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Low-Frequency Oscillatory 
Correlates of Auditory Predictive 
Processing in Cortical-Subcortical 
Networks: A MEG-Study
Marc Recasens1, Joachim Gross1,2 & Peter J. Uhlhaas1

Emerging evidence supports the role of neural oscillations as a mechanism for predictive information 
processing across large-scale networks. However, the oscillatory signatures underlying auditory 
mismatch detection and information flow between brain regions remain unclear. To address this issue, 
we examined the contribution of oscillatory activity at theta/alpha-bands (4–8/8–13 Hz) and assessed 
directed connectivity in magnetoencephalographic data while 17 human participants were presented 
with sound sequences containing predictable repetitions and order manipulations that elicited 
prediction-error responses. We characterized the spectro-temporal properties of neural generators 
using a minimum-norm approach and assessed directed connectivity using Granger Causality analysis. 
Mismatching sequences elicited increased theta power and phase-locking in auditory, hippocampal 
and prefrontal cortices, suggesting that theta-band oscillations underlie prediction-error generation 
in cortical-subcortical networks. Furthermore, enhanced feedforward theta/alpha-band connectivity 
was observed in auditory-prefrontal networks during mismatching sequences, while increased 
feedback connectivity in the alpha-band was observed between hippocampus and auditory regions 
during predictable sounds. Our findings highlight the involvement of hippocampal theta/alpha-band 
oscillations towards auditory prediction-error generation and suggest a spectral dissociation between 
inter-areal feedforward vs. feedback signalling, thus providing novel insights into the oscillatory 
mechanisms underlying auditory predictive processing.

The ability to extract statistical regularities from the acoustic scene is a fundamental goal for cognitive systems as 
it serves as the basis for predictive modelling and detection of environmental changes1. Signatures of mismatch 
detection in the human auditory system have been traditionally linked to event-related potentials (ERP), such as 
the Mismatch Negativity (MMN) or the P300 complex2–5. Within a predictive coding framework, mismatch and 
novelty-related ERP signatures are interpreted as prediction-error responses that signal the mismatch between 
sensory inputs and internal models, thus leading to an on-line process of prediction comparison and subsequent 
model refinement6–8.

The majority of research in auditory mismatch detection has focused on ERP signatures9,10. However, less 
attention has been paid to the contribution of rhythmic activity towards the detection of matching and mismatch-
ing auditory events. Neural oscillations play an important role in routing information within and across brain 
regions11,12 as well as controlling information gating and maintaining sensory representations13–16. In addition, 
increasing evidence indicates that neural oscillations are fundamental for the signalling of top-down predic-
tions and bottom-up prediction-errors conveyed across hierarchical regions in distinct oscillatory bands12,17–19. 
Specifically, theta- and gamma-band oscillations appear to convey feedforward-mediated prediction-errors, 
whereas alpha- and beta-band rhythms are predominantly involved in the mediation of top-down feedback 
signals12,17,19–21.

Previous studies have indicated the role of low-frequency (theta 4–8 Hz, and alpha 8–13 Hz) oscillations 
within a frontal-temporal-parietal network underlying MMN and P300 processes4,22–27. While preliminary 
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evidence suggests the involvement of theta-band oscillations during novelty processing28, the possible contri-
bution of neural oscillations towards prediction-error generation during auditory mismatch detection remains 
unclear. One possibility is that the hippocampus plays a prominent role in auditory mismatch detection as indi-
cated by evidence from ERPs, such as the P30029–31. In addition, hippocampal theta-band modulation has been 
observed in response to both environmental novelty32,33 and prediction-mismatching events34,35 in the visual 
domain.

In the current study, we addressed these questions through the acquisition of MEG-data from healthy par-
ticipants during the presentation of sound sequences that were followed by either a repetition or by a sequence 
containing a manipulation in the order of the last two sounds (Fig. 1). As opposed to novelty processing, our aim 
was to elucidate comparison processes whereby inputs match or mismatch implicit predictions. Therefore we did 
not include an unpredictable condition as in previous studies34–37. Unlike conventional oddball designs where the 
magnitude of hippocampal (HP) novelty responses decrease over the course of the experiment38,39, we presented 
four-sound sequences (quartets) while participants performed an orthogonal auditory task. After a short delay, 
a second quartet was presented, either in exactly the same order as the previously presented sequence, or with 
the last two sounds presented in reverse order. The first two sounds were always identical to those in the previous 
quartet, thus in both cases predictable and unpredictable processes were contingent on a prior matching process. 
Moreover, the sequential nature of predictions and mismatch responses in such a design maximized the recruit-
ment of HP-prefrontal cortex (HP-PFC) circuits34–36,40–42.

