production from T cells and eosinophil influx into

the lungs, drives allergic bronchopulmonary aspergillosis and poor out-

comes during C. neoformans infection. Experimental vaccines against sev-

eral endemic mycoses, including Histoplasma capsulatum, Coccidioides,

Cryptococcus and Blastomyces dermatitidis, induce protective T-cell

responses and foreshadow the development of vaccines against pulmonary

fungal infections for use in humans. Additionally, recent work using anti-

fungal T cells as immunotherapy to protect immune-compromised

patients from opportunist fungal infections also shows great promise. This

review covers the role of T-cell responses in driving protection and

pathology in response to pulmonary fungal infections, and highlights

promising therapeutic applications of antifungal T cells.
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Fungal recognition and T-cell priming the lung

The lungs represent a massive environment-exposed sur-

face in the body, which is challenged with microbes and

microbial products with every breath.1 Fungi represent a

medically important class of pathogenic microbes, and 4–
11% of the fine-particle mass inhaled into the lungs con-

tains fungal spores.2 To preserve epithelial integrity and

prevent colonization by infectious organisms including

fungi, the host has developed several immunological mech-

anisms in the lungs.1 Epithelial cells provide barrier immu-

nity, preventing inhaled particles access to deeper tissues

and vasculature, while mucus and antimicrobial peptides

further deter colonization.1 Resident alveolar macrophages

remove debris from the lungs,3 maintaining clear airways

and preventing the establishment of infection.

The mammalian host employs a suite of pattern recog-

nition receptors (PRRs) that are capable of recognizing

fungal ligands and initiating innate inflammatory

responses.4,5 One of the best-characterized PRR–fungal
ligand relationships is the recognition of fungal b-glucan
by the prototypical C-type lectin receptor (CLR) dectin-1.

Likewise, heterodimers of Toll-like receptors (TLR) TLR2

and TLR1 recognize triacylated lipoprotein, whereas

TLR2/TLR6 heterodimers recognize diacylated lipopro-

tein.5 Mannose receptor recognizes mannose and other

sugar moieties on the surface of microbial cells.6 The

CLR dectin-2 has previously been shown to respond to

mannan stimulation,5 and recent work has also identified

the glycoprotein Bl-Eng2 of Blasotmyces dermatitidis as a

bona-fide ligand for this receptor.7 A newly defined CLR,

MelLec enables the host to sense melanin on pathogens

including Aspergillus spores.8 These PRR–fungal ligand

interactions represent a major means by which the

immune system recognizes and initiates immune

responses against inhaled pulmonary fungal pathogens.
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When these early mechanisms fail and fungal infection

is established in the airway, the host responds with a

coordinated immune response. Monocyte-derived macro-

phages and dendritic cells are often recruited into the air-

way.9,10 Likewise, other myeloid cell populations,

including neutrophils,11,12 monocytes13 and eosino-

phils,14,15 infiltrate the airways in an effort to combat the

infection. In almost all cases of pulmonary fungal infec-

tion, the development of adaptive immunity and the

engagement of CD4 T-cell help is a key determinant of

the outcome on infection.

CD4 T-cell responses can only occur after a carefully

orchestrated process involving precise interactions

between stromal, myeloid and lymphoid cells. The exact

mechanisms underpinning the priming of T-cell responses

have been extensively reviewed elsewhere,16–19 and are

only briefly summarized here. Upon uptake of foreign

antigen by professional antigen-presenting cells at muco-

sal sites, the antigen-presenting cells traffic to draining

lymph nodes in order to locate and prime naive T cells.18

CD4 T-cell priming occurs not only by activation of the

T-cell receptor by binding its cognate antigen in the con-

text of MHCII, but also through co-stimulatory signals19

and the cytokine milieu20 present during T-cell priming.

