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Natural killer (NK) cell function is regulated by a fine balance between numerous activating and inhibitory receptors, of
which killer-cell immunoglobulin-like receptors (KIRs) are among the most polymorphic and comprehensively
studied. KIRs allow NK cells to recognize downregulation or the absence of HLA class I molecules on target cells
(known as missing-self), a phenomenon that is commonly observed in virally infected cells or cancer cells. Because
KIR and HLA genes are located on different chromosomes, in an allogeneic environment such as after hematopoietic
stem cell transplantation, donor NK cells that express an inhibitory KIR for an HLA class I molecule that is absent on
recipient targets (KIR/KIR-ligand mismatch), can recognize and react to this missing self and mediate cytotoxicity.
Accumulating data indicate that epistatic interactions between KIR and HLA influence outcomes in several clinical
conditions. Herein, we discuss the genetic and functional features of KIR/KIR-ligand interactions in hematopoietic
stem cell transplantation and how these data can guide donor selection. We will also review clinical studies of adoptive
NK cell therapy in leukemia and emerging data on the use of genetically modified NK cells that could broaden the
scope of cancer immunotherapy.

Learning Objectives

• To understand the influence of various inhibitory and acti-
vating KIR receptors on HSCT outcomes

• To understand how these effects may vary by donor source and
underlying disease

Introduction
Natural killer (NK) cells characterized by a CD3–CD561 immu-
nophenotype are bone marrow–derived lymphocytes capable of
mediating early innate immune responses against virally infected
cells or malignant cells.1-7 Because they are the first lymphocytes to
reconstitute after hematopoietic stem cell transplantation (HSCT),8-17

NK cells play an important role in mediating the graft-versus-tumor
effect.18-28 One of the earliest observations of NK cell alloreactivity
was reported in the hybrid resistance model,29,30 which noted that
lethally irradiated heterozygous F1 hybrid mice derived from a cross
of 2 inbred mouse strains (parent A3 parent B) rejected hematopoietic
grafts donated by either parent A or parent B.31 Rejection of the pa-
rental graft was later shown to be mediated by a subset of recipient NK
cells that lacks the appropriate inhibitory receptors to recognize major
histocompatibility complex class I (MHC-I) molecules on the donor
cells. This observation led to the ingenious “missing self” concept of
NK recognition, which postulates that the absence or reduced ex-
pression of “self” MHC-I allows a cell to be killed by NK cells.1,2

Subsequently, the receptors that recognize MHC-I were identified on
NK cells (reviewed by Parham32 and Moretta33). Briefly, each
mature NK cell expresses a wide array of germ-line–encoded

activating and inhibitory receptors.32-49 Inhibitory NK receptors
mediate two important functions. They recognize self-HLA class I
alleles and contribute to the acquisition of NK function by a dynamic
process known as NK cell education or licensing.50 When inhibitory
receptors engage with their cognate class I ligands, they deliver
inhibitory signals to suppress NK cell activity. If HLA class I
antigen expression is sufficiently reduced or modified, as is often
observed in virally infected cells or tumor cells (as an immune
escape mechanism from T-cell recognition), NK cells can eliminate
the abnormal cells.2,51 However, missing-self alone is insufficient
to trigger NK cell effector function, because many recipient cells
with no ligands (eg, red blood cells) are not lysed. Some level of
expression of a stressed ligand is also required. Activating re-
ceptors recognize stress proteins expressed on the surface of
transformed or abnormal cells33-49 and provide signals for NK cells
to kill. Ultimately, NK effector function is dictated by integration
of signals received through these activating and inhibitory re-
ceptors (Figure 1A).