Consistent with a predictive coding framework17, we hypothesized that mismatching auditory events would 
elicit a prediction-error response reflected by increased theta-band activity and feedforward information-flow 
from sensory to PFC regions, while matching or predictable sequences would be characterized by an attenu-
ated prediction-error response as well as increased alpha-band feedback signalling from regions involved in the 
encoding sequential regularities, such as the HP and PFC.

Results
We first identified individual brain areas involved in auditory match and mismatch detection by filtering 
sensor-level trials in the theta band (4–8 Hz) and computing the difference between “mismatch” vs. “predicta-
ble” averaged data. Whole-brain evoked theta-power was estimated using a noise-normalized minimum-norm 
estimate (MNE) known as dynamic statistical parametrical mapping (dSPM). Individual dSPM maps (Fig. 2A) 
showed that theta-band activity in medial temporal lobe (MTL) and vmPFC could be reliably detected in individ-
ual participants (MTL: n = 15; vmPFC: n = 9; at a threshold of 60%). Across participants, 42% of the grid points 
in the left HP and 34% in the right HP exceeded the 75% of the maximal whole-brain dSPM activation, support-
ing a likely engagement of hippocampal sources. At the group-level, cluster-corrected non-parametric statistics 
were applied for dSPM volumetric maps in the post-violation interval (1.2–2.1 s), revealing regions where evoked 
theta-activity was enhanced for mismatch as compared to predictable sequences (p < 0.05; cluster-corrected at 
p < 0.001) in the left MTL and left central areas, vmPFC and right anterior temporal lobe, and right posterior 
MTL (Fig. 2B). These results so far demonstrate that the presentation of acoustic order-violations elicits increased 
theta-band activity in a large-scale network involving cortical and hippocampal structures.

Low-Frequency Oscillations in HP-PFC Circuits Underlie Auditory Mismatch Detection.  We 
computed time-frequency response (TFR) maps of spectral power and phase-locking from cortically-constrained 
trial-level MNE-estimates between 1 and 40 Hz and from 0 to 2.9 s in each ROI. Condition differences were statis-
tically contrasted within the post-violation interval using non-parametric dependent-sample t-tests and cluster-
ing for time-frequency bins (Fig. 3). Mismatch sequences elicited enhanced 2–9 Hz power in right HG and STG 
compared to predictable sequences (HG: 1.21–2.15 s; Tsum = 1410.7; p = 0.003; STG: 1.2–2.18 s; Tsum = 1927.1; 
p = 0.0035). A second cluster in the right STG showed increased theta-band power after auditory stimulation 
(2.2–2.8 s; Tsum = 1083.7; p = 0.0225) as well as increased phase-locked activity in the 3–8 Hz range in the right 
HG (1.5–1.9 s; Tsum = 562.6; p = 0.018) and right STG (1.7–2.1 s; Tsum = 589.6, p = 0.021). Similar phase-locked 
effects were observed in the left hemisphere (left HG: 1.2–1.6 s, Tsum = 648; p = 0.013; and 1.7–2 s; Tsum = 968.2; 
p = 0.001; left STG 1.2–1.5 s; Tsum = 892.2; p = 0.002). Notably, following the modulation of theta-band oscilla-
tions in auditory areas, the right HP showed increased mismatch-related phase-locked activity in the 3–8 Hz 

Figure 1.  Experimental design. Serial presentation of 4-sounds sequences spaced by 1 s intervals (upper plot). 
Fifteen possible frequencies (100 to 800 Hz, plus 1st and 2nd harmonics, 10 ms rise/fall, linearly spaced in 
50 Hz steps) leading to 32760 different possible frequency-order combinations. Participants were instructed 
to perform an irrelevant 1-back task (lower plot) and detect rare sequences containing a sound repetition (two 
sounds presented in a row within the sequences).
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range between 1.3–1.7 s (Tsum = 562.6, p = 0.018). In addition to theta-band modulation, enhanced power in the 
alpha/beta-band for mismatch as compared to predictable sequences was observed in the right dlPFC (~7–16 Hz; 
2.1–2.8 s; Tsum = 1329.8; p = 0.008) and left dlPFC (~11–19 Hz; 1.9–2.5 s; Tsum = 1042.6; p = 0.02). In contrast, 
one cluster in the right dlPFC showed increased phase-locked activity for predictable as compared to mismatch 
trials in the alpha-band (~10–16 Hz; 2.2–2.6 s; Tsum = −550.6; p = 0.013). These results confirmed that mismatch 
sequences elicited enhanced theta-band activity in auditory and HP regions during the presentation of order vio-
lations, thus highlighting the role of theta-rhythms and HP sources in the generation of prediction-error signals.

