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Abstract

Background: Metabolic syndrome is a cluster of abnormalities that increases the risk for type 2 diabetes and
atherosclerosis. Plasma and serum water T, from benchtop nuclear magnetic resonance relaxometry are early,
global and practical biomarkers for metabolic syndrome and its underlying abnormalities. In a prior study, water T, was
analyzed against ~ 130 strategically selected proteins and metabolites to identify associations with insulin resistance,
inflammation and dyslipidemia. In the current study, the analysis was broadened ten-fold using a modified aptamer
(SOMAmer) library, enabling an unbiased search for new proteins correlated with water T, and thus, metabolic health.

Methods: Water T, measurements were recorded using fasting plasma and serum from non-diabetic human subjects.
In parallel, plasma samples were analyzed using a SOMAscan assay that employed modified DNA aptamers to determine
the relative concentrations of 1310 proteins. A multi-step statistical analysis was performed to identify the biomarkers
most predictive of water T,. The steps included Spearman rank correlation, followed by principal components analysis
with variable clustering, random forests for biomarker selection, and regression trees for biomarker ranking.

Results: The multi-step analysis unveiled five new proteins most predictive of water T,: hepatocyte growth factor,
receptor tyrosine kinase FLT3, bone sialoprotein 2, glucokinase regulatory protein and endothelial cell-specific
molecule 1. Three of the five strongest predictors of water T, have been previously implicated in cardiometabolic
diseases. Hepatocyte growth factor has been associated with incident type 2 diabetes, and endothelial cell specific
molecule 1, with atherosclerosis in subjects with diabetes. Glucokinase regulatory protein plays a critical role in hepatic
glucose uptake and metabolism and is a drug target for type 2 diabetes. By contrast, receptor tyrosine kinase FLT3

and bone sialoprotein 2 have not been previously associated with metabolic conditions. In addition to the five most
predictive biomarkers, the analysis unveiled other strong correlates of water T, that would not have been identified in
a hypothesis-driven biomarker search.

Conclusions: The identification of new proteins associated with water T, demonstrates the value of this approach to
biomarker discovery. It provides new insights into the metabolic significance of water T, and the pathophysiology of
metabolic syndrome.
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Background

Metabolic syndrome (MetS) is a cluster of clinical find-
ings that includes increased waist circumference, high
blood pressure, high blood glucose, high triglycerides
and/or low HDL-cholesterol [1, 2]. The criteria for MetS
differ depending on the guideline used, but a widely used
consensus requires that at least three of the five criteria
are met [3]. Metabolic syndrome is associated with a
two-fold increased risk for atherosclerosis, a five-fold in-
creased risk for type 2 diabetes [2] and an increased risk
for some forms of cancer [4]. The prevalence of MetS is
high among the U.S. population: one third of adults and
half of those 260 years of age [5, 6]. Previously called in-
sulin resistance syndrome ([7], the pathophysiological
factors that drive MetS include insulin resistance, in-
flammation and ectopic lipid deposition [1, 2].

In an observational cross-sectional study of 72 non-
diabetic human subjects, we discovered that plasma and
serum water T, detect MetS-associated abnormalities
with high sensitivity and specificity [8]. Measured using
benchtop nuclear magnetic resonance relaxometry [9],
T, refers to the time constant for the decay or “relax-
ation” of the transverse component of the NMR signal.
Water T, is sensitive to the rotational diffusion of
protein-bound and unbound water molecules and serves
as a surveillance system for shifts in blood proteins and
lipoproteins. One example is the shifts that occur with
an acute phase response, which increase the levels of
some globulins, while decreasing albumin. As globulins
are higher molecular weight than albumin, the net effect
is to slow the rotational mobility of bound water and de-
crease water T, [8, 9].

Fasting hyperinsulinemia (insulin resistance), dyslipid-
emia and inflammation each have independent and addi-
tive contributions to the lowering of water T, [8]. Hence,
water T, captures a global view of an individual’s meta-
bolic health status with just one measurement. It shows
promise as a screening test for the early detection of poor
metabolic health to prevent diabetes and cardiovascular
disease [8]. However, the role of water T, in probing
metabolic health and elucidating the pathophysiology of
MetS has not been fully explored.

