
Spermatogenesis disruption by dioxins: Epigenetic 
reprograming and windows of susceptibility

J. Richard Pilsnera, Mikhail Parkera, Oleg Sergeyevb,c, and Alexander Suvorova,*

aDepartment of Environmental Health Sciences, University of Massachusetts Amherst, 686 N. 
Pleasant St., 171 Goessmann, Amherst, MA 01003-9303, USA

bDepartment of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian 
Academy of Sciences, 3 Gubkina St., 119991 Moscow, Russia

cChapaevsk Medical Association, 3a Meditsinskaya St., 446100 Chapaevsk, Samara Region, 
Russia

Abstract

Dioxins are a group of highly persistent chemicals that are generated as by-products of industrial 

and natural processes. Reduction in sperm counts is among the most sensitive endpoints of dioxin 

toxicity. The exact mechanism by which dioxins reduce sperm counts is not known. Recent data 

implicate the role of epididymal factors rather than disruption of spermatogenesis. Studies 

reviewed here demonstrate that dioxins induce the transfer of environmental conditions to the next 

generation via male germline following exposures during the window of epigenetic 

reprogramming of primordial germ cells. Increased incidence of birth defects in offspring of male 

veterans exposed to dioxin containing, Agent Orange, suggest that dioxins may induce epigenomic 

changes in male germ cells of adults during spermatogenesis. This is supported by recent animal 

data that show that environmental conditions can cause epigenetic dysregulation in sperm in the 

context of specific windows of epigenetic reprogramming during spermatogenesis.
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1. Introduction

Semen quality has been declining in some of developed countries during a period of half a 

century according to several large meta-analysis studies [1,2]. These results are supported by 

recent epidemiologic studies [3–5] showing that a significant proportion of young men has 

semen quality below what is considered to be compatible with good fecundity. A growing 

body of evidence links this deterioration of male reproductive health with chronic exposure 
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to environmental endocrine disruptors (EDCs) [6–8]. One group of EDCs with potential 

deleterious effects on human reproductive system is dioxins and dioxin-like compounds 

(DLCs). Dioxins are a group of highly persistent chemical by-products of industrial process 

and by-products of combustion of organic material. Due to high lipophilicity and resistance 

to biological and environmental degradation, dioxins are able to bioaccumulate and 

biomagnify in food chains, which increases the potential burden of exposures to apex 

animals such as humans [9]. Despite significant decreases in the production of dioxin and 

DLCs, high persistence and bioaccumulation of these compounds results in omnipresence of 

dioxins [10]. All people have background exposure and more than 90% of exposure occurs 

through food, mainly meat and dairy products, fish and shellfish [10,11]. Additionally cases 

of accidental contamination of food and/or environment with DLCs have resulted in much 

higher acute and chronic exposures [12,13].

The name “dioxins” is used for the family of structurally and chemically related 

polychlorinated dibenzo para dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). 

Certain dioxin-like polychlorinated biphenyls (PCBs) with similar toxic properties are also 

included under the term “dioxins” or dioxin-like compounds [14]. Among these, 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic environmental contaminant in animal 

studies and is often referred to in scientific literature as dioxin. Based on similarity of toxic 

response induced by all DLCs, the toxic equivalency factor concept (TEF) has been 

developed [15] and reevaluated by World Health Organization (WHO) expert meetings 

[14,16] to facilitate risk assessment and regulatory control. In accordance with this concept, 

toxicity of dioxins, furans and dioxin-like PCBs is expressed as relative toxicity in 

comparison with TCDD. TEF allows for the expression of the toxicity of dioxin-like 

mixtures in a single number. Recently, more compounds with dioxin-like activity were 

proposed for inclusion in the TEF including polybrominated dibenzo-p-dioxins, 

dibenzofurans, biphenyls [17,18], and hydroxilated and methylated metabolites of 

polybrominated diphenyl ethers [19]. Studies of dioxin toxicity are thus of high significance 

as they a relevant for the understanding of mechanisms of action and health effects of a very 

broad range of chemical compounds.