Once T-cell priming is complete, the effector T cells

depart the lymph node to enter into the mucosal tissue

and carry out their effector function.17

There are three major CD4 helper T-cell subsets that

we will discuss in the context of fungal immunity.21–24

Type 1 helper T cells (Th1 cells) are characterized by

interferon-c (IFN-c) production, and are broadly effective

at clearing intracellular pathogens.25,26 In contrast, Th17

cells produce interleukin-17 (IL-17) and protect against

extracellular pathogens in part through the recruitment of

neutrophils.25,27 Production of IL-5 and IL-13 is charac-

teristic of Th2 cells, which are generally believed to pro-

mote clearance of helminth worms and other large

parasitic organisms, but may also help to clear select

fungi or alternatively mediate allergic inflammation in

response to inhaled mould and related products (summa-

rized in Fig. 1).25,26,28–31 This review article will be largely

organized along these lines: discussing pulmonary fungal

infections grouped by the predominant/protective

response of either Th1, Th17 or Th2.

Type 1 responses to pulmonary mycoses

Pneumocystis jiroveci (previously carinii) is an opportunis-

tic pathogen and causes Pneumocystis pneumonia almost

exclusively in immunocompromised hosts. Upon entry

into the lung, Pneumocystis binds to lung epithelial cells

(LECs).32,33 The LECs play a significant role in the host

response to Pneumocystis.30,34–36 In vitro studies have

demonstrated that LECs can directly respond to Pneumo-

cystis by activating the nuclear factor-jB (NF-jB)

pathway,36 and that chemokine production by LECs in

response to the fungus is myeloid differentiation primary

response 88 (MyD88) -dependent and IL-1R-dependent.34

Furthermore, the chemokine CCL2 is expressed by LECs

in response to infection in vivo,35 and the ablation of NF-

jB selectively within LECs significantly impairs clearance

of Pneumocystis from the lungs,30 emphasizing the essen-

tial role of LECs in mediating a protective response to

this fungus.

Though there is robust evidence from both mouse37

and human38 studies that strongly suggest that CD4 T-

cell responses are required for clearance of Pneumocystis

infection, the exact CD4 T-cell phenotype(s) required for

protection remains a subject of open debate. Numerous

groups have suggested a role for IL-17A and Th17 cells in

host protection against Pneumocystis.30,39,40 Interleukin-

17A-producing CD4 T cells are recruited to the lungs of

infected animals,39 and neutralization of IL-17A or the

Th17-promoting cytokine IL-23 both significantly increase

lung fungal burden at later time-points.40 Furthermore,

impaired fungal clearance was associated with significantly

reduced IL-17+ CD4 T-cell numbers in the lungs of

IKKΔLEC mice30 (which lack NF-jB signalling specifically

within the lung epithelium), suggesting a potential mech-

anism by which the lung epithelium marshals protective

immunity to Pneumocystis.

Other studies have implicated Type 1 and Type 2

immunity in protecting against Pneumocystis infection.

Some studies have correlated robust Type 2 responses

and M2-polarized macrophage responses with protection

against Pneumocystis and fungal killing.23,41 Conversely,

artificial induction of IFN-c responses during Pneumocys-

tis infection in the absence of CD4 T-cell help restores

control of infection,42 suggesting that Type 1 responses at

least have the potential to mediate protection against

Pneumocystis. Though the precise mechanisms of anti-

Pneumocystis immunity remain to be fully elucidated, col-

lectively these studies emphasize the critical role of CD4

T-cell-mediated responses in immunity to this fungus.