The initial search for metabolic correlates of water T,
was conducted using 130 strategically-selected blood
biomarkers that measure different aspects of metabolic
health status [8]. Biomarker selection was based on
investigator-driven hypotheses and priorities. While the
prior search yielded a wealth of information, it could

have been limited by selection bias. Therefore, the
search for new correlates of water T, was broadened
10-fold to probe a random library of 1310 plasma pro-
teins using a DNA-based modified aptamer assay devel-
oped by SomaLogic, Inc. In this manuscript, we report
the results of the SOMAscan analysis of plasma samples
from non-diabetic subjects who participated in Phase 2
of the prior study.

Target-specific single-stranded DNA aptamers can be
generated in a relatively short time and with substan-
tially less cost than antibodies. Therefore, this technol-
ogy is gaining recognition as a tool for biomarker
discovery [10-18]. A major advantage is that aptamer-
based assays are highly multiplexed and can measure
hundreds-to-thousands of proteins from biofluids with-
out the need for isolation or pre-treatment [10].

While a broad evaluation of biomarkers is important,
it creates challenges related to high-dimension data ana-
lysis on a comparatively small number of subjects. Given
the large number of proteins measured, the use of statis-
tical correlation alone to identify associations with water
T, would increase the probability of false positives. To
circumvent this problem, we applied a systematic multi-
step method for dimension reduction starting with bi-
variate correlations, followed by principal components
analysis with variable clustering, random forest variable
selection, and classification and regression tree analysis
or CART. The results identified new predictors of
plasma and serum water T, and provided new insights
into biomarkers for metabolic health.

Methods

Human subject recruitment, blood collection and
processing

Human subject research was performed under a protocol
approved by the Institutional Review Board of the Univer-
sity of North Texas Health Sciences Center, Fort Worth.
A screening interview was completed by each subject
prior to obtaining informed consent, and a full medical
history was obtained after enrollment. The inclusion cri-
teria were adults ages 18 and up, weighing at least 110
pounds. The exclusion criteria were active acute or
chronic illness (history/diagnosis or CRP =10), diabetes
(history/diagnosis or fasting glucose =125 mg/dl or HbAlc
26.5%), confirmed or suspected pregnancy, history of
bleeding disorders or difficulty giving blood, or not fasting
for at least 12 h.
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The fasting blood draw was scheduled for 7:00 AM.
During the visit, the nurse-phlebotomist recorded routine
physical measurements such as height, weight, abdominal
waist circumference and blood pressure. In addition, a
urine sample was analyzed for microalbuminuria using
Chemstrip Micral (Roche Diagnostics, Inc.). The blood
samples were centrifuged right after venipuncture using a
two-step procedure [8]. For NMR analysis, the freshly
drawn and centrifuged samples were analyzed immedi-
ately. For SOMAscan assays, the plasma obtained from
Phase 2 subjects was biobanked at -80°C for several
months prior to analysis.

Benchtop NMR relaxometry measurements

The "H NMR data for plasma and serum samples were re-
corded using a Bruker mq20 Minispec benchtop relax-
ometer operating at 0.47 T, corresponding to 20 MHz for
'H. Samples were pipetted into a 3 mm coaxial insert in-
side of a 10 mm NMR tube (Norell NI10CCI-B, Norell,
Inc., Morganton, North Carolina, USA). The sample height
was 1 cm, corresponding to a total volume of ~50 pL. A
modified Carr-Purcell-Meiboom-Gill (CPMG) pulse se-
quence was used for T, measurement, as detailed else-
where [8, 9]. The recycle delay was set to 5 x T to achieve
essentially complete spin relaxation prior to the next round
of the pulse sequence. Sixteen scans were signal averaged
in each experiment, for a data collection time of 3 min.
The data were collected in triplicate. To extract and re-
solve T, values, the raw CPMG decay curves were analyzed
using a discrete inverse Laplace transform algorithm as im-
plemented in XpFit [9, 19]. The number of exponential
terms was fixed to three for all samples. Water T, was the
dominant term, accounting for >90% of the total CPMG
signal intensity [9].