TCDD and DLCs act as ligands for the aryl hydrocarbon receptor (AhR) – highly abundant, 

ligand-activated transcription factor. Upon entering the cell, TCDD binds to the cytosolic 

AhR and is then translocated to the nucleus where it forms another complex with the AhR 

nuclear translocator (ARNT) protein. Ligand/AhR/ARNT complex bind to dioxin response 

elements (DRE) on DNA, enhancing the transcription of specific genes [20–22] responsible 

for breakdown of toxic compounds [23]. While this mechanism is thought to confer 

protection from toxin exposure, TCDD-dependent AhR dysregulation of gene expression 

activates Phase I xenobiotic-metabolizing enzymes, which may be deleterious. 

Responsiveness to different doses of TCDDs and their analogs is different in different 

species putatively due to differences in AhR gene structure. Humans are more resistant to 

dioxins than many other animals, including laboratory rodents [24]. Traditionally, it is 

considered that the frequency of polymorphisms within AhR is low in humans resulting in 

small variations in susceptibility to DLCs across populations [24]; however, a recent study of 

a Greenland population reported that AhR variants significantly modify association between 
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serum levels of DLCs and sperm characteristics, including chromatin integrity measured by 

TUNEL assay and concentration of zinc in seminal plasma [25].

TCDD has multiple effects on a diversity of health endpoints in mammalian species. In 

humans, high-dose acute exposures result in skin lesions, such as chloracne, and altered liver 

function; whereas chronic low-dose exposures are associated with impaired immune, 

endocrine and reproductive functions, as well as disruption of neurodevelopment. The most 

sensitive endpoints of TCDD toxicity in animal studies are reviewed elsewhere and include 

endometriosis and decreased sperm count, immune sup pression, increased genital 

malformations and neurobehavioral effects resulting from developmental exposures [26]. In 

laboratory animals, chronic exposure has resulted in several types of cancer, including 

tumors of the gastro-intestinal tract, liver, thyroid, lung, skin, and other sites [27]. Based on 

these data and limited human evidence, the International Agency for Research on Cancer 

classified dioxin as carcinogenic to humans (group 1) in 1997 [28]. However, accumulating 

body of population studies does not confirm the link between dioxins and cancer risk 

unequivocally – see recent reviews [29,30]. TCDD is known to be non-mutagenic or very 

weakly mutagenic substance [31,32] and carcinogenic effect of TCDD likely arise by 

receptor-mediated mechanisms [33]. Bacterial mutagenicity assays failed to clearly 

demonstrate mutagenic activity of TCDD [34]. Neither an increase in mutation frequency 

nor any change in mutation spectrum was observed in Big Blue rats after 6 weeks of 

exposure to 2 ug/kg TCDD [35].

2. Dioxins and male reproductive health

Epidemiologic data examining associations of DLCs with male pubertal onset and sexual 

maturity are summarized in Table 1. Environmental exposures to pollutants were associated 

with delay in pubertal development (genital stage and pubic hair stage) in Flemish boys 

living near dioxin-emitting waste incinerators [36]. Shorter penile length was reported in 

Yucheng boys exposed accidentally to high levels DLCs [37]. In the same cohort, increased 

abnormal sperm morphology, decreased sperm motility, and decreased hamster oocyte 

penetration by spermatozoa was found in men exposed to DLCs during prenatal period and 

lactation [37,38] and in men exposed at adulthood [39]. Higher peripubertal serum dioxins 

were also associated with delayed pubertal onset and sexual maturity in the Russian 

Children’s Study [40,41].

Decrease in sperm count is among the most sensitive outcomes of dioxin toxicity in both 

human and experimental studies. Tolerable daily intake of DLCs established by WHO was 

derived from an exposure dose 0.064 μg TCDD/kg on gestational day 15 that resulted in a 

significant decrease of epididymal sperm count in rats [42]. Adverse effects of dioxins on 

Leydig cells were observed at higher doses in marmosets [43] and rodents [44]. Decrease in 

epididymal sperm count was demonstrated in many other experimental studies [45–49]. 

Recent longitudinal epidemiological studies also have shown associations between serum 

concentrations of DLCs and decreased semen parameters [13,50–53] (Table 1). The 

Mocarelli group investigated acutely exposed men to high level of TCDD in Seveso, Italy, 

during different periods of onto-genies: perinatal, infancy/prepuberty (1–9 years), puberty 

(10–17 years), and adulthood (18–26 years). They have found that exposure to TCDD in 
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utero and infancy/prepuberty resulted in reduced sperm concentration and motility, while 

exposure during puberty had the opposite effect [13]. In their study perinatal and lactational 

exposure to relatively low TCDD doses was associated with reduction of sperm quality [50]. 