Figure 2.  Whole-brain evoked-theta effects during the post-violation interval (1.2–2.1 s). (A) Individual 
coronal slices showing hippocampal structures. Evoked theta dSPM activity is thresholded at 75% of maximal 
activation, except for subjects S5, S9, S11, S13, S14, S17 (60% threshold) and subject average (AVG, 50% 
threshold). Percentages indicate the fraction of voxels in left and right HP exceeding the 75% of maximal 
activation. (B) Group-level statistics: Three clusters show significantly larger activity for mismatch vs predictable 
condition (P < 0.05, corrected for multiple comparisons across neighbouring spatial bins). Abbreviations: 
Post/ant-HP (posterior/anterior hippocampus), para-HP (para-hippocampal), dlPFC (dorsolateral prefrontal 
cortex), vmPFC (ventromedial prefrontal cortex), HG (Heschl’s gyrus), STG (superior temporal gyrus), FFA 
(fusiform area), ITG (inferior temporal gyrus).
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Mismatch Negativity in auditory-HP-PFC circuits.  To relate oscillatory findings to the extensive liter-
ature on ERP/ERFs linked to deviance detection, we analysed broadband filtered (1–30 Hz) average time-series 
in each ROI (Fig. 4). Exploratory analyses conducted across time-points (0 to 2.8 s) revealed significant differ-
ences across conditions as early as ~50 ms after the onset of a mismatch sound in the left HG (1.238–1.259 s; 
t(16) = 3.57; p = 0.0026). Subsequent effects were observed ~120 ms after the onset of the third and fourth sounds 
in the right HG (1.328–1.348 s: t(16) = 2.95, p = 0.0092; 1.914–1.936 s: t(16) = 4.06, p = 0.002), right STG (1.322–
1.348 s: t(16) = 3.53, p = 0.0021; 1.918–1.934 s: t(16) = 3.86, p = 0.0029) and right HP (1.914–1.934 s; t(16) = 3.11; 
p = 0.0099). Post-hoc analyses confirmed that compared to predictable sounds, mismatch stimuli presented in 

Figure 3.  Oscillatory analyses in HG, STG, HP, dlPFC and vmPFC. Fully saturated colors highlight clusters 
of significant modulation between 1.2 and 2.1 s (Red: mismatch > predictable; Blue: predictable > mismatch; 
P < 0.05, two-sided, corrected for multiple comparisons across time-frequency bins). Dashed boxes indicate 
onset-offset of sounds in the sequence. (A) Spectral power contrasts (mismatch vs predictable). (B) Phase-
locking (inter-trial phase coherence) contrasts (mismatch vs predictable).
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the third position elicited an enhanced response in the MMN time range (1.300–1.340 ms) in the right STG 
(t(16) = 3.88, p = 0.0007) and vmPFC (t(16) = 3.61, p = 0.0035). Similarly, a MMN response was observed in 
response to the fourth stimulus (1.900–1.940 ms) in the right HG (t(16) = 4.16, p = 0.0013), STG (t(16) = 3.68, 
p = 0.0021), and HP (t(16) = 3.31, p = 0.0065). Finally, an enhanced response was observed at ~200 ms after the 
onset of the fourth sound (2.000–2.080 ms) in the right HG (t(16) = 3.21, p = 0.0037) and STG (t(16) = 3.33, 
p = 0.0003).

Theta- and Alpha-Band Oscillations Mediate Transmission of Feedforward and Feedback 
Predictive Signals.  We applied frequency-domain multivariate GC to examine directed connectivity pat-
terns during the processing of mismatch and predictable sequences across ROIs in each hemisphere (Fig. 5). 
GC is a statistical measure that quantifies the extent to which activity in one region predicts activity in another 
region and has been previously used to identify feedforward and feedback information flow12,20,43. GC was meas-
ured across all pairs of ROIs per hemisphere in the 1–40 Hz frequency range by segmenting the post-violation 
interval into 3 non-overlapping 300 ms bins. A non-parametric statistical contrast was applied to assess directed 
connectivity patterns during mismatch vs predictable sequences. Consistent with our hypothesis that theta/
alpha-band oscillations mediate the transmission of prediction-error signals across cortical-subcortical networks, 
we observed significantly enhanced GC in the 5–13 Hz ranges from right HG to right vmPFC during mismatch 
as compared to predictable sequences (Tsum = 47.4; p = 0.011). In contrast, elevated GC-connectivity from the 
right HP to the right HG at alpha-frequencies (9–16 Hz; Tsum = −45.8; p = 0.006) indicated increased information 
transfer during predictable vs. mismatch quartets. No statistically significant differences were observed across left 
hemispheric ROIs. These results indicate that prediction-error signals are projected in a bottom-up fashion from 
sensory to high-order areas in the PFC, whereas predictable sequences elicit a top-down modulation from HP 
to auditory cortices. Moreover, our results suggest the use of distinct but overlapping frequency channels in the 
transmission of feedforward and feedback predictive signals. Analyses aimed at assessing the confounding effects 
of linear noise mixing showed no significant differences between conditions. Likewise, none of the surrogate 
time-reversed analyses replicated the enhanced theta/alpha GC from right HG to right vmPFC during mismatch 
events, or the enhanced alpha GC from the right HP to both right HG and STG during predictable sounds. 
Overall, these findings suggest that connectivity was robust and could not be accounted for by differences in noise 
levels across ROIs or the detrimental effect of evoked activity on GC estimation.