Histoplasma capsulatum is a dimorphic, primary fungal

pathogen capable of causing pulmonary histoplasmosis in

immunocompetent hosts.11,43 As is common among the

dimorphic fungi, the spore is the infectious particle, and

upon entry into the lung undergoes a phase-transition to

the yeast phase to mediate disease.11,21 Elegant studies

using green fluorescent protein-expressing H. capsulatum

strains reported that dendritic cells were the most likely

phagocyte population to be associated with H. capsulatum

at 1 day post infection,44 suggesting that dendritic cell–
H. capsulatum interactions are a key early event in the

host response to infection. An important subset includes

CD103+ conventional dendritic cells, which are critical

for TLR7/9-dependent host defence against H. capsula-

tum.45 Innate cytokine production is also important in

early control of infection, as the neutralization of
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Figure 1. T-cell responses to pulmonary fungal infections. Left column: Type 1 responses, characterized by interferon-c (IFN-c) production from

CD4 cells and Type 1/classically activated macrophages, mediate antifungal immunity to Histoplasma capsulatum and Cryptococcus neoformans

infection. Centreal column: Eosinophil and alternatively activated macrophages supported by interleukin-4 (IL-4), IL-5 and IL-13 production

from T cells protect against Pneumocystis jiroveci infection and drive pathology during allergic bronchopulmonary aspergillosis (ABPA). Right col-

umn: Host immunity to Blastomyces dermatitidis, Aspergillus fumigatus and Coccidioides species is mediated in part by T helper type 17 cells by

IL-17A and neutrophil-dependent mechanisms.

ª 2018 John Wiley & Sons Ltd, Immunology, 155, 155–163 157

T cells and fungal infections



granulocyte–macrophage colony-stimulating factor (GM-

CSF) results in an order of magnitude higher fungal bur-

den in the lungs by 1 week post infection.46 Ablation of

GM-CSF also impairs the early production of tumour

necrosis factor-a (TNF-a) and IFN-c,46 two cytokines that

are likewise critical for the control of H. capsulatum

infection.47,48 CCR2-dependent inflammatory cell recruit-

ment is also crucial for early control of infection, as

CCR2�/� mice show a significant increase in lung fungal

burden by 7 days post infection,49 which involves tilting

T helper cell immunity away from Th1 responses.

Numerous studies have demonstrated that Th1

responses are protective against H. capsulatum infec-

tion.50,51 Mice deficient in IFN-c signalling are exquisitely

susceptible to experimental H. capsulatum infection,

dying in little more than a week after experimental infec-

tion.47 In immunocompetent mice, the kinetics of IFN-c
production from CD4 T cells correlates well with the

clearance of the fungus from the lungs.52 Furthermore,

recall of these anti-H. capsulatum T cells is dependent

upon TNF-a, as the neutralization of TNF-a early after

re-challenge of immune mice ablates protective immunity

and leads to significant mortality.53 Hence, Th1 cells and

their products are paramount in mediating effective

immunity against H. capsulatum infection.

Although Type 1 immunity is critical for control and

clearance of H. capsulatum infection, Type 2 responses

are uniformly detrimental in this context. Overexpression

of IL-4 in transgenic mice was associated with increased

lung fungal burden at day 7 post infection, but minimal

alteration in the induction of IFN-c of TNF-a
responses,54 suggesting that enhanced Type 2 responses

directly benefit pathogen growth in the absence of

impaired Type 1 immunity. Loss of CCR2-dependent sig-

nalling is a major determinant driving Type 2 immunity

in response to H. capsulatum.49 Though CCR2�/� mice

exhibit no defects in lung IFN-c production, IL-4 levels

are markedly increased and associated with significant

mortality in a normally non-lethal model of infection.49

Collectively, these studies indicate that Type 2 immunity

is not only inefficient at clearing H. capsulatum, but that

it actively promotes progression of the infection.

Cryptococcus neoformans is an encapsulated, ubiquitous

fungus capable of causing lung disease and meningitis in

immunocompromised patients.55 Initial interactions with

resident phagocytes in the lung are crucial for control of

C. neoformans, as depletion of CD11c+ myeloid cells

results in significant and rapid mortality in otherwise

non-fatal C. neoformans lung infection.56 Likewise, abla-

tion of TNF-a signalling early in infection leads to

increased skewing towards a Th2 response with associated

impaired clearance of the fungus, probably due to defec-

tive maturation of dendritic cells.57 Collectively, these

studies highlight how interactions early in the innate

immune response can be critical for host survival and

influence the later development and polarization of adap-

tive immune responses.

