Skip to main content
. 2018 Sep 18;8:14012. doi: 10.1038/s41598-018-32356-8

Figure 6.

Figure 6

The proposed model that connects AHCY activity, DNA damage and the regulation of the cell cycle through adenosine levels in hepatocellular carcinoma cells. Left: General schematic representation of proposed model: lowered AHCY activity causes adenosine depletion, stalling of replication forks and subsequent DNA damage, which activates various signalling pathways and causes cell cycle arrest in the G1/S checkpoint. Strong and sudden lowering of the AHCY activity causes immediate proliferation changes in cancer cells; however, mild inactivation of AHCY would cause chronic stress for liver cells and thus contribute to adult onset liver disease, such as hepatocellular carcinoma as observed in the latest case of AHCY deficiency. Right: A detailed overview of how adenosine depletion could cause replication fork stalling through misbalance of the dNTP pool due to lower dATP levels, and subsequent impairment of adequate rates of DNA synthesis and progression of the replication forks. Treatment with hydroxyurea, although following another pathway, facilitates a similar and well-described effect through the disturbance of the balance of the total dNTP pool.