
Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 343

Application of Information Technology n

WebEAV:
Automatic Metadata-driven Generation
of Web Interfaces to
Entity-Attribute-Value Databases

PRAKASH M. NADKARNI, MD, CYNTHIA M. BRANDT, MD, LUIS MARENCO, MD

A b s t r a c t The task of creating and maintaining a front end to a large institutional entity-
attribute-value (EAV) database can be cumbersome when using traditional client–server
technology. Switching to Web technology as a delivery vehicle solves some of these problems but
introduces others. In particular, Web development environments tend to be primitive, and many
features that client–server developers take for granted are missing. WebEAV is a generic
framework for Web development that is intended to streamline the process of Web application
development for databases having a significant EAV component. It also addresses some
challenging user interface issues that arise when any complex system is created. The authors
describe the architecture of WebEAV and provide an overview of its features with suitable
examples.

n J Am Med Inform Assoc. 2000;7:343–356.

The entity-attribute-value (EAV) physical database ar-
chitecture is widely used in clinical data repositories
(CDRs). Those CDRs with a major EAV component
include the pioneering HELP system1,2 (and its com-
mercial version, the 3M CDR3) and the Columbia–
Presbyterian Medical Center CDR.4,5 Entity-attribute-
value design addresses a problem that conventional
table design (i.e., one column per finding or param-
eter) cannot address. Specifically, data on several
thousand potential parameters can be stored for a pa-
tient across all clinical specialties. If these data are
modeled as one database field per parameter, numer-
ous tables are required to hold the data, and these
tables will require repeated modification as medicine
advances and new clinical and laboratory parameters
need to be recorded. Searching across numerous ta-
bles for all data on a single patient is also inefficient,
especially for the vast majority of patients, for whom

Affiliation of the authors: Yale University School of Medicine,
New Haven, Connecticut.

This work was supported by grant U01-CA-78266 from the Na-
tional Cancer Institute.

Correspondence and reprints: Prakash M. Nadkarni, MD, Cen-
ter for Medical Informatics, Yale University School of Medicine,
P.O. Box 208009, New Haven, CT 06520-8009;
e-mail: ^prakash.nadkarni@yale.edu&.

Received for publication: 10/1/99; accepted for publication:
2/2/00.

only a modest number of parameters are actually ap-
plicable.

In EAV design, we have (conceptually) a single table
that records the data as one row per finding. Each row
contains the following information: entity (patient
identification, visit, date/time etc.), attribute (the
name/identification of the parameter), and the value
of the parameter. Because attributes are not hard-
coded as database fields, this design does not require
revision as new clinical parameters enter the medical
domain. Data retrieval is also efficient. To retrieve all
the facts on a patient, one simply searches the entity
column(s) for the patient identification, ordering all
rows by date and time if necessary.

Although EAV architecture dramatically simplifies
CDR database design, it complicates user interface de-
sign significantly. Specifically, the global schema of an
EAV database (the way the data are actually orga-
nized into tables) differs greatly from its logical
schema (the way they are perceived as being orga-
nized). In our experience, end users tend to regard the
data as being stored conventionally as one database
field per attribute, even if they are not. Almost all an-
alytic programs, such as spreadsheet or statistics
packages, also expect input data to be organized con-
ventionally. Therefore, CDR system architects must
spend considerable effort simulating the logical
schema, especially when presenting data on a partic-
ular patient through forms or data entry screens. This

344 NADKARNI ET AL., Web Interface Generation for EAV Data

means converting EAV data to a conventional struc-
ture before they are presented to the user and trans-
lating the edited data back into EAV structure when
edits are to be posted back to the server.

There are currently several powerful front-end tools
for client–server database development. These in-
clude desktop database management systems such as
Microsoft Access, Paradox, and Visual Foxpro, as well
as programs such as Visual Basic and PowerBuilder.
Although such tools often make it possible to create
forms without programming, their form design facil-
ities are based on the one-record-per-screen metaphor.
They work well for conventional but not for EAV
data, where the data on one logical record (e.g., all
findings pertaining to a single patient event) are
stored as multiple physical records, with one record
per finding. Provision of form interfaces for EAV da-
tabases therefore requires much custom program-
ming.

This paper describes WebEAV, a Web-oriented pro-
gramming framework that minimizes the amount of
programming by permitting the automatic generation
of Web-based forms for input and display of EAV
data. The forms that are generated provide a robust
set of features and functionality. We are using
WebEAV for two production EAV databases:

n ACT/DB, a database system for managing clinical
studies data.6,7 This is in multidepartment produc-
tion use at Yale and at the Vanderbilt University
Cancer Center. It is also the basis for a special stud-
ies database for the U.S. National Cancer Institute–
supported Cancer Genetics Network initiative.8

n SENSELAB,9,10 a collection of heterogeneous neuro-
science data (sequences, neuronal models, circuits,
experiments, etc.) centered on the olfactory system.

Background

Developing Traditional Front Ends for EAV Data

In this section, we discuss the significant maintenance
problems that arise when traditional client–server ap-
proaches are used to create front ends for complex,
multi-user EAV databases. We first describe two ap-
proaches for browsing and editing EAV data that are
based on mapping sets of attributes to tables that re-
side on the client and are managed by a desktop da-
tabase management system. These tables transiently
capture data from the server, and the user manipu-
lates the data through forms based on these tables.

The availability of client-side tables greatly simplifies
presentation of data that have many-to-one relation-

ships, where the ‘‘many’’ records are to be displayed
simultaneously with the ‘‘one’’ record. For example, a
physician inspecting a cancer patient’s demographic
data may also wish to see details of multiple past ep-
isodes of surgery or radiotherapy. Traditional client–
server systems handle these presentation needs by let-
ting the developer create subforms, one or more of
which can be embedded in the main form. Thus, sur-
gery and radiotherapy data, which are also transiently
captured in their own tables, are displayed in separate
subforms within the demographics form. As dis-
cussed later, simulating subforms that also permit
data entry and editing on the Web requires compli-
cated programming.