While C. neoformans infection rarely occurs in the

immunocompetent host, infection is common among

HIV/AIDS patients,55 underscoring a role for CD4 T cells

in mediating immunity against this fungus. Numerous

studies have shown a protective benefit of IFN-c produc-

tion and Type 1 immunity during C. neoformans infec-

tion.58,59 Chen and colleagues demonstrated that mice

deficient in the IFN-c receptor showed impaired clearance

of lung C. neoformans, increased dissemination, and

increased mortality compared with wild-type animals.58

This phenotype was largely attributed to decreased fungi-

cidal activity in macrophages in the absence of IFN-c-
mediated activation.58 Additionally, monocyte recruit-

ment is essential for the development of Th1 immunity,

as CCR2�/� mice mount significantly weaker IFN-c
responses.60 Furthermore, pulmonary infection with a

transgenic strain of C. neoformans that produces mam-

malian IFN-c results in enhanced fungal clearance and

survival of an otherwise fatal infection,59 highlighting the

benefit of Type-1 immunity in this infection.

In contrast to Type 1 immunity, Type 2 immune

responses are associated with poor outcome during C. ne-

oformans infection.22,28,61 A comparison of several mouse

strains infected with the same strain of C. neoformans

showed that while strong IFN-c responses were associated

with fungal clearance, enhanced IL-4 production and lung

eosinophil recruitment was associated with compromised

fungal clearance and increased dissemination to the

spleen and brain.61 Additional studies have added further

mechanistic insight into the role of Th2 responses in this

infection. Mice deficient in the receptor for IL-33, an

important signal for Th2 cell function and differentiation,

mount a weaker Type 2 response to C. neoformans and

are consequently better able to control lung fungal colo-

nization and survive infection.22 Ablation of IL-4 sig-

nalling is also associated with reduced eosinophil

recruitment and decreased lung fungal burden at later

time-points during C. neoformans pulmonary infection,28

further demonstrating the largely detrimental role of Type

2 responses in this context.

Type 17 responses to pulmonary mycoses

Blastomyces dermatitidis is a dimorphic fungus and the

causative agent of blastomycosis, a potentially fatal pul-

monary infection seen in immunocompetent individu-

als.62–65 Innate immune cells play a critical role in

regulating the pathogenesis of this infection. Neutrophil

recruitment helps to limit the initial growth of the patho-

gen, as depletion of neutrophils yields an increase in the

lung fungal burden by 2 days post infection.66 Recent

studies by Hernandez-Santos et al.67 have also demon-

strated a key role for lung epithelial cells in orchestrating
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early responses to B. dermatitidis infection. Specifically,

NF-jB signalling within lung epithelial cells restrains fun-

gal growth in part through the recruitment of IL-17A-

and GM-CSF-producing innate lymphoid cells, such as

“natural” Th17 (nTh17) cells and cd T cells, in the first

2 days of infection. This innate IL-17A and GM-CSF pro-

duction in turn is required to activate recruited neu-

trophils and other myeloid cells and enhance their ability

to kill fungal cells, highlighting the complex and multi-

faceted interactions of stromal, myeloid and lymphoid

cells in antifungal immunity.

Several studies have interrogated host immunity in

response to fungal spores,66,68,69 but most animal studies

of immunity to dimorphic fungal infection to date have

been performed with the yeast-like form of the fungi.

This is in large part due to technical difficulties in gen-

erating pure populations of spores and biosafety con-

cerns of handling infectious spores when performing

animal infections. Fungal spores probably represent the

infectious particle in most naturally occurring infections.

The different biochemical composition and metabolic

activity of the spore compared to the yeast probably

influences initial interactions with the immune system,

including but not limited to ligation of PRRs and inter-

actions with resident phagocytes. Although this discrep-

ancy does not diminish the findings of studies using

yeast, future studies delineating the impact of fungal par-

ticles on early pathogenesis and immunity will provide

further illumination.