Killer-cell immunoglobulin-like receptors and
their ligands
Among the most comprehensively studied NK cell receptors are the
killer-cell immunoglobulin-like receptors (KIRs). KIRs are clonally
expressed on the surface of NK cells in a stochastic fashion. Each NK
cell can in turn express any possible combination of receptors,
leading to the generation of complex NK cell repertoires.52-57

All KIRs are named 2D or 3D, which denotes the number of
immunoglobulin-like domains in the molecule. The alphabet fol-
lowing 2D or 3D signifies the length of the cytoplasmic tail, which is
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either short (S) in activating KIRs or long (L) in inhibitory KIRs.58

The ligands for KIRs are HLA-A, -B, or -C molecules.59 KIR2DL1
recognizes group 2 HLA-C molecules (HLA-C2; alleles with Lys80
residue [eg, Cw2, 4, 5, 6]), KIR2DL2 recognizes group 1 HLA-C
molecules (HLA-C1; alleles with an Asn80 residue [eg, Cw1, 3, 7, 8]),
and KIR3DL1 recognizes HLA-Bw4 alleles20,55,60-62 (Figure 1A).
In vivo63 and in vitro64 studies suggest that KIR3DL2 recognizes
HLA-A3 and A11 but this binding occurs only in the presence of
the Epstein-Barr virus EBNA3A peptide. In contrast to the in-
hibitory KIRs, the ligands for many activating KIRs are largely
unknown. KIR2DS1 has been shown to interact with HLA-C2
alleles,65-67 whereas KIR2DS2 was recently shown to recognize
HLA-A*11.68 The frequencies of KIR alleles vary from pop-
ulation to population, but most individuals have inhibitory KIRs
specific for HLA-C1, -C2 or -Bw4 alleles. For instance, in English
and white Americans, inhibitory KIR2DL1 (95% to 100%), 2DL2
(43% to 53%), and 2DL3 (85% to 95%) are present in a majority,
whereas the genes for the activating KIR2DS1 (35% to 45%) and
2DS2 (45% to 55%) are less commonly present.69

Because KIRs are encoded by a family of genes in the leukocyte
receptor complex on chromosome 19q13.4 and segregate in-
dependently from the HLA genes,70 in the setting of HSCT,
a donor-recipient pair can be HLA-matched and KIR-ligand
mismatched at the same time. This generates a situation in
which alloreactive donor NK cells can elicit a graft-versus-tumor
effect without increasing the risk of graft-versus-host disease
(GVHD). A KIR ligand calculator to predict NK cell alloreactivity
based on donor and recipient HLA-B and -C typing is available at

the Immuno Polymorphism Database Web site (https://www.ebi.
ac.uk/ipd/kir/ligand.html).

KIR-ligand mismatch leads to superior outcomes after
T-cell deplete haploidentical HSCT in patients with
acute myeloid leukemia
In HSCT, KIR-ligand mismatch in the graft-versus-host (GvH)
direction occurs when the recipient lacks 1 or more major KIR-
ligands (eg, C1, C2, or Bw4). Valiante and Parham56 were the first
to predict NK cell alloreactivity in the clinical transplant setting on
the basis of the donor and recipient KIR and HLA repertoire. The
Perugia group was then the first to report that KIR-ligand mismatch
in the GvH direction was associated with a significant reduction in
the risk of relapse and improved survival.19,20 In that study, patients
with acute myeloid leukemia (AML; n 5 57) or acute lympho-
blastic leukemia (ALL; n 5 35) received granulocyte colony-
stimulating factor mobilized, CD341 selected peripheral blood
progenitor cell haploidentical HSCT after conditioning with total
body irradiation, thiotepa, fludarabine, and anti-thymocyte glob-
ulin. Because the graft was T-cell depleted, no post-HSCT immuno-
suppression was given. KIR-ligand mismatch correlated positively with
NK cell alloreactivity in vitro. Patients who received KIR-ligand
mismatched HSCT in the GvH direction had significantly reduced
risk of relapse compared with those in the KIR-ligand matched group
(probability of relapse at 5 years, 0% vs 75%).20 Furthermore, despite
the presence of donor-versus-recipient alloreactive NK cells, no
patient in the KIR-ligand mismatched group experienced GVHD or
graft rejection compared with 14% and 16%, respectively, in the