Static Table-based Mapping

In static mapping, each client table reflects an individ-
ual data collection instrument. This is a paper-based
or electronic form used to gather or present data on
a set of related clinical parameters, e.g., routine he-
matology or a standard clinical chemistry panel such
as the SMA-14. Each field on a particular form (e.g.,
the field ‘‘Hemoglobin’’) is mapped to a counterpart
in the EAV schema (the attribute ID for hemoglobin,
e.g., 1135). For such purposes, most traditional client–
server environments provide a ‘‘tag’’ for every object
in a form. The tag can contain arbitrary developer-
assigned text whose interpretation is left to program
code; thus, the attribute ID can be stored in the tag.
The drawbacks of this mapping approach are as fol-
lows.

n A large system may require several hundred tables,
each with associated forms. The forms and tables
can take up considerable space on a client machine,
even if the tables are generally empty. It is possible
to save space by storing, on clients within individ-
ual departments, only those tables and forms that
the department needs to use. Maintenance of de-
partment-specific sets of tables, however, consti-
tutes significant administrative and manpower over-
head.

n Revisions and bug fixes to tables and forms require
the corresponding tables or forms to be reinstalled
on individual machines. In our experience, many
nonstandard data collection instruments that are
being devised for brand-new protocols change re-
peatedly—often four or more times—as investiga-
tors iteratively converge on a decision regarding the
set of parameters to be gathered.

n The number of form-entry fields per form is limited
to the maximum number of database fields per ta-
ble (typically, 255), which may be limiting for large

Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 345

data collection instruments (e.g., certain psychiatry
questionnaires such as personality inventories).
One must then use inelegant workarounds such as
splitting up a large data collection instrument into
two or more separate forms based on separate ta-
bles.

Dynamic Table-based Mapping

Dynamic table-based mapping, a significant improve-
ment over static mapping, was implemented in an
earlier version of ACT/DB. Here, the client has a few
general-purpose, reusable tables with numerous data-
base fields whose mapping to attributes in the EAV
schema can change, depending on the form being dis-
played. That is, these tables are used to transiently
capture all EAV, irrespective of the DCI.

One table is used to display data in the main form.
The number of subform tables required depends on
the maximum number of subforms per form across
the system. In our experience, five or six reusable
subform tables generally suffice.

The fields in such tables are named serially. In ACT/
DB, which uses strong data typing, one designates
such fields to hold strings, integers, decimal numbers,
dates, and so forth. Thus, the first database field for
string data would be named ‘‘S01.’’ Strong typing
greatly reduces the programming needed for client-
side data validation. For example, the built-in vali-
dation facilities of many traditional client–server en-
vironments prevent entry of alphabets in numeric
fields, and date fields reject invalid dates, even han-
dling leap-year logic correctly. ‘‘Pictures,’’ which are
templates to restrict data entry, such as ‘‘(999) 999-
9999’’ for phone numbers, also assist validation and
data standardization.

The server’s metadata (‘‘data dictionary’’) records, for
every form, the mapping of specific database fields to
their corresponding form fields. Subsets of the map-
ping metadata are replicated programmatically on de-
mand on individual clients, on the basis of the forms
that each client uses. When a particular form is about
to be opened, its mapping metadata are refreshed
from the server if the latter are more recent, as deter-
mined by a comparison of time stamps. If the new
metadata are incompatible with the old (e.g., the num-
ber of fields for one or more data types has changed),
the user can be warned that the form on the client is
obsolete.

Depending on the client software and setup, it may
or may not be possible to automatically download the
current version of the form from a ‘‘forms server.’’
With Microsoft Access, for example, form transfer
without workflow interruption requires clients to

have a full version of Access installed. If, however,
clients are using Access Runtime (which allows un-
restricted application distribution, without per-ma-
chine licensing costs), this is not possible, because all
forms are treated as having been ‘‘compiled’’ into the
application.

By using other metadata—such as the data type and
brief description of attributes, the order in which they
are to appear in the form, and their aggregation into
logical groups—it is possible to write a code library
to generate forms, and their mapping metadata, au-
tomatically. ACT/DB and SENSELAB both contain such
a library, which is described by Nadkarni et al.11

Dynamic table-based mapping solves the table prolif-
eration problem, but the maximum-fields-per-form
limitation remains. The limit may in fact be reached
sooner than with static mapping; for example, all the
available string or integer database fields may be used
up during the creation of a large form, even if most
of the date fields are unused. The dynamic mapping
approach also fails to fully address the forms-main-
tenance problem, because the existence of an obsolete
form, while detected correctly, interrupts workflow if
the form must be manually downloaded and rein-
stalled. Furthermore, with a large form the delay
caused by metadata downloading and metadata ver-
sion checking may be significant.

Form Reuse Issues

Multiple departments may use the same data collec-
tion instrument with varying degrees of detail. Thus,
in a hematology panel, tracking of peripheral pro-
myelocytes or metamyelocytes may be important for
cancer chemotherapy but not for routine screening. If
one creates numerous department-specific forms for
what is fundamentally the same instrument, forms
proliferation becomes hard to manage. Reuse of forms
that record the greatest common denominator of in-
formation is therefore preferred. However, if a given
department is concerned with only 5 parameters on a
form that has placeholders for 20, it can confuse users
who see many more form-entry fields than are appro-
priate to their needs. Especially if data are being en-
tered through transcription from paper forms, it is im-
portant that the data entry person not be presented
with fields that do not exist on the paper form.

ACT/DB addresses this issue by permitting the de-
signer to specify, for a given study, which fields on a
given form are required. When a particular user opens
the form, then, based on the current study, the back-
ground color of ‘‘required’’ fields is dynamically set
to a pale yellow to indicate which fields on the form
can be ignored. This solution is a partial one, because

346 NADKARNI ET AL., Web Interface Generation for EAV Data

the form is still busier than it should be; ideally, fields
that are not required should simply not be shown.
One can write generic code to dynamically make non-
required fields invisible, but with traditional client–
server front ends, the form does not reformat; un-
sightly gaps indicate invisible fields. Form esthetics
becomes a factor if hardcopy is required. Later in this
article we discuss how WebEAV addresses this prob-
lem.

Creating Web-based Interfaces

The World Wide Web offers a unique opportunity to
simplify database deployment. In typical Web data-
base applications, a user’s browser requests data from
a remote Web server, which in turn requests them
from a database server. (The latter may reside on the
same machine as the Web server or on a machine in
the same network.) After the database server returns
the requested data, the Web server formats it into a
Web page (in the form of hypertext markup language,
or HTML) and sends it to the browser. Additional
‘‘application server’’ software may be placed between
Web and database servers; this includes a transaction
monitor for tasks such as pooling of database connec-
tions to improve response time and reduce database
server load.

