
378 LOVIS, BAUD, Exact String Pattern-matching Algorithms

Research Paper n

Fast Exact String
Pattern-matching Algorithms
Adapted to the
Characteristics of the
Medical Language

CHRISTIAN LOVIS, MD, ROBERT H. BAUD, PHD

A b s t r a c t Objective: The authors consider the problem of exact string pattern matching
using algorithms that do not require any preprocessing. To choose the most appropriate
algorithm, distinctive features of the medical language must be taken into account. The
characteristics of medical language are emphasized in this regard, the best algorithm of those
reviewed is proposed, and detailed evaluations of time complexity for processing medical texts
are provided.

Design: The authors first illustrate and discuss the techniques of various string pattern-matching
algorithms. Next, the source code and the behavior of representative exact string pattern-
matching algorithms are presented in a comprehensive manner to promote their implementation.
Detailed explanations of the use of various techniques to improve performance are given.

Measurements: Real-time measures of time complexity with English medical texts are presented.
They lead to results distinct from those found in the computer science literature, which are
typically computed with normally distributed texts.

Results: The Boyer-Moore-Horspool algorithm achieves the best overall results when used with
medical texts. This algorithm usually performs at least twice as fast as the other algorithms
tested.

Conclusion: The time performance of exact string pattern matching can be greatly improved if
an efficient algorithm is used. Considering the growing amount of text handled in the electronic
patient record, it is worth implementing this efficient algorithm.

n J Am Med Inform Assoc. 2000;7:378–391.

Many, if not most, sources of medical texts are pre-
processed and allow fast queries. However, health
care providers and scientists are doing more and more
literature research and text queries using the Internet.
Information that comes through this way is not pre-

Affiliations of the authors: Puget Sound Health Care System,
Seattle, Washington (CL); University Hospital of Geneva, Ge-
neva, Switzerland (RHB).

This work was supported by a grant from the University Hos-
pital of Geneva, Switzerland.

Correspondence and reprints: Christian Lovis, MD, Univer-
sity Hospital of Geneva, Division of Medical Informatics, Rue
Micheli-du-Crest, CH-1211 Geneva 4, Switzerland;
e-mail: ^christian.lovis@dim.hcuge.ch&.

Received for publication: 10/26/99; accepted for publication:
2/16/00.

processed and usually arrives as full-streamed text, in
real time, in the user’s computer. Clinicians need help
filtering the information they receive from Internet
sources like MEDLINE. On the one hand, too-specific
queries will induce silence that is difficult to detect.
On the other hand, too-sensitive queries provide huge
numbers of data that cannot be reviewed in clinical
settings in a reasonable time. A local filter providing
specificity to a sensitive query in real time can answer
this problem.

The same needs of filtering streamed data occur when
information about patients is received from several
electronic patient records (EPRs) and has to be orga-
nized in real time. Natural language processing (NLP)
technologies are in focus in the literature, especially
because of the growing importance of textual medical
information.1–3 The shift in the trend from numeric

Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 379

data to textual data is one of the paradigms of the
modern EPR. Command-line order-entry systems are
gaining popularity, and ‘‘just-in-time’’ literature re-
trieval in the EPR is becoming an essential tool.4

The amount of available textual data tends to double
at an increasing rate. Powerful commercial document
management systems that will enhance this trend are
now available. With the expanding computational
power at the workplace, the use of free-text data entry
systems allows more freedom for physicians while
maintaining the capability of further processing. In
addition, the EPR extends increasingly to other
sources of information, such as online medical text-
books and Internet-based references.5

Recent developments made in the EPR at the Univer-
sity Hospital of Geneva have shown the necessity of
parsing, analyzing, and organizing medical text of
various sources in real time during the clinician’s
work. A review of the medical informatics literature
on that subject shows that little attention has been
given to string pattern matching, especially because
research in NLP has been highly focused on semantic
representation, which is considered the most impor-
tant and difficult step. Hume and Sunday6 state that,
‘‘partially because the best algorithms presented in the
literature are difficult to understand and to imple-
ment, knowledge of fast and practical algorithms is
not commonplace.’’ Other authors report similar ob-
servations.7,24

Two very different groups of techniques are known in
the domain of string pattern matching. One deals with
exact string pattern matching, while the other deals
with partial or incomplete string pattern matching.
The latter group addresses automatic word correction
and the identification of typographic errors. Assum-
ing that the pattern length is no longer than the unit
memory size of the machine, the shift-or algorithm is
an efficient algorithm that adapts easily to a wide
range of approximate string matching problems. This
algorithm is based on finite automata theory, such as
the Knuth-Morris-Pratt algorithm, and exploits the fi-
niteness of the alphabet, as in the Boyer-Moore algo-
rithm.