Figure 1. (A) NK cell activating and inhibitory receptors and their ligands. (B) KIR gene organization. KIR haplotype illustrating centromeric and telomeric
KIR gene motifs. BAT-3, HLA-B–associated transcript 3; H60, histocompatibility 60; hsp60, heat shock protein 60; HSPG, heparin sulfate proteoglycans;
MIC, MHC class I chain-related gene; VH, viral hemagglutinin; ULBP, UL16 binding protein.83
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KIR-ligand matched group.20 Overall survival (OS) was also im-
proved in the KIR-ligand mismatch group (60%) compared with the
KIR-ligand match group (5%). Interestingly, these favorable out-
comes were observed only in AML patients and not in ALL patients.
These findings were later corroborated in a larger cohort of 112
patients with AML who underwent T-cell deplete haploidentical
HSCT.21 This study also reported a 52% reduction in the risk of
relapse or death in the KIR-ligand mismatched group compared with
the KIR-ligand matched group (relative risk [RR], 0.48; 95% con-
fidence interval [CI], 0.29-0.78; P , .001). Moreover, even patients
who were transplanted with active disease experienced improved
disease-free survival (DFS) if they received a graft from a KIR-ligand
mismatched compared with a KIR-ligand matched donor.21 It is
noteworthy that the myeloablative regimen used in these studies was
highly immunosuppressive, which in conjunction with a T-cell–
deplete graft, created a state of intense lymphodepletion in the host,
providing an ideal scenario for in vivo persistence and expansion of
NK cells.71 Consequently, alloreactive NK cells were detected for
up to 7 months in one-third of patients and for up to a year in ~10%
of patients.20 These data led to several retrospective analyses on
the effects of KIR-ligand mismatch on outcomes in the HLA-matched
unrelated and matched sibling transplant settings (Table 1).23-27,72,73

Although some studies showed improvements in 1 or all aspects of
disease outcome, including relapse, DFS, or OS,23-27 others reported
a detrimental impact of KIR-ligand mismatch,27,74,75 including
greater risk of GVHD and death.76 The conflicting data in the various
studies may be explained by a number of factors, most importantly,
differences in the degree of T-cell depletion in the graft and the re-
sultant T-cell alloreactivity, which may in turn overcome any potential
benefit of NK cell alloreactivity.26,72 Indeed, T cells in the graft have
been shown to negatively affect donor-derived NK cell reconstitution
and expression of KIRs, thereby impairing NK effector function in
vivo.26,72,77 This is exemplified by studies that showed improved
outcomes after KIR-ligand mismatched T-cell deplete22,78,79 but not
with T-cell replete HSCTs.72,75,80,81

Activating KIRs in donor NK cells are protective against
leukemia relapse
In contrast to the well-studied biology of inhibitory KIRs, the function of
activating KIRs and their respective ligands has remained largely un-
explored. Activating KIRs recognize stress molecules and possibly also
HLA molecules or modified HLA molecules, but only the specificity of
KIR2DS1 for HLA-C2 alleles has been firmly established.65-67 Although
all individuals carry the genes for inhibitory KIR receptors—which in-
dicates that they are necessary for NK cell function—there is striking
heterogeneity in the number of inherited activating KIR genes in the
normal population.69 Based on the number and distribution of activating
KIR genes, individuals can be considered to have 2 broad KIR haplo-
types. KIR haplotype A comprises 5 inhibitory genes and the single
activating gene KIR2DS4, whereas KIR haplotype B incorporates
various combinations of activating genes (KIR2DS1, KIR2DS2,
KIR2DS3, KIR2DS5, KIR3DS1)82 and the inhibitory KIR gene
KIR2DL5. The KIR haplotype model proposes that the more acti-
vating KIR genes the donor carries, the higher the potential for
alloreactivity and the lower the risk of relapse. Indeed, recent an-
alyses by Cooley et al83 in 448 AML patients who received a T-cell-
replete unrelated donor HSCT reported that patients transplanted
from a donor carrying a higher number of activating KIR genes
(haplotype B) have a survival advantage over patients receiving
a graft from a haplotype A donor (3-year DFS, 28% vs 17%; P5 .003;
3-year OS, 31% vs 20%; P 5 .007).3 This protection was not

observed in adult ALL, suggesting that myeloid leukemia is more
susceptible to NK killing, although a recent report showed a benefit
of donor haplotype B in relapse protection and survival for pediatric
patients with ALL undergoing T-cell-deplete haploidentical HSCT.84