The advantages of Web deployment are summarized
below:

n Problems of maintaining form versions go away,
because all forms reside on a Web server, to be
downloaded on demand by a client browser.
Changes to a given form are automatically available
the next time a Web browser accesses the server.

n Web browsers use extremely clever caching algo-
rithms that the developer can leverage. When a
browser visits a particular page on a Web site, its
contents are cached on the local machine. During a
subsequent visit to the same page, only those com-
ponents (i.e., the HTML, embedded images, ap-
plets, or code libraries) that have changed since the
last visit are re-downloaded.

n The HTML page- or form-rendering model is both
simpler and smarter than that of traditional client–
server environments. By default, the objects on a
page automatically reformat whenever the browser
window is resized or whenever the user changes
the font size. Traditional client–server pro-
grammers, in contrast, must devote much effort to
physical screen size issues. For fine control, ‘‘cas-
cading style sheets,’’ 12 a standard promulgated
by the international Web-related standards body,

the World-Wide Web Consortium (http://www.
w3.org/), provide a high-level means of document
formatting. A ‘‘style’’ is effectively a macro that per-
mits the font, color, positioning, and visibility of
HTML segments to be specified in exquisite detail.
Formatting attributes can be altered by ‘‘client-side’’
code. (Client-side code is code that is part of the
page and runs in the browser. It is typically written
using the language JavaScript or VBScript, or both.)
Modest coding efforts achieve dramatic changes in
screen appearance.

n Web-based solutions result in significantly lower
deployment costs. Browsers are given away free,
and therefore per-seat client licenses are not neces-
sary.

For these reasons, the Web is increasingly the medium
of choice for multi-user application deployment, es-
pecially for databases. However, Web database appli-
cations that must support data editing and entry are
significantly more complex to develop than tradi-
tional client–server applications, for several reasons.

Communication between browser and Web server via
the HTTP protocol is intrinsically ‘‘stateless.’’ 13 That
is, once the server has handed a page to the browser,
it closes the connection and ‘‘forgets’’ about the client.
To maintain state, the developer must store state data
either on a Web page (using ‘‘hidden’’ or invisible
form fields) or in ‘‘cookies,’’ which are text items in
attribute-value form that are stored by the user’s
browser on the local machine.

Web forms require much more custom programming
than traditional client–server environments for client-
side data validation, because Web form fields are
typeless and ‘‘pictures’’ are unavailable. While server-
side validation can be done (and should be done
anyway), providing an error message after the Web
form is submitted (and after a variable delay) can
cause user frustration. Satisfactory ergonomics are fa-
cilitated by maximal validation at the client browser
before form submission, through client-side scripting.
Ideally, an error message should appear immediately
after the user tries to move from the field with erro-
neous data to the next field.

In our opinion, many Web development tools are
much less mature than traditional client–server en-
vironments, and the edit–test–debug cycle is greatly
lengthened. Currently, for example, simple errors such
as undeclared or misspelled variables, which would
be trapped at compile/edit time in traditional client–
server environments, remain undetected until run-
time. Web development environments desperately

Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 347

need an equivalent of the UNIX lint utility,14 which
detects questionable constructs in C code.

Design Objectives

Coding Web forms by hand to support robust data
browsing and editing is tedious and error-prone.
WebEAV is a framework for simplifying such devel-
opment. These are its objectives:

n The WebEAV framework should automatically gen-
erate forms based on attribute metadata. For effi-
ciency reasons, it is desirable to pregenerate as
much of a form as possible, so that most of the form
is static (i.e., unchanged between consecutive uses).
However, the form must also contain dynamic com-
ponents that change the form’s behavior on the ba-
sis of the currently logged-on user and, in the case
of ACT/DB, the current study.

n The esthetics of a program-generated form cannot
be 100 per cent satisfactory. It is desirable, therefore,
to generate forms that can be customized by (non-
programmer) lead users with graphical Web-page
editors. Providing form-editing capability enfran-
chises users and improves user satisfaction while
freeing developers for more intellectually challeng-
ing tasks.

n The Web forms must be responsive in relatively
low-bandwidth situations. Therefore, once a form is
downloaded, to-and-fro communication must be
minimized. In high-bandwidth traditional client–
server applications, in contrast, a client may re-
peatedly contact the server during data entry, e.g.,
to populate values in a pull-down menu. A form
must therefore contain almost all the scripting code
and data, including mapping metadata, needed to
function autonomously, until the user submits the
form.

n WebEAV should not be limited to managing EAV
data alone. Most production EAV databases, includ-
ing our own, store certain types of homogeneous
data, e.g., patient demographics, in conventional
form for efficiency purposes.

n The ideas embodied in WebEAV should be suffi-
ciently generic to permit porting to other hardware
and software platforms.

Our description of WebEAV in this paper is intended
to be comprehensive enough that Web developers in
biomedical institutions should be able to derive useful
ideas from our work even if they do not intend to
inspect or use WebEAV code itself.

System Description

WebEAV is currently implemented on the Windows
NT platform. It uses Microsoft Internet Information
Server as the Web server and Microsoft Transaction
Server as the application server; both are part of the
default installation of Windows NT Server version 4.0.
It uses Active Server Pages, or ASP (described shortly)
for server programming. We use Oracle as the data-
base engine (although none of the code in WebEAV is
Oracle-specific). On our test system, the database
server resides on the same machine as the Web server,
while in our production system it resides on a sepa-
rate machine.

Choice of Software Platform

WebEAV uses ASP technology on the server end.
Originally devised by Microsoft for use on their Web
server (Internet Information Server, IIS), ASP is also
available through a third-party vendor (Chili!Soft) for
non-Microsoft Web servers running on non-Windows
platforms.

ASP allows a developer to place programming code
(written in a ‘‘lightweight’’ scripting language such as
VBScript, Javascript, and PerlScript) at multiple places
in a Web page. (HTML itself is only a markup lan-
guage that specifies formatting, not a programming
language.) This page is saved with a special file ex-
tension (.asp instead of .html). When a browser re-
quests the page, the Web server first passes the page
to an interpreter, which executes each instance of em-
bedded code and generates text that is inserted into
the page at one or more points. When the browser
receives the page, all server-side code has been re-
moved. On Windows NT, the ASP processor and
VBScript and JavaScript interpreters are part of the
default NT installation.