The sensitivity of reproductive function from dioxins toxicity during peripubertal 

developmental window was recently confirmed by the Russian Children’s Study [54,55]. 

This prospective cohort enrolled 516 boys at 8–9 years old, residing in Chapaevsk, Russia, 

and followed annually till young adulthood, at which time semen quality parameters were 

evaluated [54,55]. Results demonstrated that higher peripubertal serum TCDD 

concentrations and PCDD toxic equivalents were associated with decrease in sperm 

concentration, total sperm count, and total motile sperm count [55]. In the Russian 

Children’s Study, the median serum TCDD was 2.9 pg TEQ/g lipid [55] – about seventy-

fold lower than Seveso cohort [13].

In the most recent review of existing bodies of literature on the effect of dioxins on male 

reproductive health, Foster and others [56] found no convincing evidence of treatment-

related effect of environmentally-relevant doses of dioxins on weight and/or morphology of 

testis, changes in Sertoli cell structure and count, and functioning of hypothalamic-pituitary-

testicular axis. Thus, the authors concluded that effects of dioxins on sperm count can be due 

to induced changes in epididymal structure and function rather than changes in 

spermatogenesis or the testis itself.

3. Intergenerational effects of dioxins in human studies

The widespread use of Agent Orange – defoliant containing TCDD used by the U.S. military 

in herbicidal warfare program, Operation Ranch Hand has provided opportunities to 

examine the long-term effects of TCDD exposures among Vietnam War veterans and 

civilians. The first study, published by the U.S. Centers of Disease Control in 1984, found 

increases in the incidence of birth defects incidence in offspring of male veterans exposed to 

Agent Orange including increased rates of neural tube defects (NTDs), especially spina 

bifida, and to a lesser degree anencephaly [57]. The study suggested that the Agent Orange-

associated increase in NTDs of offspring altered genetic or epigenetic information in 

spermatozoa, thus directly implicating spermatogenesis disruption. Although these findings 

were highly debated, a recent meta-analysis consisting of nine publications from the United 

States and thirteen from Vietnamese sources on Agent Orange exposure and birth defects 

[58] concluded a causal relationship between Agent Orange exposure and stillbirth, cleft 

palate, and neural tube defects. To our knowledge, there is only one study which analyzed 

sperm parameters in veterans of Operation Ranch Hand in relation of Agent Orange [59], of 

which no associations were observed for testicular abnormalities, sperm count, and 

percentage abnormal sperm.

Given that TCDD is known to be likely non-mutagenic, it is unlikely that TCDD-induced 

mutagenesis in germ cells is responsible for increased incidence of birth defects in the 

offspring of Vietnam Veterans, leaving epigenetic errors in spermatozoa as the most likely 

candidate mechanism linking paternal exposure to dioxins and birth defects in offspring. The 

potential possibility of the transfer of a legacy of environmental conditions to future 
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generations via sperm epigenetics have been demonstrated in several recent studies of 

animal models [60].

4. Epigenetic response to dioxins

Many experimental studies report changes in DNA methylation in response to TCDD using 

a variety of models, doses and target tissues/cells. Mouse preimplantation embryos exposed 

to 10 nM TCDD from the 1-cell stage to the blastocyst stage and then transferred to 

unexposed recipient mice weighed less on embryonic day 14, and had decreased expression 

levels of the imprinted genes H19 and Igf2, increased methylation of the H19/Igf2 imprint 

control region and increased methyltransferase activity [61]. Thus, it is likely that TCDD can 

interfere with the process of erasure and reestablishment of DNA methylation profiles that 

occurs in preimplantation embryos (see Fig. 1) [62]. This same window of epigenetic 

remodeling was targeted by in utero exposure to TCDD [63], which resulted in reduced 

BRCA-1 expression in mammary tissue of rat offspring, induced occupancy of the BRCA-1 

promoter by DNA methyltransferase-1 (DNMT-1) and increased CpG methylation of the 