While experimental pulmonary infection with B. der-

matitidis fails to elicit protective adaptive immune

responses,70,71 vaccine models using inoculation with live

recombinant, attenuated B. dermatitidis have yielded key

insights into the protective contribution of CD4 T

cells.70,72–74 Vaccine-elicited CD4 T cells can produce

both IFN-c and IL-17A. However, the protective effects of

these T cells are mediated more so by IL-17A produc-

tion.73,74 Indeed, the ability of vaccination to protect

against lethal challenge with wild-type B. dermatitidis is

significantly impaired in the absence of IL-17A receptor

signalling or the ablation of IL-17A signal directly.73 Vac-

cine immunity is dependent upon robust antifungal

response from the myeloid compartment, as both phox-

deficient72 and neutrophil-depleted73 mice show impaired

ability to clear B. dermatitidis from the lungs of vacci-

nated animals following an infectious challenge.

Interestingly, CD4 T cells are not the only T-cell subset

capable of mediating vaccine immunity against B. der-

matitidis. In the absence of CD4 T-cell help, CD8 T cells

compensate and are sufficient to protect CD4-

deficient hosts from otherwise lethal infection.75 Strik-

ingly, these CD8 T cells produce IL-17A, and mediate

immunity against lethal fungal infection by this IL-17A

production.76–78 Impairment of either IL-17A signalling

or neutrophil recruitment significantly ablates vaccine

immunity in CD4-deficient animals,77 underscoring the

protective role of IL-17A production by CD8 T cells. Fur-

thermore, these IL-17A-producing CD8 T cells (Tc17

cells) display many of the phenotypic characteristics of

Th17 cells, including increased expression of Retinoid-

related orphan receptor c T (RORcT) and increased

surface CCR6 expression.77 Hence, both CD4 and CD8 T

cells are capable of promoting vaccine-induced clearance

of B. dermatitidis by the production of IL-17A and the

recruitment and activation of neutrophils.

Aspergillus fumigatus is a saprophytic mould found

throughout the environment and the causative agent of

pulmonary aspergillosis.79 Humans most commonly

encounter A. fumigatus by inhaling conidia from the

conidiating mould. Immunocompetent hosts rapidly clear

conidia through the combined action of the mucociliary

escalator, alveolar macrophages and neutrophil recruit-

ment.79,80 Neutrophil recruitment in particular is essential

for the control of A. fumigatus, as the germination of

A. fumigatus conidia is increased in lungs of mice

deficient in neutrophils or neutrophil recruitment; for

example, in MyD88-deficient or caspase recruitment

domain-containing protein 9 (CARD-9) -deficient ani-

mals81 or in CXCR2 deficiency, each of which contribute

to neutrophil recruitment.80 The recruitment of neu-

trophils also is an inflammasome-dependent process, with

IL-1a in particular playing a dominant role in driving ini-

tial neutrophil responses.82

Although immunocompetent individuals exposed to

A. fumigatus conidia are usually able to clear these fungal

particles without the engagement of adaptive immunity,79

patients with severe asthma or cystic fibrosis can become

consistently colonized with A. fumigatus and develop aller-

gic bronchopulmonary aspergillosis (ABPA).83 ABPA is

characterized by eosinophilia, IgE antibody, and the devel-

opment of Aspergillus-specific Th2 cells.83 High levels of

serum IgE, whose production from B cells is driven by Th2

cell-derived IL-4,84 are often found in patients suffering

from ABPA.83 Experimental models using repeated expo-

sures to A. fumigatus conidia have yielded insight into the

mechanisms underpinning the development of anti-A. fu-

migatus immune responses.9,29,31 In these models, mice

repeatedly instilled with A. fumigatus conidia develop

many of the hallmarks of allergic airway inflammation and

ABPA, including robust eosinophil recruitment, arterial

remodelling, and collagen deposition around airways.29,31

Interestingly, this inflammatory response is associated with

the development of Th1 and Th17 responses in addition to

Th2 responses.29 Interleukin-17A is required for full eosi-

nophil recruitment at the peak of inflammation,9 under-

scoring the potential for non-Type 2 cytokines in driving

‘allergic’ responses following fungal exposure. Recent work

has shown that signalling via IL-17RA and IL-17RC may

drive divergent allergic outcomes,85 with the IL-17F–IL-
17RC axis favouring respiratory allergy in the proximal
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airways. Collectively, these studies demonstrate the poten-