ASP is not unique in its approach: PHP (http://
www.php.net/) is a popular freeware C/Perl-like lan-
guage environment for UNIX/Windows NT that
works on identical principles. Java Server Pages
(JSP),15 which is also available on a variety of Web
servers, works in a similar fashion. (The techniques
we describe may be readily adapted to PHP or JSP.)
The ASP programming model has both advantages
and disadvantages.

n ASP offers somewhat higher development through-
put than alternatives such as Common Gateway In-
terface (CGI) programming. (CGI was the first
framework defined for Web programming and is
supported on all Web servers.) Many complex as-
pects of Web programming are encapsulated in rel-

348 NADKARNI ET AL., Web Interface Generation for EAV Data

atively easy-to-use high-level objects. Persistent
connections between Web and database servers are
simple to program.

n Unlike in CGI programming, an ASP page does not
need to be generated entirely by code. Using Web-
page editors, nonprogrammers can specify page
layout, e.g., setting fonts and colors or inserting im-
ages. They can similarly customize program-gen-
erated ASP pages as long as they take care not to
delete code.

n On the downside, currently available ASP scripting
languages have somewhat limited features and de-
bugging environments. (VBScript code segments,
however, can mostly be developed in a more robust
environment, e.g., Visual Basic or Microsoft Access,
and subsequently copied and pasted into an ASP
page.)

Browser Dependencies

Some advanced features of WebEAV require the use
of Microsoft Internet Explorer (MSIE) version 5 (the
present version). Although we are not happy to limit
the user’s choice of browser, the versions of dynamic
HTML (DHTML) implemented by MSIE and Net-
scape Navigator (NN) are mostly incompatible, and
NN has fallen greatly behind in programmability.
(DHTML is the browser-specific programming frame-
work, consisting of objects and methods, through
which the contents of an HTML page can be manip-
ulated on the client.) To quote Web development Guru
Danny Goodman16:

Literally every HTML element (in MSIE) is exposed
as a scriptable object . . . [MSIE] automatically re-
flows the page whenever you do anything that
changes its contents, such as adjusting the font size
for a phrase or inserting some HTML text in the
middle of the paragraph. . . . Even if the [NN] object
model allowed content modification on the fly
(which it does not), pages do not automatically re-
flow in Navigator 4.

For these reasons, MSIE has become the browser of
choice for intranet application development.

While supporting all browsers may be politically cor-
rect, a developer must seriously consider the cost in
terms of programming resources and the restricted
functionality deliverable with a least-common-de-
nominator approach. Since both NN and MSIE are
freely downloadable, we have taken the view that
mandating MSIE—at least for ACT/DB, where we
have a closed user community—does not impose in-
superable hardships.

Architectural Overview

The WebEAV framework consists of the following
components:

n Server-side and client-side code libraries whose sub-
routines can be used by the developer during run-
time.

n A metadata component that is part of the server da-
tabase. The metadata holds information on the at-
tributes in the system.

n A forms-generation library, which generates the forms
by consulting the server metadata. After testing,
these forms are moved to a production Web server.
This library is hosted in a Microsoft Access ap-
plication.

The developer uses WebEAV to generate forms (which
may be customized after creation) and also uses the
code library routines. WebEAV, however, is transpar-
ent to the end user, who sees only the application that
has been built using WebEAV. We now discuss indi-
vidual features of WebEAV.

Protection Against Unauthorized Access

Databases employing WebEAV use a standard login/
password mechanism to restrict access to authorized
users, as well as encrypted communication through
the standard HTTPS (hypertext transmission protocol,
secure) to minimize the risks of electronic eavesdrop-
ping. Additional security measures employed by
WebEAV are described below.

A common security loophole in many apparently
password-protected Web sites is that only access to
the starting (‘‘Home’’) page is protected. Once a user
has moved past this page, subsequent pages can be
bookmarked in the browser. The user can then go di-
rectly to these pages without a password. This is a
security risk on a shared or unattended machine,
where an unauthorized user may be able to inspect
confidential patient data by using bookmarks or even
the browser’s ‘‘history’’ information on recently vis-
ited Web pages. WebEAV has several defenses against
this problem.

n Individual Web pages are set to ‘‘expire’’ after a
suitable interval (e.g., 1/2 to 1 hour), so that the
browser removes these pages from its cache.

n WebEAV server code uses the HTTPoREFERER
server variable to determine the URL of the page
from which the user navigated to the page about to
be displayed. This variable is blank if a user uses

Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 349

bookmarks or history to jump to this page. Within
the application, the user must navigate pages in a
particular order; therefore, a given page can have
only a limited number of valid ‘‘referring’’ pages.
If the Web server detects that navigation to a par-
ticular page has bypassed the normal route, the
user is redirected to the startup (login) screen.

n A user session receives a properly initialized data-
base ‘‘connection object’’ after successful login. All
subsequent Web pages reuse this object for database
access for efficiency reasons, rather than creating
their own connections. (Connection objects, which
can themselves be set to time out appropriately, are
logical connections—the Web server typically uses
connection pooling, where a few physical database
connections are multiplexed between multiple con-
current users.) If an intruder tries to bypass the
login screen by programming HTTP requests that
set the HTTPoREFERER variable (rather than rely-
ing on a well-behaved browser), an invalid connec-
tion object will be received and database operations
will fail.

Control of Access for Individual
Authorized Users

Individual authorized users have varied access rights
with respect to different parts of the logical schema of
a database. In ACT/DB, for example, a user who has
just logged on should see only the studies to which
he or she has access. For a given study, some users
can only look at data, while others have editing or
administrative privileges.

Since all EAV data are stored in the same set of phys-
ical tables, the standard database mechanisms for con-
trolling individual table access (using SQL’s GRANT
and REVOKE commands) will not work. Therefore,
both of our systems maintain user-privilege metadata,
which also drive the user interface. Immediately after
a user logs on and accesses a study, WebEAV gets the
user’s privileges for that study and stores them as a
bit-string in a hidden field in every Web form. When
the user navigates from form to form, privilege infor-
mation is passed between forms to control the gen-
eration of individual user-interface objects and pre-
vent nonpermissible actions. For example, if the user
does not have editing privileges, the ‘‘Save’’ button is
not generated.