SOMAscan proteomics assay

Frozen biobanked plasma samples were shipped over-
night on dry ice to SomaLogic, Inc. (Boulder, Colorado,
USA) for SOMAscan analysis. The relative concentra-
tions of 1310 plasma proteins were quantified using a
proprietary SOMAscan proteomics assay [10]. This assay
is based on the selective binding of single-stranded nu-
cleic acid aptamers called SOMAmers (Slow Off-rate
Modified Aptamers) to target proteins. The SOMAmer
library for target selection was developed using the
SELEX method [20, 21].

Statistical analysis strategy

The search for SOMAscan-detected proteins most pre-
dictive of water T, was carried out in four steps: (1)
screening the variables using bivariate correlations be-
tween protein biomarkers and plasma or serum water
T,, (2) grouping the correlated proteins into statistically-
related clusters and identifying the most representative
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variable in each cluster, (3) selecting the most predictive
variables using an iterative multi-variable random forests
analysis, and (4) defining the interactions of the most
predictive biomarkers and their final associations with
plasma or serum water T, levels. The general scheme is
illustrated in Fig. 1, and each of the steps is explained
further below.

Correlation and variable cluster analysis

First, the 1310 SOMAscan-derived biomarkers were ana-
lyzed using the Shapiro-Wilk normality test in R 3.1.4 stat-
istical software [22]. Based on this analysis, only 408 (~
31%) of the variables followed a normal distribution.
Therefore, the correlations of plasma or serum T, with
SOMAscan-derived biomarkers were screened using
non-parametric Spearman rank correlation coefficients (p
values). The screening criterion was |p| = 0.3. In the pre-
selection of variables associated with water T, we focused
on the effect size (correlation coefficient), not statistical
significance (p-value), in order to limit false negatives.

To reduce the dimensionality of the search at the
screening stage, we applied principal components ana-
lysis with variable clustering as implemented in JMP Pro
12.1.0 (SAS, Inc., Cary, North Carolina, USA). The
algorithm identified variable clusters, as well as the most
representative variable in each cluster [23]. Variable
clustering is not to be confused with conventional cluster
analysis, which identifies clustering across subjects, as op-
posed to clustering across measured variables. It has
advantages over factor analysis for dimension reduction
and has been recently used in clinical research [24]. In
addition, variable clustering reduces the difficulty in inter-
preting the output of conventional principal component
analysis [23]. For each cluster, the variable corresponding
to the largest squared correlation with its cluster compo-
nent was identified as the most representative variable
and used for the next step of statistical analysis.

Random forests and CART analysis
The most representative variables from all clusters were
used as independent variables, and water T, as a dependent
variable, to construct two random forest models: one for
plasma water T, and another for serum water T,. Random
forests, developed by Leo Breiman and colleagues, is a
powerful non-parametric machine learning algorithm to
make predictions from the data [25]. In addition, it can be
used as a tool to select variables, in this case SOMAscan-
derived protein markers, based on their importance in pre-
dicting plasma or serum water T,. This analysis was per-
formed using the package randomForest in R 3.1.4 [22, 26].
The randomForest algorithm generated regression trees
based on a statistical resampling or bootstrap method. It
started with a randomly-selected subset of the original
data, i.e., a learning set containing approximately one third
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Fig. 1 Overall strategy used to identify protein markers in human
plasma that are most predictive of plasma or serum water T, values
and hence, metabolic health

of the protein variables. Each learning set was used to cre-
ate a regression tree, where the first branch contained the
protein variable that showed the maximum difference in
T, between the two branches, with an approximately
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equal number of subjects in each branch. Similarly, add-
itional branches were created until each variable in the
learning set was incorporated into the tree. Through boot-
strapping, a total of 1000 regression trees were created
from 1000 randomly-selected learning sets. This method
ensured the stability of the results by repeating the associ-
ation analysis a large number of times. For each subject,
the T, value predicted from all 1000 trees was averaged
and compared to the experimentally determined T, for
that subject. Finally, the mean squared error was calcu-
lated by comparing the predicted vs. observed T, values
across all subjects.