In pattern recognition works, genetic algorithms are
widely used to identify occurrences of complex pat-
terns, although they are regarded primarily as a prob-
lem-solving method. Genetic algorithms are based on
ideas from population genetics; they feature popula-
tions of genotypes (characteristics of an individual)
stored in memory, differential reproduction of these
genotypes, and variations that are created in a manner
analogous to the biological processes of mutation and
crossover. Genetic algorithms are powerful tools for

solving complex pattern-matching problems, espe-
cially when the matching is incomplete or inexact or
when it occurs on repetitive patterns separated by un-
matched patterns, as it can be in searches for long
DNA sequences that take into account possible alter-
ations, from single deletions or insertions to cross-
overs.8,9 However, these issues will not be discussed
here.

Most exact string pattern-matching algorithms are
easily adapted to deal with multiple string pattern
searches or with wildcards. We present the full code
and concepts underlying two major different classes
of exact string search pattern algorithms, those work-
ing with hash tables and those based on heuristic skip
tables. Exact string matching consists of finding one
or, more generally, all of the occurrences of a pattern
in a target. The algorithmic complexity of the problem
is analyzed by means of standard measures of the
running time and amount of memory space required
by the computations.

Text-based applications must solve two kinds of prob-
lems, depending on which string, the pattern or the
target, is given first. Algorithms based on the use of
automata or combinatorial properties of strings are
usually implemented to preprocess the pattern and
solve the first kind of problem. However, difficulties
arise when one tries to recognize a specific pattern in
various targets or streams of symbols arriving
through a communication channel. In this case, no
preprocessing of the target is possible. This contrasts
with locating words in a dictionary or an entire cor-
pus of texts that are known in advance and can be
preprocessed or indexed. Among all exact text pat-
tern-matching algorithms, those that can be used in
real time on continuous streams of data are the focus
of this paper. This means that neither the target nor
the patterns are known in advance. Therefore, neither
preprocessing nor indexing is feasible.

Notation

The term target is used to specify the corpus of text
to search in, and the term pattern to identify the sub-
string of text to search for. The pattern is denoted by
x = characters and the target by y = char-x y0..m21 0..n–1

acters. The first character in a target is therefore y0, and
the last one is , where n and m are, respectively, theyn21

length of the target and the pattern. The notation xi or
yj refers to the characters currently analyzed in both
the pattern and the target. By definition, the alphabet is
the set of all possible symbols that can be used to rep-
resent a target or a pattern. The representation O(mn)
is used to express the time complexity of the algorithm

380 LOVIS, BAUD, Exact String Pattern-matching Algorithms

Table 1 n

Effect of Multiple Occurrences on the Number of
Iterations before a Correct Fail Occurs

ICD Expression Segments
Occurrences

in ICD-10
Minimum
Iterations

dilated cardio-
myopathy

1

dilated 1 7
cardiomyopathy 27 378
cardio 106 636
myopathy 51 408
myo 297 891
pathy 354 1,770

F i g u r e 1 Example of exact pattern matching in case of common roots.

as a function of the sizes of the pattern and the target.
Typically, the pattern is small and the target is large, m
being much smaller than n.

Morphologic Characteristics of Medical
Language

Medical language is characteristic in its wide and fre-
quent use of Latin and Greek roots. This results in
many words that have similar suffixes or prefixes. The
consequence of frequent use of common roots is that
trivial string pattern-matching algorithms, which usu-
ally perform their character matching sequentially,
have a high rate of unnecessary fail iterations.

Our previous work in morphosemantic analysis and
representation of medical text demonstrates the high
use rate of compound words in medical texts.10,11 The
frequent utilization of common roots implies that, in
theory, purely left-to-right or right-to-left algorithms
are generally less efficient than algorithms that pro-
ceed randomly. Although these roots have a typical
length of five to seven characters, their aggregation
can lead to much longer repetitive patterns. Table 1

shows an example of a diagnosis found in ICD-10
with the number of occurrences of its different roots.
So, for example, an algorithm analyzing strictly from
right to left will have to compare the word cardiomy-
opathy 27 times before it will find the first association
with dilated.