Operation of the Basic Data Collection
Instrument Interface

For every instrument, WebEAV generates two forms
instead of one. These are presented together as part

of a ‘‘frame set.’’ The lower, detail form contains the
attributes whose values will be edited. In the meta-
data, the developer aggregates attributes into groups,
and WebEAV generates an invisible ‘‘anchor’’ against
each group’s caption. The upper, header form contains
fields for constantly viewed information, such as pa-
tient demographics. For each attribute group, a button
is generated with an appropriate caption. Clicking a
particular button automatically scrolls that detail form
to the corresponding anchor. Buttons and anchors fa-
cilitate navigation through a large form.

In ACT/DB, there is also a third form—actually a nar-
row ‘‘toolbar’’ of buttons—that is placed at the bot-
tom of the frame set. This is shared by all data entry
instruments and contains a hidden field that actually
records the list of form-entry fields whose contents
have been changed by the user during editing, along
with their changed values.

A form illustrating header, detail, and toolbar frames,
with navigation buttons in the header, is shown in
Figure 1.

Handling Mapping Metadata for Data Entry and
Database Updates

When changes are made to data presented in a Web
form and the form is submitted to the Web server, the
server issues one or more SQL UPDATE statements to
the database. An individual statement specifies the ta-
ble to be updated, the primary key values correspond-
ing to the row to be altered, the columns to be altered,
and the new value for each column.

Database updating is tedious to implement on a case-
by-case basis for several reasons. The data type of
each field determines the syntax; thus, string values
must be quoted and numeric values unquoted. Fur-
thermore, database vendors generally implement
date/time fields idiosyncratically, and portable ma-
nipulation of date/times requires custom coding us-
ing a standard such as ODBC. It is therefore desirable
to create a generic data-updating framework that can
be used across all forms in the application. Further-
more, since a Web form, unlike a traditional client–
server, environment, does not have the benefit of a
local database engine on the client, we must devise a
means of addressing the mapping-metadata problem
for EAV as well as conventional attributes.

We do this through the technique of self-mapping field
names. Every data-entry field in a Web form should
have a unique name. When WebEAV generates Web
forms automatically, it generates field names such that
each field’s name is its own metadata, and is sufficient,
after parsing, to generate the correct UPDATE state-
ment.

350 NADKARNI ET AL., Web Interface Generation for EAV Data

F i g u r e 1 The basic form
interface generated for
ACT/DB. There are three
frames in a ‘‘frame set.’’ The
top ‘‘leader’’ frame displays
demographics data with,
optionally, a set of buttons
to enable navigation within
the second form. The mid-
dle ‘‘detail’’ frame is where
data browsing and editing
are actually done. The bot-
tom ‘‘toolbar’’ frame is
shared across all data entry
forms: the forms generator
generates only the header
and detail frames. In the fig-
ure, the user has clicked on
the ‘‘Prior Chemotherapy’’
button in the header frame,
causing the detail frame to
scroll to the subform for
Prior Chemotherapy.

For fields corresponding to EAV attributes, we syn-
thesize the name by concatenating the attribute’s ID, a
single letter for its data type (e.g., S=string, D=Date,
etc.), and an instance ID. The last is zero if a given
attribute occurs only once in a form, and not zero if
there are multiple instances, as in a subform. The
parts of the field name are separated by underscores
for easy parsing.

For fields corresponding to conventional attributes,
we concatenate the column name in the table where
this attribute is stored, with the data type and instance
ID. The name of the table, or updatable view, to which
the field belongs, is stored in the form as a hidden
field with the name ‘‘oTABLENAMEo.’’ Another hid-
den field, ‘‘oPRIMARYKEYSo,’’ maintains a comma-
delimited list of the primary key field names for the
table or view in question.

In MSIE (but not in Netscape), every field on the form
—indeed, almost any arbitrary block, or ‘‘division,’’
of HTML—can be assigned a string called the object
ID. The object ID is used to reference the object for
client-side manipulation; it is not sent to the Web
server after form submission. IDs, despite their name,
are not required to be unique; several objects can
share the same ID. WebEAV generates IDs for every
field, using the attribute ID for EAV attributes and the
database column name for conventional attributes.
Thus, in a subform, all instances of the same attribute
(i.e., elements in the same column) share the same ID.
The use of IDs enables computed formulas and skip
logic rules (discussed shortly) to be specified just

once, even though multiple rows in a subform will
each use the same formula or rule.

With self-mapping field names, unlike table-based
mapping, the number of fields per form has no arti-
ficial limits.

Client-side Data Validation: Use of Events

Client-side Web programming relies on the use of
events, which are triggered by actions such as depres-
sion or clicking of one or more mouse buttons, entry
or exit into a field, and change of a field’s contents.
WebEAV form generation uses the metadata for the
attributes in a form (e.g., this description, data type,
maximum and minimum bounds, non-null require-
ments, etc.) to generate standard event handling code
for the corresponding form fields. WebEAV generates
code for several types of events.

n A field’s OnChange event, which fires when the con-
tents of a field change, calls a standard subroutine
that performs type, range, and non-null checking.
If the field passes validation, additional code may
be invoked as described in the ‘‘Advanced features’’
subsection later.

n The OnFocus event, which fires when the cursor en-
ters the field, causes the field’s description to be
placed on the browser’s status line and changes the
field’s background color to a pale blue. This pro-
vides visual feedback for keyboard-oriented users
as to which field the cursor is currently in.

Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 351

F i g u r e 2 Part of the same
data entry form shown in
Figure 1 is highlighted to
show the insertion of a new,
blank row for Chemother-
apy (the user has clicked on
the ‘‘Add Record’’ button.)
Notice how the choices of
the ‘‘Best Response’’ pull-
down list are copied to the
new call.

n Code for the OnBlur event, which fires when the
cursor leaves a field, whether or not its contents
have changed, undoes the effects of OnFocus.

Simulation of Subforms

As stated earlier, subforms are needed when there are
many-to-one relationships among the data, and we
wish to inspect the ‘‘many’’ and ‘‘one’’ records to-
gether. WebEAV simulates subforms through HTML
tables, using MSIE-specific features. In the MSIE ob-
ject model, a table’s rows and cells are individually
accessible programmatically. The number of rows in a
table can be changed dynamically and the contents of
any new cells that have been created can be set by
altering each cell’s innerHTML property. The contents
of the rest of the page are rearranged automatically.

To add a new row to the end of a table, WebEAV
accesses the HTML text for each cell in the table’s last
row. This text is then parsed and appropriately al-
tered, a new row is inserted, and the contents of each
corresponding newly created cell is set to the altered
text. Figure 2 shows a subform (the form is the same
as in Figure 1) with a newly inserted row. Notice that,
while the contents of the row are blank, the pull-down
menu choices are correctly set.