Figure 4.  Evoked-responses in HG, STG, HP, dlPFC and vmPFC. Central panel depicts ROIs overlaid onto an 
inflated template cortical surface. Surrounding panels illustrate group-averaged dSPM time-courses in each 
bilateral ROI for mismatch (red lines), predictable (blue lines) and difference (mismatch minus predictable; 
black lines) conditions. Black bars below the zero line indicate clusters showing significant differences between 
conditions (P < 0.05 two-sided, FDR corrected across ROIs). Vertical bars indicate the MMN (green bars: 
1.3–1.34 s/1.9–1.94 s) and P300 (yellow bars: 1.4–1.48 s/2–2.08 s) time-intervals used for statistical comparison. 
Asterisks indicate statistically significant differences (P < 0.05 two-sided, FDR corrected across ROIs) between 
mismatch and predictable conditions in the MMN and P300 intervals.
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Discussion
We used MEG to identify oscillatory and connectivity signatures of match and mismatch detection. While the 
functional role of neural oscillations in visual processing has gained considerable support12,19,20,44,45, the relevance 
of rhythmic activity and in particular the specific frequency channels that underlie information processing during 
auditory perception are less clear. We report that auditory events containing sequential violations with respect 
to previously presented sequences elicit increased theta-band activity in auditory and HP cortices and modulate 
PFC alpha-band activity. Increased theta- and alpha-band activity in auditory-HP-PFC circuits was accompanied 
by novelty-related evoked responses such as the MMN, suggesting that the HP is involved in mismatch detection. 
Furthermore, theta- and alpha-band connectivity across auditory-HP-PFC regions was modulated by predictable 

Figure 5.  Spectrally resolved Granger Causality (GC) analysis. (A) GC-estimates for mismatch (red lines) and 
predictable (blue lines) conditions across all pairs of anatomical regions in the right hemisphere (Shaded areas 
around lines indicate standard error. Black dotted lines indicate clusters showing significant differences between 
conditions (P < 0.05 two-sided, corrected for multiple comparisons across frequency bins. Blue dotted lines 
indicate uncorrected clusters). (B) Zoomed-up insert of the two pairs of nodes showing GC differences across 
conditions in the theta- and alpha-bands. (C) Schematic summary of directed GC-results.
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vs unpredictable sound sequences, suggesting that low-frequency oscillations mediate directed information flow 
across cortical-subcortical networks during auditory predictive processing.

Specifically, we identified increased activity in an auditory-HP-PFC network during auditory mismatch detec-
tion that overlapped with neural generators underlying novelty-related ERPs such as auditory, hippocampal, and 
prefrontal regions2,4. Spectral analysis indicated increased power and phase-locking of theta-band oscillations 
in auditory regions, suggesting that theta oscillations are involved in the generation of early signatures of audi-
tory prediction-error. In contrast, oscillatory activity in bilateral dlPFC was characterized by a late enhancement 
of alpha power during mismatch trials, concurrent with increased phase-locked activity in the right dlPFC for 
predictable sequences. Previous studies have reported a correlation between auditory novelty and alpha power 
at frontal sites reflecting attentional engagement4,46. Conversely, increased phase-resetting in dlPFC during the 
completion of sound quartets is consistent with the involvement of recall processes driven by the match between 
predictable sequences and identical memory traces47,48.

A key aspect of our finding was the observation of enhanced theta phase-resetting in the right HP that fol-
lowed activity in primary auditory areas. Previous findings have described HP generators underlying the P300 
response29,31,49 as well as the involvement of HP theta-band activity in the detection of novel events in the visual 
domain32–35,50. Our findings show that HP theta phase-alignment is increased during auditory mismatch detec-
tion, thus adding to growing evidence that the HP-entorhinal system sustains a domain-general mechanism 
encoding sequential representations across spatial and non-spatial dimensions and sensory modalities40,51–53. 
Furthermore, the reliable localization of theta-band modulation in individual participants in HP supports the 
use of MEG to detect source activity in limbic regions, known to be challenging due to the decay of the magnetic 
fields with increasing distance from sensors35,54–59.