To select the most predictive variables, the random for-
ests analysis was repeated after removing all trees contain-
ing a given variable. Then the remaining trees were used
to predict the T, value for a given subject, and the mean
squared error was calculated to quantify predicted vs. ob-
served T, across all subjects. This process was performed
recursively by leaving out trees containing one variable at
a time and calculating a new mean squared error. The per-
cent change in mean squared error before and after leaving
out each variable was computed, and the variables were
ranked by the percent change. By convention, protein var-
iables with 5% change in mean squared error after being
removed from the random forests model were selected as
the top predictors of water T5. Note that the use of the 5%
threshold was somewhat arbitrary, and proteins falling just
below this threshold also are predictive of water T».

Using the most predictive variables, two final re-
gression trees were constructed using classification
and regression tree analysis or CART: one for plasma
and one for serum water T,. The CART analysis ex-
plores the possible interactions across all the selected
variables by determining the most appropriate binary
classification of each variable. The regression trees
were constructed by identifying variables that maxi-
mized the T, difference while keeping the number of
subjects in each branch approximately equal. The
branching was stopped when the number of subjects
in each branch was <25% of the total number of sub-
jects in the study.

Multiple regression analysis

As a cross check on the most predictive variables iden-
tified by random forest, the variables were used to gen-
erate multiple linear regression models, with plasma or
serum water T, as the outcome variable. The models
were constructed using the stepwise tools in JMP Pro
v14.0, and acceptable models met the following criteria
[8]: (1) all predictor variables were statistically signifi-
cant at o =0.05, (2) the models were not overfit, as
assessed by k-fold cross validation, and (3) the adjusted
R? was maximized.
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Results

Characteristics of the human subject cohort

The study population consisted of asymptomatic individ-
uals without active acute or chronic disease (Table 1).
There were approximately equal numbers of males and fe-
males. The mean values for clinical lab tests fell within
their reference ranges, although some individuals had
values outside the normal range. By American Diabetes
Association criteria, 15 of the 41 Phase 2 subjects had pre-
diabetes based on HbA;. and/or fasting glucose levels;
none had overt diabetes. Using the harmonized criteria
[3], 9 of 41 subjects met the definition of MetS. By water
T, criteria, 19 of the 41 subjects had hyperinsulinemia/in-
sulin resistance using the cut points established by Robin-
son et al. [8]. Five of the 19 (26%) had compensatory
hyperinsulinemia (early metabolic dysregulation) and did
not meet the criteria for either prediabetes or MetS.

Table 1 Characteristics of the human study population (n =41)
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Bivariate correlations and variable clustering analysis
Figure 2 provides a schematic overview of the results
from each stage of statistical analysis for plasma (left
side) and serum water T, (right side). The correlation
analysis revealed 311 and 269 protein markers for
plasma and serum T, respectively, using a Spearman p
absolute-value threshold of 0.3. The full lists of 311
and 269 protein markers with correlation coefficients
are provided in Additional file 1: Tables S1 and S2,
respectively.

The correlated variables were further subjected to di-
mension reduction using variable clustering. The cluster-
ing algorithm revealed 55 and 47 clusters for plasma and
serum water T, respectively. Additional file 1: Tables S3
and S4 list all of the clusters, as defined by their most
representative variables, for plasma and serum T,--
correlated biomarkers, respectively.

Parameter Mean £S.D. Range Reference Values®

Age 365125 23-61 n/a

Gender n/a 19 female, 22 male n/a

Body-Mass Index (kg/mz) 265+55 19.1-45.1 < 25 normal weight, 25-30 overweight, > 30 obese

Plasma T, (ms) 7715+583 631-887 > 7450°

Serum T, (ms) 8174+52 706-908 >8118"

Glucose (mg/dL) 906+77 71-109 < 100 non-diabetic
100-125 (pre-diabetic)

HbA; . (%) 55+03 47-6.1 < 5.7 (non-diabetic)
5.7-6.4 (pre-diabetic)

Insulin C-peptide (ng/mL) 1.8+08 0.7-5.1 0.8-39 (> 285, IRY)

Insulin (MU/mL) 87+£66 2.2-40.1 2.0-196 (> 122, IR9)

Total serum protein (g/dL) 72+04 6.3-8.0 6.1-8.1

Serum albumin (g/dL) 45403 36-5.1 36-5.1

Serum globulins (g/dL) 27+03 19-33 19-37

Triglycerides (mg/dL) 123 +63.1 50-321 <150

Total cholesterol (mg/dL) 185.0+45.0 97-291 <200

HDL-C (mg/dL) 51.7+127 31-78 > 40 (male); = 50 (female)