Suppressing Nonrequired Fields

When the same form is used by multiple departments
or for multiple clinical studies, it is desirable to restrict
the visible fields on the screen to only those needed
by the current user or department. When a user re-
quests a particular form, the WebEAV-generated form
template consults the ‘‘required fields’’ metadata on
the Web server, inserting a list of ‘‘required’’ fields
into the page. The client code then suppresses display
of all fields that are not in this list. In MSIE, when one
or more objects on a form are programmatically ren-

dered invisible, the form automatically reformats to
preserve esthetics.

Advanced Client-side Field Control

Sometimes the forms created by WebEAV need to
have computed fields, whose contents are determined
by formulas based on other fields in the form. Also,
particular values (or ranges of values) that are entered
in one field may enable or disable data entry in other
fields or may set the contents of other fields to default
values. We refer to the latter feature as skip logic, be-
cause fields are skipped on the basis of the contents
of other fields. To complicate matters, the fields in-
volved may be part of a subform, where changes must
occur only in the row of data where edits have been
made.

In order to parse and evaluate computed formulas or
relational expressions that control skip logic, WebEAV
relies on a powerful function called EVAL that is built
into both VBScript and JavaScript. EVAL takes as in-
put a string representing a syntactically correct (but
arbitrarily complex) expression in the language, eval-
uates this string as though it were code, and returns
the result as a value. (LISP was the first language to
implement EVAL.)

To tell the browser when to trigger a calculation (or
which fields to enable or disable), WebEAV generates
program data that specifies dependencies between in-
dividual form fields. These data, embedded within
the Web page, are consulted by the client-side script-
ing code. The code is triggered when the user changes
the contents of particular fields.

Changes in computed formulas and skip logic are per-
mitted to cascade; that is, individual fields can have for-
mulas based on the contents of other fields, some of
which are themselves computed. In this way, when the
contents of a particular field change, multiple other

352 NADKARNI ET AL., Web Interface Generation for EAV Data

F i g u r e 3 A hierarchic SE-
LECT list in operation. The
contents of the ‘‘specific
type’’ pull-down box (the
child list) are determined dy-
namically by the contents of
the ‘‘primary disease’’ pull-
down box (the parent list).
Choices specific to chronic
myelogenous leukemia ap-
pear here.

fields can have their contents recomputed in ‘‘chain-re-
action’’ fashion, in the manner of a spread-sheet.

Hierarchic SELECT Lists

Certain paper questionnaires contain two-part ques-
tions, in which responses are specified as lists of
items. The item selected in the first part determines
the list that is appropriate to the second part. For ex-
ample, the ‘‘Bone Marrow Transplant Recipient’’ ques-
tionnaire of the U.S. National Marrow Donor Pro-
gram, which is also a form in ACT/DB, has a question
entitled ‘‘Type of Primary Disease.’’ There are 20 pos-
sible responses, including acute myelogenous leuke-
mia, acute lymphoblastic leukemia, Hodgkin’s dis-
ease, and aplastic anemia. If the user chooses ‘‘aplastic
anemia,’’ he or she must go to another part of the
form where the specific condition is identified—re-
fractory anemia of unknown mechanism, sideroblastic
anemia, polycythemia vera, etc. Similarly, if ‘‘Hodg-
kin’s disease’’ is chosen, an item must be selected
from a list of Hodgkin’s sub-types—lymphocyte de-
pletion, nodular sclerosis, etc.

The paper questionnaire is 15 printed pages long, be-
cause it mostly comprises lists of items that may or
may not be applicable to a given patient. There is no
reason, however, why an electronic form should slav-
ishly follow its paper counterpart. WebEAV imple-
ments a feature, hierarchical SELECT lists, which can
greatly reduce the size of the equivalent electronic
form. Here, there are two pull-down boxes, or list
boxes, in the form (‘‘SELECT’’ elements, in Web par-
lance). The choices offered in the second box change
dynamically depending on the choice made in the
first. Figure 3 illustrates this feature.

WebEAV implements hierarchic choice sets in a man-
ner similar to that described for computed formulas,

by tracking the dependency between ‘‘parent’’ and
‘‘child’’ choice-set boxes on a form. The full list of all
child choices for every parent choice is also stored
statically in the form’s programming data during au-
tomatic form generation. The code that changes the
contents of the child box is simpler than for computed
fields or skip logic, because EVAL does not need to
be used.

While the equivalent of hierarchic SELECT lists could
be implemented by using skip logic, the former so-
lution is more elegant when applicable, because the
resulting form is much smaller.

Status Report

As stated earlier, WebEAV is currently being em-
ployed in two production databases: ACT/DB and
SENSELAB. ACT/DB currently holds data on 35 stud-
ies, spanning the domains of oncology, psychiatry,
and cardiology, and has around 3700 attributes
grouped into 201 forms. It has 69 users at Yale and
collaborating institutions; public access is, under-
standably, not provided. SENSELAB, whose contents
are publicly accessible via http://ycmi.med.yale.edu/
senselab/, holds data on around 2,100 objects of var-
ious types (olfactory receptors, neurotransmitters,
neurons, models, etc.).

The best way to show the status of WebEAV is to pro-
vide an example that shows what it takes to use it.
We illustrate the user interface of WebEAV for a real
study stored in ACT/DB. This study, whose principal
investigator is Douglas Bremner of the Yale Depart-
ment of Psychiatry, concerns post-traumatic stress dis-
order. The user of this interface is a study designer
who does not necessarily know HTML or program-

Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 353

F i g u r e 4 The study de-
signer’s interface to
WebEAV as implemented in
ACT/DB. The screen snap-
shot shows some of the
metadata in a post-traumatic
stress disorder study. Data
are presented in a hierarchic
‘‘outline’’ view. Double-
clicking on any item in the
list displays the details of
items below it in the hier-
archy. The upper third of the
figure shows different types
of metadata. In order of in-
creasing indenting level, we
have a form (‘‘Hamilton
Anxiety Scale’’), groups of
attributes (‘‘HamAnx’’), an
attribute (‘‘Fears’’), and the
contents of a choice set for
that attribute (Not Present,
Mild, Moderate, etc.). The
designer can edit the details
of a selected item with
the ‘‘View/Edit’’ button. A
‘‘Generate All Forms’’ but-
ton generates all Web forms
for the study from the meta-
data. An individual form can
also be generated, or regen-
erated, by viewing or edit-
ing its details and clicking a
‘‘Generate Web form’’ but-
ton.

ming. In WebEAV, generation of forms is metadata-
driven. It is therefore critical that the metadata be cor-
rect in terms of the designer’s intentions and that the
designer have a robust and friendly interface for in-
specting and editing the metadata to ensure that this
is so.