tially varied functions of T-cell responses to fungal chal-

lenge, and how repeated exposure to fungi and their

products can drive development of allergic airway disease.

Coccidioides posadasii and Coccidioides immitis are two

closely related species of Coccidioides, a dimorphic pri-

mary fungal pathogen endemic to the American south-

west and California, respectively, and the causative agents

of Valley Fever.86 Infection is initiated when Coccidioides

arthroconidia are inhaled into the lung, where these

infectious particles undergo development and eventually

grow into large spherules containing numerous endo-

spores. When the spherule bursts, the newly freed endo-

spores form new spherules, and the infection

continues.86–88 The contribution of innate immunity to

protection against Coccidioides remains incompletely

understood. In experimental models of Coccidioides infec-

tion, the depletion of neutrophils does not result in

increased lung or spleen fungal burden,89 suggesting that

neutrophils may be dispensable in that model. Addition-

ally, although the absence of functional TLR4 is not asso-

ciated with any increase in lung burden, increased fungal

dissemination to the spleen was reported.90

Experimental vaccination models have begun to eluci-

date the protective role of T-cell responses against Coccid-

ioides infection.89,91 Subcutaneous vaccination with spores

from an attenuated strain of Coccidioides engenders resis-

tance against otherwise lethal pulmonary challenge with

the wild-type fungus, in association with robust Type 1,

Type 2 and Type 17 responses.91 Th17 cells appear to be

required for protective immunity following vaccination

however, as IL-17ra knockout mice exhibit a significant

defect in survival during rechallenge after vaccination.91

Furthermore, MyD88 and CARD-9 are required both for

the development of vaccine-induced resistance to infec-

tion and the development of robust Th17 responses in

the lungs.89 Additionally, the depletion of neutrophils sig-

nificantly impairs fungal clearance in vaccinated ani-

mals,89 offering further evidence that antifungal activity

following vaccination is driven by Th17 cell activity.

Type 2 responses and pulmonary mycoses

Though Type 2 immunity is largely considered dispensable

at best and detrimental at worst in response to pulmonary

fungal challenge, numerous groups have reported beneficial

facets of Type 2 immunity to a variety of fungal pathogens.

Notably, although the absence of IL-4 signalling is associ-

ated with improved control of C. neoformans lung burden

at later time-points post infection, IL-4RaKO mice show

increased pathogen burden early in infection,28 suggesting

that IL-4-mediated responses are protective at this early

time-point. Additionally, whereas eosinophilia is associated

with allergic airway inflammation following repeated expo-

sure to Aspergillus conidia,9,29,31 defects in eosinophil

activity are associated with impaired ability to clear Asper-

gillus conidia following installation into the lungs.92 Fur-

thermore, eosinophils exhibit contact-independent killing

of Aspergillus conidia in vitro,92 suggesting that recruited

eosinophils are capable of protecting the host by killing

Aspergillus conidia after exposure.

Applications for antifungal T cells

One clinical application for antifungal T cells is the devel-

opment of T-cell-based vaccines, especially for use in pop-

ulations living in areas where fungal infections are

endemic. Experimental models have identified candidate

vaccination strategies against the endemic mycoses B. der-

matitidis,70 H. capsulatum,93 and Coccidioides posadasii.94

Wuthrich et al.24 recently demonstrated that T cells speci-

fic to an epitope found in fungal calnexin can respond to

and expand following stimulation with the fungal patho-

gens mentioned above as well as A. fumigatus conidia.