LDL-C (mg/dL) 110.1+359 50-191 <130

WBC count (x 10°/uL) 66+17 39-112 38-108

Neutrophil count (x 10%/uL) 36+12 18-7.2 15-78

hs-CRP (mg/L) 26+27 0.1-96 < 3.0 (low/average CV risk)
3.0-10.0 (high CV risk)
>10.0 (infection/illness)

Sodium (mmoles/L) 1382+26 131-143 135-146

Potassium (mmoles/L) 41+03 37-48 35-53

Total CO,, (mmoles/L) 242423 18-28 19-30

“Reference values from Quest Diagnostics and Atherotech, except where noted
PCutoff for normoglycemic population established in previous study [8]

“Insulin cutoff from McAuley et al. [67]; insulin C-peptide cutoff established by linear regression with insulin
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Random forests and CART analysis

The most representative variable from each cluster was
selected for random forests analysis. This analysis
yielded 7 proteins most predictive for plasma water T,
(Table 2) and 6 for serum water T, (Table 3). Each pro-
tein displayed a percent increase in mean squared
error > 5% after trees containing this protein were re-
moved from the random forests model. As shown in
Tables 2 and 3, glucokinase regulatory protein and

receptor-type tyrosine protein kinase FLT3 were top pre-
dictors of both plasma and serum water T».

As revealed by CART analysis, the final regression tree
for plasma water T, included three biomarkers: hepato-
cyte growth factor receptor, receptor tyrosine kinase
FLT3 (fms-like tyrosine kinase 3), and bone sialoprotein
2 (Fig. 3). The final regression tree for serum water T,
included two protein markers: endothelial cell-specific
molecule 1 and glucokinase regulatory protein (Fig. 4).

Table 2 Most predictive biomarkers and cluster members for plasma water T,

Protein Name (Uniprot ID)? % Inc. MSE®  Cluster Members

Hepatocyte growth factor (P14210) 9.51 R-spondin-2, Galectin-7

Glucokinase regulatory protein (Q14397) 944 Low-density lipoprotein receptor-related protein 1 soluble, T-lymphocyte activation antigen
D86,

Receptor-type tyrosine-protein kinase FLT3 834 Complement C4b®, Discoidin domain-containing receptor 2, Serine/threonine-protein kinase

(P36888) PAK 6, Heterogeneous nuclear ribonucleoprotein A/B

Ephrin-B2 (P52799) 752 Leucine-rich repeat transmembrane protein FLRT3, Amphoterin-induced protein 2, Ephrin-
A5NT-3 growth factor receptor, Kallikrein-8, Interleukin-1 receptor type 1, Iduronate 2-
sulfatase, CD109 antigen, Cell adhesion molecule 1, SLIT and NTRK-like protein 5, Ephrin
type-A receptor 2, Endoglin, Interleukin-22 receptor subunit alpha-2, OX-2 membrane glyco
protein, Semaphorin-6B8, Semaphorin-6A, Interferon alpha/beta receptor 1

Bone sialoprotein 2 (P21815) 522 Fibrmogenb, Alpha-1-antichymotrypsin, Antithrombin-Ill, Endothelial cell-specific molecule 1,
Serotransferrin

Histone-lysine N-methyl-transferase EHMT2 5.13 Metalloproteinase inhibitor 1, Metalloproteinase inhibitor 2, Delta-like protein 4

(Q96KQ7)

Fibroblast growth factor 2 (P09038) 5.09 Fibroblast growth factor 4

*The most predictive biomarkers are defined as those with >5% increase in mean squared error (MSE)
®In a prior study, complement C4 (C4c) and fibrinogen were strongly associated with plasma water T, [8]
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Table 3 Most predictive biomarkers and cluster members for serum water T,

Protein Name (Uniprot ID)? % Inc. MSE*  Cluster Members

Endothelial cell-specific molecule 11.0 Bone sialoprotein 2, Bone morphogenetic protein 10

1 (Q9NQ30)

Glucokinase regulatory protein 8.0 2'-5"-oligoadenylate synthase 1, T-lymphocyte activation antigen CD86