The interface, implemented within the Microsoft Ac-
cess-based ACT/DB client by the second author, uses
the ‘‘outlining’’ metaphor that is well known to users
of word-processing and presentation software. That is,
the user can get a global perspective of the work at
hand or drill down to inspect the details at any level.
In this case, the designer can look at all the forms in
the study or drill down to details of an individual
form, groups of attributes within the form, individual

attributes, or (where applicable) the choice set for an
attribute. Computational formulas are stored against
individual attributes; ACT/DB includes a visual ‘‘for-
mula builder’’ to assist in the creation of formulas.
Skip logic information, which applies to the entire
form, is accessed from the form level.

Figure 4 shows the interface in operation. When the
metadata are edited to the designer’s satisfaction, the
designer clicks a button (not shown) that generates all
Web forms for the study. Alternatively, the designer
can generate selected Web forms one at a time; this is
typically done when a single form needs regeneration.
The generated Web forms are written to a directory
on the test Web server. Using the Web browser, the
designer then tests a particular form by entering

354 NADKARNI ET AL., Web Interface Generation for EAV Data

‘‘dummy’’ data. If the form’s behavior is not what was
expected or desired, the designer goes back to the
form’s metadata, inspects them for logical errors,
makes corrections, regenerates the forms, and so forth
iteratively. If the designer cannot determine the cause
of the error, he or she has been instructed to contact
one of the authors, who will determine whether the
problem is due to an error in the designer’s logic or
to a bug in the code library. In our experience, the
frequency of logic errors tends to drop gradually as
designers get more conversant with the system. Fi-
nally, forms that have been fully tested are moved to
the production Web server.

In the case of ACT/DB, the form-generation compo-
nent of WebEAV lies in certain code modules in the
ACT/DB Microsoft Access client; that is, we use a tra-
ditional client–server application to generate parts of
the Web application. The runtime code libraries,
whose routines are invoked by code in the generated
forms, reside on the Web server. Some of the routines
in the latter—e.g., those that perform client-side val-
idation or computed field/skip logic handling—are
downloaded to client machines on demand, by being
‘‘included’’ in the Web forms. As stated earlier, the
designer is not required to be aware of these compo-
nents. Developers are at liberty, however, to use some
of the runtime routines in their own applications in-
dependent of the metadata framework.

Discussion

The WebEAV framework grew out of our earlier
work on ACT/DB, partly as a response to frustration
with the form-maintenance problems posed by tradi-
tional client–server systems. With the traditional so-
lution (Microsoft Access-based data entry) the time of
our (few) developers and support personnel was
taken up by client-machine support rather than de-
velopment. Because of this we chose to explore the
Web as a delivery medium. The amount of code that
needed to be written to perform the most basic tasks
(such as validation of dates) caused us to step back
and devise a generic approach, which WebEAV em-
bodies. Subsequently, we extended WebEAV for con-
ventional data, by porting SQLGEN,18 a code library
originally intended for traditional client–server de-
velopment. Although some features of WebEAV are
related to biomedical databases (which use the EAV
data model to a greater extent than any other do-
main), much of WebEAV is generalizable.

Several powerful development environments are
commercially available for Web programming, such as
Microsoft Visual Studio and Apple WebObjects. For

access to conventional (non-EAV) data, their use
would probably be preferable to that of WebEAV.
However, these tools do not attempt to generate in-
terfaces to EAV data, which seem to appear almost
exclusively in the biomedical domain and are hardly
ever seen in ‘‘business’’ applications. Use of WebEAV,
which we intend to distribute as open source, is not
necessarily incompatible with such environments: Vi-
sual Studio was used to facilitate development and
debugging of WebEAV. Developers are free to choose
the WebEAV components that they find to be the most
valuable.

A question facing the developer is whether a frame-
work similar to WebEAV can be built with alternative
software tools. We discuss two alternatives, both of
which we briefly considered during WebEAV’s con-
ceptual phase, and then abandoned.

Alternative 1: Using Java Applets Within a Page

An advantage of applets for developers is that, be-
cause they are downloaded as byte code rather than
as source (which is the case with client-side script),
intellectual property is protected. However, this is not
a concern for us; we are more concerned with per-
mitting customization of machine-generated forms by
lead users. A drawback of Java is that while Java’s
AWT (Abstract Window Toolkit) library has a basic
set of objects for user-interface management, it takes
more programming effort to use than dynamic
HTML, especially when the latter is coupled with cas-
cading style sheets. In particular, enabling client-side
validation of data in a generic fashion and permitting
dynamic changes in form behavior take considerably
more code with Java than with dynamic HTML.
While Java applets currently provide a means of
richer and more complex user interaction, we did not
need such sophisticated interaction for the simple
forms-based interfaces that WebEAV generates.

In any case, Java’s primacy for use in constructing
complex interfaces may soon change. Vector modeling
language (VML), whose specifications are described at
http://www.w3.org/TR/NOTE-VML, is an applica-
tion of extended markup language (XML)21 that is in-
tended to allow the display and editing of vector
graphics data over the Web. Vector modeling lan-
guage, which is currently supported by Microsoft In-
ternet Explorer but not Netscape Navigator, is signif-
icantly more powerful than Java for the construction
of complex interfaces. Recently available commercial
tools such as Visio 2000 let developers work with
VML visually. We are currently exploring VML’s use
in Web display and editing of pedigree data, in the
context of another project.

Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 355

Alternative 2: Using ActiveX Controls on
the Client

The latest version of Microsoft Office allows the de-
velopment of ‘‘data access pages,’’ where Web forms
can be composed visually from the definitions of ta-
bles and columns in the database, and deployed eas-
ily. However, these forms support conventional, not
EAV, data. Furthermore, their present implementation
has a few limitations. Subforms, for example, are
read-only and do not allow editing.