Moreover, KIR haplotype B donors with a higher number of B-specific
genes (KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS5, KIR2DL2, and
KIR2DL5), especially if also homozygous for those in the centromeric
part of the KIR locus (Cen-B/B), conferred greater protection against
relapse afterHSCT85,86 (Figure 1B). The risk of relapsewas significantly
lower if the donor had 2 or more KIR B gene-content motifs (KIR B
content score) compared with those with KIR B content score of less
than 2, both in the HLA-matched and -mismatched settings,85 sup-
porting the notion that the more activating KIR genes the donor carries,
the higher the potential for alloreactivity and protection against relapse.

The influence of specific activatingKIR genes on outcomes after HSCT
has also been investigated by a number of groups.87-89 A large ret-
rospective study from the Center for International Blood and Marrow
Transplant Research included more than 1700 patients with AML
(75%) or ALL (25%) who received a 9/10 HLA-matched (48%) or 10/
10 HLA-matched (52%) HSCT from unrelated donors.88 In this study,
AML (but not ALL) patients whose donors were KIR2DS1 positive
had significantly lower risk of relapse (hazard ratio, 0.76; 95%CI, 0.61-
0.96; P 5 .02) and reduced overall mortality (hazard ratio, 0.85; 95%
CI, 0.73-1.00; P 5 .04) compared with those whose donors were
KIR2DS1 negative. Similar results have also been reported in the
setting of matched sibling donor transplants; patients with AML who
received allografts from KIR2DS1-positive donors had a risk of relapse
4 times lower than those who received a graft from KIR2DS1-negative
donors.87 Taken together, these studies suggest that selecting donors
with KIR haplotype B may have a beneficial effect on outcomes after
HSCT for AML and childhood ALL.

NK cell effects in cord blood HSCT
Similarly, several studies have explored the role of KIR-ligand
mismatch on outcomes after umbilical cord blood transplantation
(CBT) (Table 2). In a study of 218 patients who received a single-unit
CBT, Willemze et al28,90 reported that KIR-ligand mismatch be-
tween the cord blood unit and the patient was associated with sig-
nificantly improved DFS (40% vs 55%; P 5 .005) and OS (31% vs
57%; P 5 .02). In contrast, 3 studies91-93 failed to show a beneficial
effect of KIR-ligand mismatch, whereas 1 study from Minnesota
reported a detrimental impact of KIR-ligand mismatch in the setting
of double-unit CBT or reduced-intensity conditioned CBT.94 A
limitation of those studies is that they take into account only KIR-
ligand mismatch without considering the role of activating KIRs or
NK licensing. Moreover, they are exclusively based on genetic
studies, and they lack functional correlates and a plausible mecha-
nistic basis for the observed effects of KIR genotype on outcome.

Our group recently studied the impact of NK reconstitution on
outcome after CBT. We showed that patients homozygous for HLA-
C2 group alleles had a higher 1-year relapse rate and worse survival
after CBT than did HLA-C1/C1 or HLA-C1/C2 (HLA-C1/x) patients:
67.8% vs 26.0% (P , .001) and 15.0% vs 52.9% (P , .001), re-
spectively. This inferior outcome was associated with delayed
posttransplant recovery of NK cells expressing the HLA-C2–specific
KIR2DL1/S1 receptors. Our data support previous studies that show
a statistically significant increase in relapse rate in HLA-C2/C2
patients in other transplant settings22,95,96 and suggest that HLA-C2/
C2 CBT recipients constitute a high-risk group that may benefit from
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NK cell-based intervention to accelerate NK cell reconstitution. We
also observed that HLA-C1/x patients receiving a CB graft that was
licensed (HLA-C1/x positive) and was positive for the activating
receptor KIR2DS2 had a lower 1-year relapse rate (6.7% vs 40.1%;
P 5 .002) and superior survival (74.2% vs 41.3%; P 5 .003)
compared with recipients of grafts lacking KIR2DS2 or HLA-C1.98

Thus, we have initiated a clinical trial of CB selection for HLA-C1/x
recipients on the basis of HLA-KIR typing and adoptive therapy
with CB-derived NK cells for HLA-C2/C2 patients at our center.