(Q14397)

Lactadherin (Q08431) 74 Hepatocyte growth factor receptor, Alpha-2-macroglobulin, Adrenomedullin, N terminal pro BNP
Vascular cell adhesion protein 1 6.1 Secreted frizzled-related protein 3, L-selectin

(P19320)

Receptor-type tyrosine-protein kinase 5.6 Serum amyloid P-component, Discoidin domain-containing receptor 2, Serine/threonine-protein
FLT3 (P36888) kinase PAK 6, Heterogeneous nuclear ribonucleoprotein A/B

Semaphorin-6A (Q9H2E6) 52 Osteopontin, Leucine-rich repeat transmembrane protein FLRT3, Ephrin-B2, Ephrin-A5, NT-3

growth factor receptor, Kallikrein-8, Interleukin-1 receptor type 1, Iduronate 2-sulfatase, CD109
antigen, Cell adhesion molecule 1, Brother of CDO, SLIT and NTRK-like protein 5, Endoglin,

Neuropilin-1

*The most predictive biomarkers are defined as those with >5% increase in mean squared error (MSE)

Multiple regression analysis

As a validation check for the random forest results, we
tested the variables listed in Tables 2 and 3 as predictor
variables in multiple linear regression models, with
plasma or serum water T, as the outcome variable. The
best model for plasma water T, incorporated hepatic
growth factor, receptor-type tyrosine protein kinase
FLT3 and bone sialoprotein, yielding an adjusted R* of
0.52. These three predictor variables accounted for over
half of the variation in plasma water T,. For serum water
T,, the best model incorporated endothelial cell specific
molecule 1, receptor-type tyrosine protein kinase FLT3
and semaphorin 6A, yielding an adjusted R> of 0.47.
Thus, the results from random forests are consistent
with those obtained from a different method.

Discussion
For the first time, a highly multiplexed SOMAscan assay
was used in an unbiased search for new correlates of

plasma and serum water T,. Using this discovery strat-
egy, we identified proteins in the SOMAmer library that
were most predictive of water T, and hence, metabolic
health [8]. The dimensionality was reduced using a sys-
tematic multi-step procedure that incorporated principal
components analysis with variable clustering, random
forests, and classification and regression trees. The ana-
lysis unveiled five proteins most predictive of plasma
and serum water T,, as well as six other proteins that
emerged from the random forests analysis as strong pre-
dictors. All are new hits, as none of these proteins were
included or considered in the prior hypothesis-driven
biomarker search for correlates of water T,.

Three proteins were most predictive of plasma water
T,: hepatocyte growth factor, receptor tyrosine kinase
FLT3 (fms-like tyrosine kinase 3) and bone sialoprotein
2. The latter two proteins have not been previously
associated with metabolic conditions or diabetes. How-
ever, FLT3 is implicated in inflammation, immunity and

Hepatocyte growth factor LT
>990.5 /,//

~ meanT,=732.0 A ‘
N=20 ,

Receptor type tyrosine /,/ \\\ Receptor type tyrosine
protein kinase FLT3 / \ protein kinase FLT3
21876 / \ <1876
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mean T,= 766.6
N=10

meanT,=697.3
N=10

mean plasma T,= 771.5 '
N=41

Fig. 3 Final regression tree showing the protein biomarkers most predictive for plasma water T,. The mean plasma water T, values are in
milliseconds, and the SOMAscan protein biomarker cut points are in relative units. The number of subjects (N) in each branch is indicated

\‘\\\ Hepatocyte growth factor
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autoimmune diseases and is overexpressed in leukemia
[27, 28]. Also known as CD135, FLT3 is involved in de-
velopment of immune cells in bone marrow and periph-
eral lymphoid tissue [29, 30]. In particular, FLT3
regulates the growth of hematopoietic stem cells and the
development/homeostasis of dendritic cells in lymphoid
tissue [29, 30]. Activation of the receptor by mutation
leads to proliferation, resistance to apoptosis and pre-
vention of differentiation, leading to myeloid leukemia.