Time-Frequency analyses showed that mismatch-related modulation was band-limited to the alpha/theta 
range and showed significant phase-locked components in auditory and HP regions during the post-violation 
interval. Maximal phase-resetting occurred in auditory regions within the 300 ms duration of mismatch sounds, 
consistent with broad-band evoked responses showing enhanced ERP-components to mismatch sounds in right 
hemispheric auditory-HP-PFC circuits. This finding suggests that theta-modulation elicited by mismatching 
stimuli is in part reflected by transient ERP components. The fact that only mismatching sounds at the end of the 
sequence elicited a late enhanced response around ~200 ms suggests that P2 components might index the encod-
ing of sequence-order violations. Consistent with prior findings, our spectral data suggest that phase-resetting in 
the HP might reflect the emergence of late hippocampal P300 subcomponents31,32,49. Noteworthy, ERF-analysis 
showed that HP-activity was enhanced at ~120 ms after the onset of the second mismatch sound during the 
time-range of the MMN potential, thus suggesting that HP generators are involved not only during auditory 
target detection29 but also in early stages of automatic mismatch processing.

While our findings are in agreement with Fuentemilla and colleagues25 indicating that MMN generation 
in auditory sites correlates with phase-alignment of the theta rhythm, our results suggest that auditory mis-
match detection correlates with an overall increase in total theta/alpha power even beyond the time-intervals 
of the MMN and P300 components in the right STG and bilateral dlPFC22,23. Previous studies have shown that 
theta-band oscillations are involved in the maintenance and updating of auditory memory contents, while 
increased alpha activity in PFC is consistent with an increased memory or suppression of irrelevant processing 
as observed in short-term visual and auditory memory studies60,61. The involvement of theta oscillations in fron-
tal and parietal sites during sequential working memory processes is well-documented53, which suggests that 
memory-based mechanisms could be involved in the current study. However, the relatively early onset of auditory 
responses in both evoked and spectral analyses suggests that associative mismatch processes between sensory 
predictions and sensory inputs occurred at a pre-attentive stage. For instance, neither matching nor mismatching 
events elicited a modulation of the P300 component, which has been typically associated to active monitoring 
and target detection4,5. Moreover participants were actively engaged in a 1-back detection task that oriented their 
attention to the tones within each quartet. For these reasons, it is unlikely that participants were actively creating 
explicit predictions about the forthcoming sequences.

Analyses of spectral connectivity allowed us to identify the role of low-frequency oscillations during the pro-
cessing of mismatch vs predictable events. Information flow from auditory cortices to vmPFC between 5–13 Hz 
was observed for mismatch sequences, while connectivity from the HP to auditory regions at alpha-frequencies 
was increased for predictable sounds. Together with the findings of phase-resetting and modulation of theta/
alpha-band power in auditory-PFC-HP circuits, these data suggest that auditory mismatch detection involves 
a coordinated sequence of oscillatory processes whereby prediction-errors are initially generated in sensory 
regions, followed by secondary auditory and HP cortices and then propagated to vmPFC. Such bottom-up mes-
sage passing is consistent with studies pointing towards a critical role of PFC in the generation and updating of 
online predictions and schema-based memory formation40,41,52,62,63. In contrast, elevated top-down connectiv-
ity from HP to HG in the alpha-band was observed during predictable sequences. This dissociation between 
theta vs. alpha-band activity is consistent with current frameworks that associate theta-band oscillations with 
prediction-error generation and feedforward message passing while alpha-band oscillations serve top-down 
mediated feedback onto lower sensory regions12,20.

It is important to highlight that GC estimation in MEG-data is not without limitations. In the current study, we 
attempted to minimize confounding factors, such as linear mixing, by computing a conditional non-parametric 
variant of GC in source space that distinguishes direct from indirect interactions. Moreover, we based our infer-
ence testing on the difference between two conditions with similar noise levels, volume conduction and inter-
changeable trial-to-trial variance, which ensures that reported effects were mainly driven by the predictable or 
mismatch condition of sound sequences. While we cannot exclude the potential confounding effect of evoked 
activity in the computation of GC in each condition, we addressed this potential issue by applying GC onto short 
data segments that approximate stationarity20,64,65. Moreover, we assessed the robustness of reported effects using 
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trial re-shuffled and time-reversed data, showing that our GC findings could not be accounted for by evoked 
components or linear noise mixing across regions.

Unlike prior studies35 we did not observe changes in GC between HP and vmPFC when comparing mismatch 
vs predictable sequences. Specifically, Garrido and colleagues35 examined visual mismatch processing and mod-
elled phase coupling between vmPFC and HP. The best model involved vmPFC driving HP in the theta-band 
indicating the updating of online predictions maintained in prefrontal cortices during error detection62,66. Prior 
animal studies have shown a predominant flow in the opposite direction, from HP to PFC67,68, supporting a role 
of the HP in match-mismatch comparisons69. Further studies should examine whether connectivity differences 
between prior studies and our current findings could be accounted for by distinct modelling procedures or dif-
ferences in the experimental design.