BRCA-1 promoter [63]. Some studies report cell-specific epigenetic effects of dioxins. For 

example, a modest decrease in global DNA methylation was observed in murine N2A 

neuroblastoma cells exposed to 10 μM TCDD but not in the human SK-N-AS 

neuroblastoma cells [64]. Changes in DNA methylation induced by TCDD are likely 

mediated by AhR. Response of splenocytes to TCDD was associated with AhR-dependent 

changes in DNA methylation in multiple genomic regions [65]. Methylation of CpG islands 

was decreased in Foxp3 promoter and increased in IL-17 promoter in lamina propria and 

mesenteric lymph nodes of mouse colon following TCDD treatment and this effect was also 

AhR dependent [66]. Dioxins have also been reported to affect size and shape of space 

occupied by each chromosome within the interphase nucleus in human preadipocyte cells 

via AhR dependent mechanism [67], indicating the potential of dioxins to remodel 

chromatin. Exposure of zebrafish embryos to 5 nM TCDD for 1 h altered expression of 

DNA methyl transferase genes: expression of dnmt1 and dnmt3b2 was upregulated, whereas 

dnmt3a1, 3b1, and 3b4 were downregulated several hours after exposure was ceased [68]. 

The same exposure regimen resulted in differential expression of several microRNAs in 

zebrafish embryos [69]. While no TCDD-induced differences in global methylation or 

hydroxymethylation levels was observed in this study, the promoter methylation of AhR 

target genes was altered: decreased in the c-fos promoter and increased in the ahrra 
promoter.

5. Mechanisms of epigenetic reprograming by dioxins

The mechanisms by which epigenetic landscape in spermatozoa and other tissues responds 

to dioxins have not been fully clarified. One possibility is that epigenetic changes are AhR 

dependent (Fig. 2). Activation of AhR by its agonist 3-methylcholanthrene (3MC) increases 

expression of histone deacetylate, HDAC1, resulting in decreased cell proliferation and cell 

cycle arrest due to epigenetic modification of cell cycle genes [70]. The AhR/ARNT interact 

with histone modification cofactors such as CREBBP and the protein arginine 

methyltransferases (PRMTs) enzymes, such as PRMT1 and PRMT4 (CARM1) [71], which 

regulate gene expression through methylation of histone and non-histone proteins. PRMT1 
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methylates arginine 3 of histone H4 (H4R3) and is a major methyltransferase in mammalian 

cells playing an important role in development and pathophysiological processes [72,73]. It 

has been shown recently that CARM1 positively regulates the expression of pluripotency-

related genes through the alteration of the chromatin structure and upregulation of this 

protein results in delayed spontaneous differentiation in embryonic stem cells [74]. H4R3 

methylation by PRMT1 is an initiation step necessary for the establishment or maintenance 

of a wide range of “active” chromatin modifications [75]. Other mechanisms may involve 

altered hormonal signaling as developmental exposure to dioxins inhibit sex steroid 

biosynthesis by suppressing activity of testicular STAR protein [76]. Male mice with AhR 

knockout (AhR(−/−)) have impaired testosterone synthesis in Leydig cells and low sperm 

counts [77]. Furthermore, dioxin-activated AhR/ARNT can recruit estrogen receptor and co-

activator p300 to estrogen-responsive elements (EREs), leading to transactivation and 

estrogenic effects in the absence of estrogenic ligand [78]. Sex steroid signaling is also a 

likely regulator of the epigenome; however, it is beyond the scope of current review.

6. Transgenerational effects in animal experiments

Animal experiments examining transgenerational effects of TCDD are summarized in Table 

2. In a series of studies performed in M.K. Skinner’s group [79–81] pregnant F0 rats were 

exposed to 100 ng/kg BW/day TCDD by intraperitoneal injections during gestational days 8 

through 14, period that covers the erasure and de-novo methylation of male primordial germ 

cells [62]. TCDD promoted early-onset female puberty transgenerationally (F3 generation) 

and several adult-onset diseases were increased in F1 and F3 generations. In F3 descendants 

of dioxin-exposed animals, the incidence of kidney disease in males, and ovarian 

abnormalities in females were increased. Interestingly, spermatogenic cell apoptosis was 

also affected transgenerationally. Analysis of sperm epigenome from F3 generation 

identified 50 differentially methylated regions in gene promoters. The dose of TCDD used in 

these studies [79–81] was in nanogram ranges while human exposures via food basket were 

estimated to be in a picogram range in U.S. and Europe [11,82]. Several ten-fold uncertainty 

and modifying factors are applied to transfer dose-response data from animal experiments to 

human regulatory procedures to account for intraspecies sensitivity, inter-species sensitivity, 

use of other than chronic exposures, and use of low observed adverse effect level (LOAEL) 

rather than no observed adverse effect level (NOAEL). Due to these uncertainty factors, a 

safe dose for humans is typically determined as a dose 1000 times lower than NOAEL. 