Can we select the most appropriate donor based on
HLA-KIR genotype?
The degree of HLA match is the single most important factor that
determines outcomes after unrelated donor HSCT.99-110 In cyto-
megalovirus (CMV) –seronegative recipients, the best survival out-
comes are seen with a CMV-seronegative donor; however, donor
CMV serostatus has no prognostic impact in CMV-seropositive re-
cipients.111 Among several other donor characteristics, including age,

sex, parity, and ABO compatibility, increasing donor age is the only
factor consistently shown to have a negative impact on survival after
transplantation.99-103,112,113 Whereas some studies have reported
a lower risk of relapse in female-donor to male-recipient HSCT, this
benefit was offset by higher treatment-related mortality in secondary to
severe acute or chronic GVHD.115-120 Several maternal and paternal
noninherited antigens have also been shown to influence outcomes
after HSCT. For instance, using the mother as donor is associated
with a lower risk of relapse and treatment-related mortality compared
with a paternal graft in the setting of T-cell-deplete haploidentical
HSCT,121 but not in the T-cell-replete setting.122 Disparity in some
minor histocompatibility antigens (miHAs) has also been reported to
influence risk of GVHD and/or relapse.123-126 However, choosing
a donor on the basis of miHAs (mismatch except for sex) is not yet
practical; more than 50 autosomally encoded miHAs have been
identified to date, which when combined with the large extent of
variability in HLA genes, makes it likely that one or more immu-
nological disparities will be present in at least 80% of all HSCTs.127

Table 2. Studies assessing the role of KIR-ligand mismatch in cord blood transplantation

Reference
Willemze
200928

Brunstein
200994

Tanaka
201392

Garfall
201391

Rocha
201693

Sekine
201697

No. of patients 218 155 102 357 AML) 80 199 204
Conditioning (%) MA (83) MA (100) RIC (100) MA (62) MA (27) MA (100) MA (72)
ATG/ALG (%) 82 40 28 0 100 70 100
Single-CBT (%) 100 61 100 100 0 0 —

KIR-ligand
mismatched (GvH
direction) (%)

32 26 32 81 44 43 HLA C1/x patients who
receive CB unit with
HLA-C1-KIR2DL2,
KIR2DL3, or KIR2DS2
vs all other

aGVHD (2-4) NS NS Higher in KIR-ligand
mismatch

NS NS NS NS

Risk 79% vs 57%
95% CI 59%-99% vs 44%-70%
P .01

TRM NS NS Higher in KIR-ligand
mismatch

NS — NS NS

Risk 27% vs 12% at 2
years

95% CI 12%-42% vs 5%-19%
P .03

Relapse Lower in
KIR-ligand
mismatch

NS NS NS NS NS Lower in HLA-C1/x
recipients who received
an HLA-C1-KIR2DL2,
KIR2DL3, or KIR2DS2
CB unit

Risk RR, 0.53 HR, 0.04
95% CI 0.28-0.99 1.57-31.47
P .05 .002

OS Higher in
KIR-ligand
mismatch

NS Lower in KIR-ligand
mismatch

NS NS NS Higher in HLA-C1/x
recipients who received
an HLA-C1-KIR2DL2,
KIR2DL3, or KIR2DS2
CB unit

Risk RR, 2 32% vs 52% at 3 years HR, 3.46
95% CI 1.24-3.22 15%-59% vs 47%-67% 1.46-8.20
P .004 .03 .005