Vaccination with glucan particles loaded with calnexin

peptide was capable of eliciting protective immunity

against both B. dermatitidis and Coccidioides posadasii

experimental pulmonary infection,24 demonstrating the

potential for vaccination strategies promoting calnexin-spe-

cific T-cell responses to protect against multiple endemic

fungal infections. Various strategies, including recombinant

proteins in glucan particles, engineered attenuated strains

and alkaline extracts have shown promise in vaccination

against experimental murine Cryptococcus infections.95–97

An additional clinical application where one might lever-

age antifungal T-cell responses is the development of

immunotherapy treatments, especially in populations at

high risk for fungal infections. Invasive aspergillosis is a

severe fungal infection in immunocompromised individu-

als, especially those undergoing corticosteroid treatment,

and mortality can be as high as 90%.79,98 A therapeutic

approach with promise is the transplantation of in vitro

differentiated antifungal T cells to at-risk patient popula-

tions.99 Preclinical models have demonstrated the efficacy

of antifungal T-cell responses in protecting mice from

otherwise lethal doses of A. fumigatus.99–101 Recent studies

by Kumaresan and colleagues have demonstrated the

potential of CD8 T cells bioengineered to respond to b-
glucan via Dectin-1 to impair A. fumigatus growth.102 Fur-

thermore, human trials using the transplantation of

in vitro stimulated donor Aspergillus-specific T cells as a

therapeutic intervention in response to evidence of invasive

aspergillosis demonstrated a significant increase in survival

compared with control patients,99,103 so demonstrating the

potential for this therapy in improving patient outcomes

in an otherwise often intractable disease.

Similar immunotherapeutic strategies, where autolo-

gous antigen-specific T cells are expanded in vitro and

transferred to patients, have proven effective at protecting

immunocompromised patients against cytomegalovirus
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(CMV) infection.104,105 One difference between the two

infections, and a technological challenge that must be met

to develop a viable therapeutic, is the mechanisms by

which the immunotherapy would kill the infectious agent.

Anti-CMV immunotherapeutic approaches use CMV-spe-

cific cytotoxic T lymphocytes,104,105 which can directly kill

infected cells. In contrast, CD4 T helper cells will have to

engage arms of innate immunity, such as neutrophils,

monocytes, or macrophages,24 which may be absent or

functionally impaired in immunosuppressed individuals,

to protect against fungal infection. Hence, antifungal

immunotherapeutic strategies may also involve the aug-

mentation of effector myeloid cell responses in conjunc-

tion with antifungal T-cell transfers.

Concluding remarks

The development of adaptive immunity and the engage-

ment of CD4 T-cell help is a key determinant of the out-

come of numerous pulmonary fungal infections. In the

case of H. capsulatum or C. neoformans infection, natu-

rally developing Th1 responses drive clearance of fungal

infections. In other cases, such as the Th2 responses that

develop following repeated exposure to A. fumigatus coni-

dia, CD4 T-cell responses are dispensable to fungal killing

and ultimately contribute to immune pathology. Further-

more in other contexts, including B. dermatitidis or Coc-

cidioides infection, a failure of the development of robust

CD4 T-cell responses is associated with poor outcomes

following infection. Hence, the phenotype and strength of

antifungal T-cell responses is a major factor in immunity

and pathology during pulmonary fungal infections.

These insights are improving our understanding of the

basic biology of fungal infections, and also informing the

development of next-generation antifungal therapies. As

mentioned above, the transfer of antifungal CD4 T cells

shows great promise as a therapy for difficult to treat fungal

infections in immunocompromised hosts. Experimental vac-

cines against B. dermatitidis or Coccidioides are capable of

eliciting protective immunity in preclinical models of fatal

fungal infection. Future investigations of antifungal CD4 T-

cell responses should yield novel insights into the determi-

nants of protective versus pathological host responses.
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