In conclusion, our findings provide novel insights into the contribution of neural oscillations towards auditory 
predictive processing. Specifically, our data show distinct roles of theta- and alpha-band oscillation in auditory 
and HP-PFC networks, highlighting that prediction-error generation and message-passing during the detec-
tion of mismatch vs. predictable auditory information is mediated through inter-areal rhythmic synchroniza-
tion. Our results highlight the fundamental role of HP-PFC in this process and suggest that this circuit sustains 
a domain-general mechanism involved in the representation of sequential information and match-mismatch 
detection.

Materials and Methods
Subjects.  Seventeen healthy right-handed human participants took part in the experiment (mean age: 24.9; 
std: 3.7; range: 20–30 years; 6 males) and were screened for a history of neurological or psychiatric disorders. All 
participants showed normal hearing levels as assessed with a 5-tone audiometry (250, 500, 1000, 3000, 8000 Hz). 
Participants were recruited from the University of Glasgow School of Psychology participant pool and provided 
informed consent prior to the experiment. The experimental protocol was approved by the University of Glasgow 
College of Science and Engineering Ethics Committee. All methods were performed in accordance with the rele-
vant guidelines and regulations provided by the Code of Ethics of the World Medical Association (Declaration of 
Helsinki). No subjects were discarded due to excessive head movement (>0.7 cm) or inappropriate hearing levels 
(mean thresholds ranged from 5–10 dB HL).

Experimental Design.  The experimental paradigm (Fig. 1) involved the consecutive presentation of 
four-sound series that repeated or differed (p = 0.5; randomly distributed within each block) from a previously 
presented pattern in the order of the last two sounds. Therefore, sounds in third and fourth positions of the 
sequence (post-violation interval: 1.2 to 2.1 s) elicited a predictable or mismatch response based on the sequen-
tial order of a pre-established auditory template. Mismatch responses were thus contingent on a prior match-
ing process, as defined by the first two sound being identical to those in the preceding sequence, rather than 
responses to environmental novelty per se. Sounds were composed of sequences of four 300 ms sine-waves sepa-
rated by a 300 ms fixed inter-stimulus-interval (ISI) and were presented at 600, 1200, and 1800 ms after the onset 
of the first sound in the sequence. Sound frequencies were randomly selected from a sample of 15 frequencies 
(100–800 Hz, 50 Hz steps). Each condition-trial was composed of two consecutive quartets separated by 1 s fixed 
inter-quartet-interval. The first quartet (Q1) consisted of a sequence of sounds and the second quartet (Q2) pre-
sented the same four sounds in two conditions: (1) an exact repetition of the previous sequence (“Predictable”) or 
(2) the same sequence with a mismatch in the order of the last two sounds (“Mismatch”). Condition-trials were 
separated by 1 s fixed intervals, identical to inter-quartet-intervals, thus making the trial-structure (Q1 followed 
by Q2) not explicit to the participants. All sequences presented throughout the experimental presentation were 
unique and were repeated only once during Q2 in the predictable condition. Only data from Q2 quartets con-
taining the experimental manipulation were used in subsequent analyses. Data from Q1 quartets that defined the 
sensory template were only used for the computation of the covariance matrices. Unlike previous studies34–36, we 
did not include a shuffled or unpredictable condition, hence focussing on associative or prediction-based com-
parisons rather than novelty per se.

Participants were engaged in an orthogonal auditory 1-back task where a repetition of the same tone within 
the quartet had to be detected via a button-press with the right-index finger. Twenty target trials were randomly 
interspersed and presented in quartets (probability = 0.2) that were not followed by a Q2, thus disrupting the 
predominant Q1–Q2 trials structure (probability = 0.8). Participants performed at a high level (hit rate = 0.87, 
SD = 0.1). Target trials were excluded from further analysis. A white fixation cross was presented in the middle 
of the screen and provided target-related feedback by changing its colour to green for detected targets or red for 
missed and false alarm responses. All stimuli were created using Matlab at a sampling rate of 44.1 kHz and 16-bit 
resolution. Sounds were delivered binaurally through 6-meter tubes attached to earplugs (ER-30 system, Etymotic 
Research Inc., IL, USA) inserted into the ear canal and presented at a comfortable listening level adjusted by each 
participant (60–70 dB SPL). The experiment was implemented using the Psychophysics Toolbox70 and was pre-
sented in 3–5 blocks, each containing 40 trials per condition and lasting 9.5 min.