ALG, anti-lymphocyte globulin; CB, cord blood; MA, myeloablative; RIC, reduced-intensity conditioning; TRM, treatment-related mortality.
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Becausemany clinical studies support a role for KIR-HLA interactions
in HSCT (Table 1), it is likely that KIR immunogenetics will also be
included in algorithms of donor selection in the future. KIR geno-
typing can be performed easily and cheaply along with HLA geno-
typing at the time of donor screening. Indeed, a number of clinical
trials are prospectively investigating the incorporation of KIR geno-
typing as part of the donor selection criteria. These studies are either
observational or interventional, and their approach is dependent on the
underlying disease and whether the transplant procedure is performed
with or without T-cell depletion. The majority of these studies are
based on the following models:
• The KIR-ligand model: The data on KIR-ligand mismatch and out-
come after HSCT are conflicting (Table 1). Although the majority of
studies support a beneficial effect for KIR-ligandmismatch on the risk
of relapse in the setting of T-cell-depleted haploidentical HSCT for
adult AML and childhood ALL,20,84 a beneficial role for KIR-ligand
mismatch on outcomes in other hematologic malignancies has not
been convincingly shown. Thus, in adults with AML or children with
ALL undergoing a T-cell-deplete haploidentical HSCT, we propose
that the selection of a donor with KIR-ligand mismatch may improve
outcomes (Figure 2A-B). Several clinical trials (NCT01787474,
NCT02646839, NCT01807611, NCT02519114, NCT02508038) are

prospectively studying selection of donors on the basis of KIR-ligand
mismatch for adult patients with AML or multiple myeloma and
children with ALL, AML, myelodysplastic syndrome, or lymphoma
in both the T-cell-deplete and T-cell-replete settings.

• The KIR haplotype model: This model proposes selection of KIR
haplotype B donors with high B-content score in adults with AML
undergoing matched unrelated or related donor transplant83,85,87 or
children with ALL undergoing T-cell-depleted haploidentical
HSCT.84 In situations in which multiple potential donors of similar
ages and CMV serostatus are available, we suggest that a donor with
high KIR B content and Cen B/B genotype may improve outcomes
in adult patients with AML undergoing an HLA-matched unrelated
HSCT (Figure 2A). Clinical trial NCT01288222 is prospectively
studying this approach.

• Selection of cord blood donors based on the combination of
licensing and activating KIR genes: After considering HLA
match and the total nucleated cell content of the CB unit,129

we propose that the selection of a donor with an HLA-C1-
KIR2DS2 genotype may improve outcomes for HLA-C1/x
recipients (Figure 2C). The NCT02727803 trial is exploring
this approach in adults with myeloid or lymphoid malignan-
cies undergoing CBT.

Figure 2. Proposed algorithm for donor selection based on KIR genotyping in (A) adult AML, (B) childhood ALL, and (C) CBT.

Hematology 2016 111



Ta
bl
e
3.

S
tu
di
es

ev
al
ua

tin
g
th
e
im

pa
ct

of
do

no
r
K
IR

ha
pl
ot
yp

e
or

ac
tiv

at
in
g
K
IR
s
in

re
la
te
d
or

un
re
la
te
d
do

no
r
H
S
C
T

S
tu
dy

K
rö
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NK cell adoptive immunotherapy
Given the potent antitumor efficacy of NK cells, adoptive transfer of
NK cells to treat a variety of malignancies has also been explored by
several groups.71,130-144 Results of the initial trials using ex vivo
activated autologous NK cells were mostly unsatisfactory,130-138

likely because of the inhibition of autologous NK cells by self-
HLA molecules. As the impact of KIR-ligand mismatch in the
transplant setting became evident, the focus of the trials shifted
toward the use of allogeneic NK cells either in combination with
HSCT or in a non-HSCT setting (Table 3).71,141-144 Allogeneic NK
cells are less likely to be subject to the inhibitory response resulting
from NK cell recognition of self-MHC molecules, as seen with au-
tologous NK cells. Moreover, several studies have shown that infusion
of haploidentical NK cells to exploit the missing-self concept is safe
and can mediate impressive clinical activity in some patients with
AML.71,139-144 In those studies, NK cells are activated and expanded
ex vivo with a variety of cytokines such as interleukin-2 (IL-2), IL-15,
or IL-21 to increase their persistence, enhance their proliferation, and
augment their in vivo effector function (Table 3). In a landmark trial of
NK cell adoptive therapy in patients with relapsed or refractory AML,
Miller et al71 were among the first to show that adoptive transfer of
ex vivo–activated haploidentical NK cells after lymphodepleting
chemotherapy followed by IL-2 administration to support their in vivo
expansion is safe and can result in NK cell persistence for up to
4 weeks without inducing GVHD. Although the clinical responses
were modest, a subsequent study that used recombinant IL-2 diph-
theria toxin to deplete regulatory T cells (Tregs) (which can impair NK
effector function145), resulted in enhanced in vivo NK cell expansion
with improved leukemia clearance.141