Hepatic growth factor has been implicated in diabetes-
related conditions [31-35]. It is elevated in overt type 2
diabetes [35] as well as diabetes-associated coronary ar-
tery disease and cerebral infarction [31, 33]. Most rele-
vant to the current study are recent results from the
multi-ethnic study of atherosclerosis (MESA), a longitu-
dinal human cohort study. The MESA results revealed
that elevated levels of HGF predict incident type 2 dia-
betes [36]. The current observation of a strong inverse
association between plasma water T, and HGF is con-
sistent with this finding, as low water T, detects early
metabolic conditions thought to lead to type 2 diabetes,
namely insulin resistance, subclinical inflammation and
dyslipidemia [8]. In addition, water T is strongly and in-
versely correlated with complement C3, C4, fibrinogen,
and haptoglobin, markers predictive of incident type 2
diabetes [8, 37].

The hepatic growth factor receptor, also known as MET,
is part of a tyrosine kinase signaling complex that func-
tions in cell growth and survival, angiogenesis and tissue
regeneration [38—40]. It is expressed in cells of mesenchy-
mal origin, including epithelial and endothelial cells, neu-
rons, hepatocytes, adipocytes, myocytes and pancreatic
cells. The receptor is cell-membrane associated (c-MET),
but a soluble ectodomain (s-MET) is shed and circulates
in plasma [41]. The receptor is upregulated in cancer, and

both ¢-MET and s-MET have been investigated as bio-
markers of malignancy, metastasis and tumor progression
[40, 42-44].

In this study, s-MET (soluble HGF receptor) displayed
positive Spearman correlations with plasma and serum
water T, (+0.45 and + 0.44, respectively; p <0.01; Add-
itional file 1: Tables S1 and S2). Those correlations were
opposite in sign to those for the receptor ligand HGF. Like
HGF, MET was among the variables predictive of water
T,, but at 4.2%, was just below the 5% mean-squared error
threshold employed in Tables 2 and 3. Thus, high HGF
and low soluble HGF receptor are associated with low
water T, and poor metabolic health.

In the pancreas, HGF/MET signaling is necessary for
beta-cell regeneration [45]. A pancreas-specific knockout
of the MET gene in mice accelerates the onset of diabetes
[46]. Also, hepatocyte growth factor signaling is thought
to be a mediator of beta cell proliferation in obesity [47].
Moreover, hypoxia-inducible factor (HIF1), which is asso-
ciated with obesity and sleep apnea, is a transcriptional
regulator of MET [48-50]. Thus, the expression of MET
appears to be increased under conditions of metabolic
dysregulation that place high secretory demand on beta
cells, such as obesity, insulin resistance and tissue hypoxia.
A decreased ability to upregulate MET under these condi-
tions may hasten the demise of beta cells and accelerate
the onset of type 2 diabetes.

The current observation of an association between
plasma water T, and HGF/MET reinforces the notion
that low plasma water T, is a biomarker of metabolic
dysregulation and poor metabolic health, even in indi-
viduals without prediabetes or metabolic syndrome [8].
Given the association of plasma water T, with other
proteins that predict future type 2 diabetes and athero-
sclerosis, namely fibrinogen, complement C3 and C4,
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haptoglobin, al-acid glycoprotein (orosomucoid) and
apolipoprotein B, the association of water T, with HGF
provides further evidence that plasma water T, is a bio-
marker of the metabolic dysregulation that precedes type
2 diabetes and cardiovascular disease [8].

Bone sialoprotein 2, named according to its high si-
alic acid content, is expressed during the development
of bone and cementum [51]. The function of this pro-
tein is unknown but believed to serve as a nucleation
site for hydroxyapatite crystals [52]. Expression of this
protein is regulated by hormones, growth factors and
cytokines [53]. As shown in Table 2, fibrinogen is a
member of this protein cluster (Table 2) and likely
mediates the statistical association between plasma
water T, and bone sialoprotein 2. Fibrinogen is the
fourth most abundant protein in plasma. Changes in
its level directly affects plasma water T, [8]. Endothe-
lial cell specific molecule 1 is in that cluster as well.