Thus, experiments conducted by M.K. Skinner’s group have moderate relevance for the 

general population. More important is that these experiments provide proof of principle and 

demonstrate that TCDD-induced epimutations can persist across many generations due to 

abnormal DNA methylation in sperm.

In another transgenerational study performed by another research group, exposure of 

pregnant mice to 10 [H9262]g/kg TCDD by gavage on gestation day 15.5 resulted in 

decrease in fertility and bias to preterm birth [83]: about 50% of F1–F3 males were sterile, 

33–38% that were able to impregnate their mating female showed spontaneous delivery prior 

to E19.0. In all three generations of treated male mice there were signs of testicular 

inflammation and increased apoptosis of germ cells. In a recent rodent study, pregnant 

Wistar rats were exposed to a single dose (0.1; 0.5 and 1.0 μg/kg body weight) of TCDD on 
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gestational day 15 and reproductive health of male offspring was analyzed in 3 generations 

of progeny [84]. The fertility of male offspring assessed by the number of implants per 

corpus luteum after intrauterine artificial insemination with sperm of exposed and control 

animals was significantly decreased in F1 animals exposed to two higher doses, in F2 

animals exposed only to lowest dose and in F3 animals exposed to all three doses. 

Transgenerational effects of TCDD on global DNA methylation were not found in a 

zebrafish study in which adult females were fed diets added 20 [H9262]g/kg 2,3,7,8 TCDD 

for 47 days and bred with unexposed males in clean water to produce F1 and F2 off-spring 

[85]. Juvenile zebrafish exposed to 50 pg/ml TCDD in water produced a significantly higher 

female:male ratio in F0, F1 and F2 generations. F1 and F2 generations had increased 

incidence of scoliosis-like axial skeleton abnormalities, reduced egg release and fertilization 

success [86,87]. Thus, evidence from both human studies and animal experiments suggest 

that dioxins have the potential to change epigenetic profiles in cells and such changes in 

spermatozoa can deliver perturbed epigenetic information to future generations.

7. Spermatogenesis: a window of epigenetic susceptibility during the 

preconception period of males

Although human male germ cells do not reach reproductive capacity until the second decade 

of life, their development begins in utero shortly after sex determination. Derived from the 

epiblast, primordial germ cells require extensive epigenetic remodeling events to establish 

totipotency to allow for sex-specific programming [62]. These include genome-wide loss of 

methylation including imprinted regions as well as histone remodeling. It must be noted that 

although demethylation is thought to be complete, certain sequences, such as intracisternal 

A particle elements (IAPs) and their proximal genes, are resistant to erasure, which may 

provide a platform for epigenetic inheritance [88]. Owing to the plasticity of the epigenome 

and the extensive epigenetic reprogramming during PGC development, it is not surprising 

that environmental exposures during this period have been shown to sculpt the epigenetic 

landscape of male germ cells resulting in inter- and transgenerational epigenetic inheritance 

(as discussed above). However, in regard to Agent Orange, phenotypical changes were 

observed in the offspring of males who were exposed in adulthood, suggesting that 

epigenetic changes in male germ cells may also occur during this window of male germ cell 

development.

The preconception period is now recognized one of the earliest susceptible window of 

human development [89]. In adult males, spermatogenesis occurs over 74 days in which 

spermatogonia differentiate through mitotic and meiosis divisions in the testis followed by 

epididymis maturation to produce spermatozoa capable of fertilization. During this process, 

three distinct epigenetic reprogramming events occur during spermatogenesis [90]. First, 

final DNA methylation patterns are obtained during mitotic divisions of spermatogonia in 

which both passive loss of methylation and de novo methylation has been shown to occur in 

animal models [91,92]. In light of this, recent data demonstrate that environmental exposures 

in adult mice may influence offspring phenotype via sperm epigenetics. For example, 

nutritional manipulation in adult males, such as low-protein diet [93] and pre-diabetic 

conditions [94], induced metabolic disorders in offspring through changes in sperm 
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epigenetics. Moreover, low paternal dietary folate in mice resulted in an increase in birth 

defects in offspring and changes in sperm methylation in genes related to development, 

cancer and autism [95]. Interestingly, over 300 genes were differentially expressed in the 

placenta of fetuses produced using sperm of fathers fed folate deficient diet, suggesting that 

sperm epigenetic changes may also affect offspring development through changes in 

placental function [95].