Some frequent patterns can be found within words
that are an aggregation of typical common roots, such
as gastroentero or colorecto, and suffixes, such as ectomy
and stomy. The behavior of that kind of typical pattern
in medical language is recognized and has been
widely studied.12–15 The overall result is a non-normal
distribution of morphologic patterns in texts, which
emphasizes the problem of exact string pattern-
matching by increasing significantly the number of at-
tempts needed to uniquely identify words when com-
mon algorithms are used. An example is shown in
Figure 1.

Increasing the performance of exact pattern matching
is a complex task. Theoretic good solutions can have
high computational costs. For example, because of
common prefixes and suffixes, it is interesting, in the-
ory, to perform a pattern comparison in the middle of
a potential match to improve the chance of failure in
case of mismatch. However, the cost of searching the
middle of a word (performing a div 2, for example)
appears to be more expensive in time than performing
a few additional comparisons, except in the case of
long patterns.

Search Algorithms

Major categories and characteristics of exact string
pattern matching algorithms have been reviewed by
Hume and Sunday16 and Pirklbauer,17 among others.
Deep and comprehensive understanding of concep-
tual frameworks and theoretic estimates of time and

Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 381

space complexity is provided,18 especially in analyz-
ing the behavior of these algorithms in the worst cases
or using randomly generated string targets and pat-
terns. However, there is a lack of data about the av-
erage behavior of these algorithms when used with
real text corpora that have highly non-normal distrib-
uted symbols, such as the medical sublanguage.
When neither preprocessing nor indexing is feasible
for the target, and only limited preprocessing in space
and time is affordable for the pattern, the problem of
pattern matching analysis can be roughly divided into
two sequences—comparison and slide to next compari-
son. Both steps can be optimized.

The comparison step often can be spared by the use
of a hashing table.21 Hashing functions provide an al-
ternative way to compare strings. Essentially, this
technique is based on the comparison of string hash
values instead of direct character comparison and
usually requires the text to be preprocessed. Hashing
is a powerful and simple technique for accessing in-
formation: Each key is mathematically converted into
a number, which is then used as an index into a table.
In typical applications, it is common for two different
strings to map to the same index, requiring some
strategy for collision resolution. With a perfect func-
tion, a string could be identified in exactly one probe,
without worrying about collisions.

A simple hash function performs calculations using
the binary codes of the characters in a key. The rec-
ord’s position in the table is calculated based only on
the key value itself, not how many elements are in the
table. This is why hash-table inserts, deletes, and
searches are rated constant time. However, finding
perfect hashing functions is possible only when the
set of possibilities is completely known in advance, so
that each unique entry in the text has one entry in the
hash table. In case of collision, that is, when the hash-
ing value is the same for two different substrings, a
formal, character-by-character comparison is per-
formed. If the comparison is a success, a match is
found. In our measures, such algorithms behave
poorly for medical text, with high costs due to the
time spent in the hashing function. It must be empha-
sized, however, that algorithms using hashing tables
perform spectacularly when the target can be pre-
processed and can be easily extended to multidimen-
sional pattern matching problems. These problems are
common in bioinformatics and imaging.

Use of a skip table that allows a jump of more than
one character in the case of failure20 can optimize the
slide step. To understand the use of heuristic skip ta-
bles, consider that the target is examined through a
window. This window delimits a region of the target
and usually has the length of the pattern. Such a win-

dow slides along the target from one side to the other
and is periodically shifted according to rules specific
for each algorithm. When the window is at a certain
position on the target, the algorithm checks whether
the pattern occurs there or not by comparing symbols
in the window with the corresponding aligned sym-
bols of the pattern. If a whole match occurs, the po-
sition is reported. During this scan operation, the al-
gorithm acquires information from the target that is
used to determine the length of the next shift of the
window. This operation is repeated until the end of
the pattern goes beyond or reaches the end of the tar-
get. It is an effective procedure to optimize time cost
during a scan operation that can be used in right-to-
left or left-to-right search engines.

The so-called naive or brute force algorithm is the most
intuitive approach to the string pattern-matching
problem. This algorithm attempts simply to match the
pattern in the target at successive positions from left
to right. If failure occurs, it shifts the comparison win-
dow one character to the right until the end of the
target is reached. In the worst case, this method runs
in O(mn) time, but in a practical approach, the ex-
pected overall performance is near O(n 1 m). Despite
the theoretic bad performance of this algorithm, our
measures show that the naive algorithm is one of the
fastest methods when the pattern is a short sequence
of characters.