The CART regression tree analysis for serum water T,
yielded two biomarkers: endothelial cell specific molecule 1
and glucokinase regulatory protein (GKRP). Endothelial cell
specific molecule 1 (ESM-1 or endocan) is involved in
angiogenesis and plays a role in lung-endothelial cell-
leukocyte interactions [54, 55]. It has recently been impli-
cated in subclinical atherosclerosis in type II diabetes pa-
tients [56]. In addition, ESM-1 is involved or implicated in
prostate cancer [57], endothelial injury in respiratory distress
syndrome [58], oral cancer [59], erectile dysfunction [60],
and pulmonary infection [61]. Note that the ESM-1 cluster
for serum water T includes bone sialoprotein 2, but not fi-
brinogen (Table 3). Serum water T, is unaffected by fibrino-
gen levels, as this protein is absent in serum.

Glucokinase regulatory protein is a well-known inhibitor
of glucokinase and a key regulator of liver glucose uptake
and metabolism [62—65]. Normally, GKRP is an intracellular
protein localized within hepatocytes. As shown here, in-
creased GKRP levels in plasma and serum were associated
with a lowering of T, values and a worsening of metabolic
health, specifically insulin resistance and glucose intolerance.
This observation implies that GKRP is leaking from hepato-
cytes into the circulation, perhaps reflective of early liver
damage. None of the subjects in this study have a history of
liver disease, but that does not rule out the possibility of
subclinical hepatic steatosis or steatohepatitis. This inter-
pretation is supported by the positive correlation between
GKRP and ALT observed in these subjects (Spearman p =
047, p=0.0024). Alanine aminotransferase (ALT) is an
established marker of liver damage. Plasma and serum T,
are correlated with both GKRP (this study) and ALT [8].

Study limitations

For two reasons, this study utilized a relatively small num-
ber of subjects. First, biobanked samples were available
only from Phase 2 of the initial biomarker discovery study
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for plasma and serum water T, [8]. Second, the SomaScan
analysis was expensive, placing practical constraints on its
application. At first glance, a small sample size might lead
to concerns about statistical power. However, power de-
pends not only on sample size, but also effect size. In this
study, the effect size was remarkably large for the most
predictive variables identified by random forest. A power
calculation for N =41 revealed that a power of 0.8 would
be achieved for absolute values of correlation coefficients
>|0.425]| at a = 0.05. By comparison, the Spearman coeffi-
cient for hepatocyte growth factor and plasma water T,
was — 0.52, and the Huber M-value correlation was — 0.67.
Likewise, the Spearman and Huber correlation coefficients
for endothelial cell specific protein 1 and serum water T,
were 0.58 and 0.70, respectively. Thus, the current analysis
was sufficiently powered because of the large effect sizes,
which more than compensated for the relatively small N.

The small sample size placed a practical lower limit on
the initial biomarker screening step, possibly generating false
negatives by failing to detect some biomarkers that are more
weakly, but significantly associated with water T,. Therefore,
future studies with larger N may unveil additional bio-
markers that are less predictive, but still significant contribu-
tors to water T,. Also, a future study with a different group
of subjects will be important for validating the most predict-
ive variables discovered in the current study.

The NMR analysis was performed using freshly-drawn
plasma and serum. However, the SOMAscan analysis was
performed, by necessity, using one-time frozen-thawed bio-
banked plasma. Changes in some plasma proteins may have
occurred during the freeze-thaw process and could have im-
pacted the analysis. Such changes, if occurred, were likely to
be minor, as biobanked plasma and serum are generally
stable after one freeze-thaw cycle [66].

Conclusion

The SOMAscan results and multi-stage regression analyses
yielded new correlates and predictors of plasma and serum
water T, that were not previously identified in a
hypothesis-driven biomarker search. These new predictors
broadened our understanding of the biomarker network
and the information content of plasma and serum water
T,. In addition, the discovery of biomarkers correlated with
water T, provided new insights into the pathophysiology of
metabolic syndrome and the early metabolic dysregulation
that precedes type 2 diabetes and cardiovascular disease.

Additional file

Additional file 1: Table S1. Spearman correlation of plasma water T,
with SOMAscan biomarkers. Table S2. Spearman correlation of serum
water T, with SOMAscan biomarkers. Table S3. Clusters of plasma T,-
correlated SOMAscan biomarkers. Table S4. Clusters of serum T,-correlated
SOMAscan biomarkers. (DOCX 86 kb)
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