Next, spermatids undergo global reorganization of chromatin in which approximately 90% 

of histones in humans (99% in mice) are replaced by protamines, which restricts 

transcriptional activity [96,97]. This histone–protamine exchange condenses the nucleus to 

enhance the motility of spermatozoa and to protect the genome from the harsh environment 

encountered in the female reproductive tract [98]. In humans, it has been reported that 

histone retention is not random but is enriched in regulatory regions of genes known to be 

important for development [96,99–101]. Two other studies have found histone retention in 

gene-poor regions [102,103]. Subsequent bioinformatic reanalysis of raw data from one of 

these studies [102] did not confirm histone retention in gene poor regions [104]. Other 

possible causes of controversial results on histone retention in different functional genomic 

elements are discussed elsewhere [105]. Interestingly, nutritional manipulation of sperm 

chromatin has been shown in Drosophila, where high sugar diet in adult males altered 

methylation of H3K9/K27me3 within chromatin-bound regions of mature sperm, which 

subsequently conferred metabolic programming of offspring [106].

Lastly, upon exiting the testes, human sperm undergo maturation during the 1–2 week transit 

through the epididymis [107,108]. Here, extracellular vesicles (EV), known as 

epididymosomes, have been shown to shuttle somatic proteins and RNA to sperm [109–

111]. For example a gain of 115 miRNAs was observed between mouse sperm collected 

from the proximal and distal epididymal segments [112]. Thus, it has been proposed that EV 

shuttling provides the final opportunity for sperm to epigenetically match their environment 

prior to fertilization [90]. Indeed, recent work from Rando and colleagues have shown that 

protein-restriction in adult male mice altered small RNA profiles in EVs that matched 

changes observed in mature sperm and subsequently affected preimplantation embryo 

development [106]. Similarly, high fat diets in adult mice resulted in altered sperm miRNA 

content and resulted in metabolic abnormalities in across two generations [113]. Thus 

spermatogenesis is accompanied by diverse and fundamental epigenetic changes and may 

represent a sensitive window for epigenetic reprograming by environmental stressors like 

dioxins.

8. Conclusions

According to accumulating body of evidence from both experiments with laboratory animals 

and studies of human population exposed to high doses of dioxins, exposures result in 

altered information transferred with sperm to next generations. Given TCDD is non 

mutagenic or only mildly mutagenic substance, it is very likely that changes in transferred 

information are epigenetic in nature. A growing body of evidence demonstrate 

responsiveness of epigenome to dioxins in a variety of cells/tissues and animal models. 

Although molecular pathway(s) involved in the alteration of epigenetic landscape in 
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response to dioxins are largely unknown, several mechanisms of AhR dependent histone 

modification were described. Epigenetic effects may also be linked with sex steroid 

signaling affected by dioxins due to their effect on Leydig cells. Several animal experiments 

showed that exposure of fetuses during the window when primordial germ cells undergo 

global erasure and reestablishment of DNA methylation landscapes may result in 

multigenerational transfer of defective epigenome via male germline. In male subjects 

exposed to Agent Orange at adulthood toxic effects were found in F1. Thus, we hypothesize 

that epigenetic reprogramming during spermatogenesis represent another window of 

sensitivity susceptible to environmentally-induced epigenetic errors [90]. To test this 

hypothesis, future research in humans and animal models should be directed at examining 

the effect of preconception DLC exposures on epigenetic reprogramming during 

spermatogenesis including DNA methylation, overall histone retention, covalent 

modifications of retained histone tails, and epididymal miRNA. Such research will advance 

our understanding of DLC-induced male reproductive toxicity as well as the mechanisms of 

inter- and transgenerational transfer of exposure legacies via the paternal germ line.
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Fig. 1. 
Scheme of events of epigenetic reprograming in male germ line (from [90] with 

modifications). Several animal transgenerational studies target the window of primordial 

germ cell epigenetic remodeling which includes significant erasure and reestablishment of 