Data Acquisition and Pre-processing.  MEG data were acquired using a 248-magnetometer, whole head 
MEG system (MAGNES® 3600WH, 4D-Neuroimaging, CA, USA). Head position was assessed before and after 
each acquisition run via five coils co-digitized with participants’ head shape (FASTRAK®, Polhemus Inc., VT, 
USA) for subsequent co-registration with individual magnetic resonance imaging (MRI; 1 mm3; T1-weighted 
3D-MPRAGE).

Sensor-level pre-processing was performed using the Fieldtrip Toolbox71. Raw MEG signals were 0.5 Hz 
high-pass filtered (FIR filter, order 2) and 50 Hz power-line noise was removed using a sharp discrete Fourier 
transform filter. Signals recorded by the MEG reference sensors were used to reduce environmental noise using 



www.nature.com/scientificreports/

9Scientific REPOrtS |  (2018) 8:14007  | DOI:10.1038/s41598-018-32385-3

FieldTrip’s ft_denoise_pca function. Continuous data were down-sampled to 508.6 Hz and epoched in trials of 
4.1 s length (1 s pre-stimulus) time-locked to the onset of the first sound in the sequence. Five excessively noisy 
or flat sensors were discarded from all analyses. Trials contaminated by squid jumps and amplitude ranges above 
±7pT were removed prior to independent component analysis decomposition. Independent components con-
taining blinks, eye movements, and cardiac activity were projected out from the data. Resulting signals were 
visually inspected and trials containing artefacts were manually removed. Discarded sensors were replaced using 
a triangulation method but were not used for source estimation. An average (±std) of 150.4 trials (±17.8) in the 
mismatch Q2 condition and 149.6 trials (±16.5) in the predictable Q2 condition survived artefact rejection.

Whole-Brain MEG-Analysis.  Individual MRIs were co-registered to the MEG coordinate system using par-
ticipants’ landmark information and digitised head shape. Grey and white matter was automatically segmented 
using Freesurfer72,73. The Brainstorm toolbox74 was used to create whole-brain volumes using an overlapping 
spheres method75. A template source space (5 mm spacing, 10137 grid points) was defined for each individual 
volume. The noise covariance matrix used to calculate the inverse operators was estimated from baseline inter-
vals preceding the onset of the first sound in each series (−500 to −3 ms), as obtained from data across all trials. 
Trial-level source activity was computed using dSPM76. For whole-brain dSPM maps, trials in each condition 
were first averaged and then band-pass filtered in the theta-band (finite impulse response, range: 4–8 Hz, filter 
order: 1538). The norm of each orientation per voxel was calculated to facilitate visualization and statistical com-
parison. Individual maps were projected to a template brain and a Gaussian smoothing kernel of 3 mm FWHM 
(full-width half-maximum) was applied prior to statistical analysis. Individual auditory mismatch effects were 
obtained by computing dSPM maps on the difference between mismatch and predictable averaged trials, rather 
than for each condition separately. Therefore, individual dSPM maps do not provide information about the direc-
tion of the effects but instead show a modulation induced by the experimental manipulation. The percentage 
of all grid points in the left and right HP that exceed the 75% of the maximal amplitude was calculated for each 
individual.

Region of Interest Definition.  Regions of interest (ROIs) data were derived from cortically-constrained 
source models. Following the same procedure described above, cortical and hippocampal structures obtained 
from Freesurfer’s automatic subcortical segmentation77,78 were combined to compute cortically-constrained 
source space models (~5 mm spacing, ~7500 dipole locations per hemisphere) using the Boundary Element 
Method. Such brain models constrain the source space onto the individually-defined cortical mantle76, thus apply-
ing accurate anatomical and electrophysiological constraints in terms of dipole location, orientation, and current 
density57,59. Based on current whole-brain results and literature findings32,35,41,42,79 reporting the involvement of 
selected regions in match and mismatch detection, we obtained source time-series by averaging all vertex-signals 
in the following ROIs from the Desikan-Killiany atlas80: transverse temporal or Heschl’s gyri (HG; 44–28 ver-
tices, area = 4.93–3.39 cm2), the superior temporal gyri (STG; 297–296 vertices, area = 36.05–35.29 cm2), ros-
tral middle or frontal dorsolateral prefrontal cortices (dlPFC; 421–426 vertices, area = 38.41–39.98 cm2), and 
lateral and medial orbitofrontal cortices overlapping ventromedial prefrontal cortices (vmPFC; 355–380 verti-
ces, area = 41.13–42.33 cm2). The HP ROIs (745–725 vertices, area = 23.06–23.65 cm2) were defined using all 
the grid points in HP structures that were extracted using FreeSurfer’s subcortical segmentation77. Subsequent 
time-frequency and connectivity analyses were carried out using depth-weighted MNE81,82 trials extracted from 
each ROI. To compute evoked responses noise-normalized dSPM trials were extracted from each ROI, band-pass 
filtered (finite impulse response, range: 1–30 Hz, filter order: 1538), and averaged per condition.