More important, the form-generation process inserts
ActiveX controls within a page. ActiveX controls are like
applets, except that they are compiled binary code. The
generated pages are about five times as large as the cor-
responding page created with straight ASP and embed-
ded script. ActiveX controls, being binary code, will run
only on Wintel platforms. (MSIE itself runs on the Mac-
intosh and certain UNIX machines.)

Most users (including the authors) are distrustful of
client-side ActiveX controls, with good reason. Unlike
Java applets, where the browser runs the the applet’s
byte code in a ‘‘sandbox’’ 19 to prevent it from per-
forming dangerous operations such as writing to the
local disk, the ActiveX model of security is essentially
nonexistent, being based on trust in the party that cre-
ated the control. The ‘‘trust’’ mechanism is based on
digital signatures, which, while they are very hard to
forge, don’t mean much if the party is unknown to
the user. An ActiveX control, once accepted by a user,
can do anything it chooses, including erasing the hard
drive. A more insidious scenario has been con-
structed,20 in which one ActiveX control, while not do-
ing any damage itself, disables the local machine’s se-
curity measures and opens the back door to other,
possibly malicious controls.

Future Directions

WebEAV is constantly evolving to meet user needs.
The advanced features described earlier, for example,
were created in direct response to needs articulated
by our collaborators. As Web technology itself
evolves, WebEAV will change to take advantage of
new features. The HTML standard itself is unlikely to
change after the present version (4.0), and new tags
that could define the behavior of objects in a page will
be added through implementations of XML. Although
we have created pilot applications that use XML for
the basis of data interchange, at this moment we are
unclear how WebEAV, which deals primarily with
user interface construction, would benefit from XML.

Individually, each of the features in WebEAV is not
exceptionally complex. Put together, however, they

benefit the developer significantly. As stated earlier,
Web programming is still an arcane art with numer-
ous pitfalls for the unwary developer, and therefore
we have described the WebEAV framework in enough
detail to permit the reader to understand the algorith-
mic principles behind our approach.

Availability of Software

The WebEAV framework consists of source code in
ASP VBScript and client-side JavaScript or VBScript,
plus a Microsoft Access application that accesses
metadata schemas to drive the code-generation pro-
cess. We also include documentation on the routines
in the code libraries. We will provide WebEAV at no
cost to anyone who makes a written request to us.

Daniel Masys, MD, of the University of California, San Diego,
identified the distinction between the global and logical sche-
mas for EAV data. The authors thank Pasquale Cusano of the
Connecticut Mental Health Center (CMHC), New Haven, for
extensive beta testing and Roy Money of CMHC and David
Schoenfeld, of the Department of Biostatistics, Harvard Medical
School, for providing valuable suggestions for enhancement.
They also thank Douglas Bremner, MD, of the Yale Department
of Psychiatry, for permitting the use of the PTSD study forms
to illustrate the use of WebEAV.

References n

1. Huff SM, Berthelsen CL, Pryor TA, Dudley AS. Evaluation
of a SQL model of the HELP patient database. Proc 15th
Symp Comput Appl Med Care. 1991:386–90.

2. Huff SM, Haug DJ, Stevens LE, Dupont CC, Pryor TA.
HELP the next generation: a new client–server architecture.
Proc 18th Symp Comput Appl Med Care. 1994:271–5.

3. 3M Health Information Systems. 3M Clinical Data Reposi-
tory. Murray, Utah: 3M Corporation, 1998.

4. Friedman C, Hripcsak G, Johnson S, Cimino J, Clayton P. A
generalized relational schema for an integrated clinical pa-
tient database. Proc 14th Symp Comput Appl Med Care.
1990:335–9.

5. Johnson S, Cimino J, Friedman C, Hripcsak G, Clayton P.
Using metadata to integrate medical knowledge in a clinical
information system. Proc 14th Symp Comput Appl Med
Care. 1990:340–4.

6. Nadkarni P, Brandt C. Data extraction and ad floc query of
an entity-attribute-value database. J Am Med Inform Assoc.
1998;5:511–27.

7. Nadkarni PM, Brandt C, Frawley S, et al. Managing attrib-
ute-value clinical trials data using the ACT/DB client–
server database system. J Am Med Inform Assoc. 1998;5:
139–51.

8. National Cancer Institute. The Cancer Genetics Network.
Details available at: http://www-dccps.ims.nci.nih.gov/
CGN/. Accessed May 17, 2000.

9. Shepherd GM, Healy MD, Singer MS, et al. SenseLab: a
project in multidisciplinary, multilevel sensory integration.

356 NADKARNI ET AL., Web Interface Generation for EAV Data

In: Koslow SH, Huerta MF (eds). Neuroinformatics: An
Overview of the Human Brain Project. Mahwah, NJ: Law-
rence Erlbaum, 1997:21–56.

10. Shepherd G, Mirsky JS, Healy MD, et al. The Human Brain
Project: Neuroinformatics tools for integrating, searching
and modeling multidisciplinary neuroscience data. Trends
Neurosci. 1998;21(11):460–8.

11. Nadkarni PM, Marenco L, Chen R, Skoufos E, Shepherd G,
Miller P. Organization of heterogeneous scientific data using
the EAV/CR representation. J Am Med Inform Assoc. 1999;
6:478–93.

12. World Wide Web Consortium. Cascading Style Sheets.
Available at: http://www.w3.org/style/css. Accessed May
17, 2000.

13. Dwight J, Erwin M (eds). Special Edition: Using CGI. Indi-
anapolis, Ind: Que Corporation, 1996.

14. Darwin IF. Checking C Programs with Lint. Sebastopol,

Calif: O’Reilly Associates, 1988.
15. Sun Microsystems. Information about and technical over-

view of Java server pages is available at: http://java.
sun.com/products/jsp. Accessed May 17, 2000.

16. Goodman D. Dynamic HTML: The Definitive Reference.
Sebastopol, Calif: O’Reilly Associates, 1998.

17. Graham IS. HTML 4.0 Sourcebook. New York: Wiley Com-
puter Publishing, 1997.

18. Nadkarni PM, Cheung KH. SQLGEN: an environment for
rapid client–server database application development.
Comput Biomed Res. 1995;28(12):479–99.

19. Oaks S. Java Security. Sebastopol, Calif: O’Reilly Associates,
1998.

20. Goncalves M. Firewalls Complete. New York: McGraw-Hill,
1998.

21. Boumphrey F, Di Renzo O, Duckett J, et al. XML Applica-
tions. London, UK: WROX Press, 1998.