IL-15, in contrast to IL-2, does not support the expansion of Tregs.146

Thus, IL-15 administration holds promise for specifically boosting
NK cell alloreactivity without the undesired stimulation of Tregs.
Several groups are evaluating the efficacy of highly potent recombinant
cytokines such as an IL-15 superagonist to induce in vivo NK
cell activation and expansion (without adoptive therapy) in various
malignancies (NCT01885897, NCT01946789, NCT02099539,
NCT02384954).

Future directions
Chimeric antigen receptors (CARs) have been used extensively to
redirect the specificity of T cells against leukemia with dramatic
clinical responses in patients with lymphoid malignancies.147-153

These infusions have been primarily restricted to the autologous
setting because activated T cells from an allogeneic source are likely
to increase the risk of GVHD. Given their shorter lifespan and potent
cytolytic function, mature NK cells provide attractive candidate
effector cells to express CARs and provide an excellent source of off-
the-shelf cellular therapy for patients with cancer. First, allogeneic
NK cells should not cause GVHD, as predicted by observations
in murine models,154,155 as well as in patients with leukemia and
solid malignancies treated with haploidentical or CB-derived NK
cells.19,20,71,141 Second, mature NK cells have a limited life span of
a few weeks, allowing for antitumor activity while reducing the
probability of long-term adverse events, such as prolonged cyto-
penias caused by on-target/off-tumor toxicity to normal tissues, or
the risk of malignant transformation. Third, unlike T cells, NK cells
will also have activity through their native receptors to kill antigen-
negative target cells, potentially preventing a mechanism of immune
escape. The feasibility of genetically engineering NK cells to express
CARs against a number of targets has been shown in the preclinical
setting,156-164 and 2 clinical studies (both targeting CD191malignancies

using a retroviral transduced anti-CD19-BB-z NK-CAR) are testing
the safety and efficacy of this approach in the clinic (NCT00995137
and NCT01974479).

An alternative strategy under investigation to redirect NK cyto-
toxicity toward tumor cells is to create either bispecific or trispecific
antibodies (BiKE, TriKE).165-171 BiKEs are constructed by joining
a single-chain variable fragment (Fv) against CD16 and a single-
chain Fv against a tumor-associated antigen (BiKE), or 2 tumor-
associated antigens (TriKE), such as CD19, CD22, CD33, CD30, or
EpCAM.165-170 To enhance NK cell expansion and survival in vivo,
investigators have developed a novel TriKE that also includes
a modified recombinant human IL-15 cross-linker sandwiched be-
tween single-chain Fv against CD16 and the target antigen of in-
terest.171 It will be interesting to observe whether these strategies
alone or in combination with HSCT can provide durable clinical
responses and immediate access to treatment with the development
of off-the-shelf products.

Summary
Significant advances have been made in understanding the role of
NK cell activity after HSCT. Although it is well recognized that the
antitumor activity of NK cells is intensified in the setting of HLA-
mismatched HSCT, the benefit of selecting a donor on the basis of
KIR genotyping has not yet been established. A number of in-
stitutions have established local guidelines to assist in the selection of
donors with NK cell alloreactivity predicted by HLA or KIR ge-
notype; however, the definition and models of alloreactivity used by
these centers are not standardized, underscoring the importance of
well-designed, prospective studies of donor selection based on KIR-
HLA immunogenetics.

We suggest that NK cells and KIR immunogenetics are likely to gain
increasing importance to clinicians in the selection of the best donors
for transplant, along with HLA matching, CMV status, blood group,
age, and sex. Furthermore, the identification of optimal donors on the
basis of KIR genotype may be an important next step for the design of
successful NK cell-based interventions and the development of the next
generation of engineered NK cells for immunotherapy of cancer.
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