Time-Frequency Analyses.  Time-frequency representations (TFRs) were calculated for each ROI (−1 to 
3.1 s, from sequence onset) for frequencies up to 40 Hz using a Hanning taper method with a 500 ms fixed slid-
ing window length (0.5 Hz steps using the mtmconvol function), centred every 10 ms. Initial and final 250 ms 
segments were clipped from TFRs to exclude edge effects. Total power was expressed as relative change (750 ms 
baseline interval, prior to sequence onset). Phase-locking or Inter-trial phase coherence (ITPC) was calculated to 
assess the consistency of brain responses over trials using the same parameters as for total evoked power (using 
complex Fourier-spectra). Phase-locking corresponds to the magnitude of the amplitude-normalized complex 
numbers averaged across trials of the TFR estimates for each time-frequency bin83. Phase-locking values range 
from 0 to 1, reflecting zero to near-perfect phase consistency across trials.

Spectral Granger Causality Analysis.  We examined the causal influence between ROIs (HG, STG, HP, 
vmPFC, dlPFC) using Granger Causality (GC)84. GC spectrum was obtained in a non-parametric manner by 
computing Geweke’s frequency domain version of conditional GC85,86. As opposed to a pairwise approach, con-
ditional GC takes into account information from all ROIs when estimating the interaction terms, thus distin-
guishing direct from potentially indirect effects caused by a third source. In order to reduce non-stationarity, 
trial-condition data during the post-violation interval was de-trended and segmented into 3 non-overlapping 
300 ms intervals. Spectral density matrices for each segment were obtained from the Fourier decomposition, 
calculated from 0 to 40 Hz using a single 500 ms sliding window (0.5 Hz spectral resolution, 10 ms temporal reso-
lution) on ±6 s padded data. Spectral matrices were factorized and combined with Geweke’s time series decompo-
sition to estimate conditional GC. GC values were then averaged across segments prior to statistical testing. The 
rationale behind data segmentation is that shorter segments are less likely to show non-stationarity64,65, and the 
inclusion of larger data-points results in smoother shapes of the cross-spectral densities and more stable results 
for the non-parametric formulation of GC20,87,88.

Confounding factors such as linear noise mixing due to volume conduction and noise correlation across 
regions may lead to spurious and false positive GC results. To address this issue, we compared our original results 
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with GC-estimates obtained using time-reversed data89,90. In addition we assessed the potentially adverse effect 
caused by trial-to-trial variability of evoked components, leading to low-stationary time-series88,91. We computed 
GC on surrogate trial-shuffled data and compared original and surrogate results, on the basis that causality would 
be lost during reshuffling leaving only the contribution of non-stationary evoked components.

Statistical Analyses.  Group-level statistical testing of whole-brain evoked theta activity (n = 17 sub-
jects) employed a Monte Carlo method with cluster-based maximum correction for multiple comparisons92. 
Dependent-samples t-tests were used to identify clusters of contiguous data points showing a difference between 
conditions (Mismatch vs Predictable), thresholded at p < 0.05, two-tailed. The sum of t statistics over all data 
points was used to calculate cluster size. Effect sizes for cluster-based t-statistics are reported as the summed 
t-values across all bins within a cluster (Tsum). Time-bins within the post-violation interval were averaged prior 
to permutation testing. The null distribution was estimated using 1000 permutations and effects were clustered 
based on spatial adjacency (cluster-corrected at p < 0.005).

For group-level TFR maps, condition differences within each ROI were independently assessed between 1.2 
and 2.9 s and from 0.5 to 40 Hz using 2000 permutations. Effects were clustered in both time and frequency 
dimensions (cluster-corrected at p < 0.05).

Participants-averaged evoked responses within each ROI were initially compared across conditions using 
non-parametric two-sample t-tests (3000 permutations, FDR corrected across ROIs at p < 0.05, minimum thresh-
old of 7 consecutive time-bins = 10–12 ms). T- and p-values across consecutive significant time-bins are reported. 
In addition, condition effects were tested during the specific time-intervals of the MMN and the P300-response. 
Based on grand-averaged data, mean activity was extracted from the two MMN (40 ms interval around peak) and 
P300 components (80 ms interval around peak), peaking respectively at ~120 ms and ~220 ms after the onset of 
the third and fourth sounds in the quartet. Mean activity across conditions in each ROI (n = 10) and component 
(n = 4) was statistically tested using non-parametric permutation-based testing (10000 permutations, FDR cor-
rected across ROIs at p < 0.05).

Condition differences in original GC spectrograms and surrogate datasets were assessed independently in 
each hemisphere within the post-violation interval and for all frequencies. The null distribution was estimated 
using 1000 permutations and effects were clustered in the frequency dimension (cluster-corrected at p < 0.05).

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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