DNA methylation profile. Spermatogenesis is another window during which epigenetic 

remodeling occurs throughout the reproductive life of the adult male and includes changes in 

DNA methylation, histone–protamine exchange and exosomal shuttling of ncRNA to mature 

spermatozoa in the epididymis. We hypothesize that disruption of epigenetic reprograming 

by dioxin and DLCs during this window may provide an epigenetic legacy of paternal 

exposures that are transferred to the next generation. See [90] for detailed figure legend.
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Fig. 2. 
Some mechanisms of chromatin rearrangement downstream AhR signaling. DNA in somatic 

cells is wrapped around nucleosomes consisting of histone proteins. Sparse position of 

nucleosomes (1) insures accessibility of DNA for transcription machinery and is associated 

with highly expressed genes. DNA tightly packed on nucleosomes (2) is associated with 

inactive genes. Compaction and relaxation of chromatin is regulated by covalent 

modification of histone tails. Activation of AhR by ligand-binding activates histone 

methyltransferase PRMT1 (3) by unknown mechanisms. PRMT1 methylates arginine 3 of 

histone 4 what favors further acetylation of histone 4. Acetylation neutralizes the positive 

charges on the histone, decreases histone–DNA binding and results in transcriptional 

activation. Binding of AhR/ARNT heterodimer to xenobiotic response element (XRE) 

initiates transcription of genes, including RhoA, resulting in increased expression and 

nuclear translocation of histone deacetylase HDAC1 (4). Histone deacetylation condenses 

the chromatin structure resulting in the downregulation of target genes. HDAC1 participates 

in repression of cell cycle genes. Binding of AhR/ARNT to XRE recruits histone 

acetyltransferase CREBBP (5). Aacetylation of histone tails by CREBBP participates in 

transcription initiation
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Table 2

Summary of animal studies of transgenerational effects of dioxin

Study Species TCDD dose Exposure window Effects in F1 Effects in F2 Effects in F3

Manikkam et 
al., 2012 
[79]

Rat 100 ng/kg BW/d G8-G14 Early puberty onset Increased ano-
genital distance, 
decreased 
testosterone, 50 
differentially 
methylated 
regions in sperm 
DNA

Nilsson et 
al., 2012 
[80]

Rat 100 ng/kg BW/d G8-G14 Reduction of 
primordial follicles

Reduction of 
primordial 
follicles, increased 
ovarian cyst

Manikkam et 
al., 2012 
[81]

Rat 100 ng/kg BW/d G8-G14 Early puberty onset, 
atrophic prostatic 
duct epithelium

Increased serum 
testosterone, 
kidney cysts in 
males, reduction 
of primordial 
follicles, increased 
ovarian cyst

Bruner-Tran 
et al., 2014 
[83]

Mouse 10 μg/kg/BW G15.5 Reduced male 
fertility, increased 
AhR expression in 
spermatocytes, 
increased apoptosis 
and inflammatory 
markers in testis

Reduced male fertility, 
decreased sperm 
count, increased AhR 
expression in 
spermatocytes, 
increased apoptosis 
and inflammatory 
markers in testis

Reduced male 
fertility, increased 
AhR expression in 
spermatocytes, 
increased 
apoptosis and 
inflammatory 
markers in testis

Sanabria et 
al., 2016 
[84]

Rat 0.1, 0.5 and 1.0 
μg/kg/BW

G15 Decreased 
testosterone (1.0 
group), reduced 
implants per corpus 
luteum, increased 
abnormal 
spermatozoa (0.5, 1 
groups)

Reduced implants per 
corpus luteum (0.1 
group)

Reduced implants 
per corpus luteum 
(all groups)

Olsvik et al., 
2014 [85]

Zebrafish 20 μg/kg diet 47 days adult 
exposure

No effect on global 
DNA methylation in 
liver, increase in 
Cyp1A1 expression

No effect on global 
DNA methylation in 
liver

Not analyzed

Baker et al., 
2014 [87]

Zebrafish 50 pg/ml in water Juveniles exposed 
on 4th and 7th week 
post-fertilization, 
for 1 h each time

Increased spinal 
kinks, increased 
ratio of females to 
males, ovarian 
disorganization, 
male and female 
dependent decrease 
in egg release

Increased spinal kinks, 
increased ratio of 
females to males, male 
dependent decrease in 
egg release

Not analyzed
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