The Knuth-Morris-Pratt method19 derives an algo-
rithm from the two-way deterministic automata that
runs, in the worst case, in O(m 1 n) time for random
sequences. The basic idea behind this algorithm is to
avoid backtracking in the target string in the event of
a mismatch, by taking advantage of information given
by the type of mismatch. The target is processed se-
quentially from left to right. When a substring match-
attempt fails, the previous symbols, which are known,
are used to determine how far the pattern can be
shifted to the right for the next match attempt.

Boyer and Moore20 published a much faster algorithm
in 1974. The speed of this algorithm is achieved by
disregarding portions of the target that cannot, in any
case, participate in a successful match.

The Naive Algorithm

The naive algorithm (Figure 2) is the simplest and
most often used algorithm. It uses a linear and se-
quential character-based comparison at all positions
in the text between y0 and , whether or not anyn2m21

occurrence of the pattern x starts at the current posi-
tion. In case of success in matching the first element
of the pattern x0, each element of the pattern is suc-
cessively tested against the text until failure or success

382 LOVIS, BAUD, Exact String Pattern-matching Algorithms

F i g u r e 2 The Naive algorithm.

F i g u r e 3 The Karp-Rabin algorithm.

Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 383

occurs at the last position. After each unsuccessful at-
tempt, the pattern is shifted exactly one position to
the right, and this procedure is repeated until the end
of the target is reached.

The naive search algorithm has several advantages. It
needs no preprocessing of any kind on the pattern
and requires only a fixed amount of extra memory
space.

The Karp-Rabin Algorithm

In theory, hashing functions provide a simple way to
avoid the quadratic number of symbol comparisons
in most practical situations. These functions run in
constant time under reasonable probabilistic assump-
tions. Hashing technique was introduced by Harrison
and later fully analyzed by Karp and Rabin. The
Karp-Rabin algorithm (Figure 3) is a typical string-
pattern-matching algorithm that uses the hashing
technique.21 Instead of checking at each position of the
target to see whether the pattern occurs, it checks only
whether the portion of the target aligned with the pat-
tern has a hashing value similar to the pattern. To be
helpful for the string-matching problem, great atten-
tion must be given to the hashing function. It must be
efficiently computable, highly discriminating for
strings, and computable in an incremental manner in
order to decrease the cost of processing. Incremental
hashing functions allow new hashing values for a
window of the target to be computed step by step
without the whole window having to be recomputed.
The time performance of this algorithm is, in the un-
likely worst case, O(mn) with an expected time per-
formance of O(m 1 n).

Several different ways to perform the hashing func-
tion have been published. The original Karp-Rabin al-
gorithm has been implemented in our system because
it is easily adaptable to different alphabet sizes. The
comparative measures we performed showed that
most of the time is spent during the incremental hash-
ing phase. Therefore, even though the Karp-Rabin al-
gorithm needs fewer symbol comparisons than other
algorithms to locate a pattern in a large target text,
the cost of computing the hashing function outweighs
the advantage of performing fewer symbol compari-
sons, at least for common medical language.

The Knuth-Morris-Pratt Algorithm

The first published linear-time string-matching algo-
rithm was from Morris and Pratt and was improved
by Knuth et al.22 and others.23 The Knuth-Morris-Pratt
algorithm (Figure 4) is the classical algorithm that im-
plements efficiently the left-to-right scan strategy. The

search behaves like a recognition process by automa-
ton, and a character of the target is compared to a
character of the pattern. The basic idea behind the al-
gorithm is to avoid backtracking in the target string
in the event of a mismatch. This is achieved by the
use of a failure function. When a substring match at-
tempt fails, the previous character sequence is known
(the suffix), and this fact can be exploited to determine
how far to shift the pattern to the right for the next
match attempt. Basically, if a partial match is found
such that target[i 2 j 1 1..i 2 1] = pattern[1..j 2 1] and
target[i] ≠ pattern[j], then matching is resumed by
comparing target[i] and pattern[f(j 2 1) 1 1] if j > 1,
where f is the failure function. If j = 1, then the com-
parison continues with target[i 1 1] and pattern[1]. An
auxiliary step table (heuristic skip table) containing
this optimal shift information (failure function) is
computed from the pattern before the string is
searched.

Two examples of failure function follow:

n Pattern ‘‘abcabcacab’’: If we are currently determin-
ing whether there is a match beginning at target[i],
then if target[i] is not the character ‘‘a,’’ we can pro-
ceed by comparing target[i 1 1] and ‘‘a.’’ Similarly,
if target[i] = ‘‘a’’ and target[i 1 1] < > ‘‘b,’’ then we
may continue by comparing target[i 1 1] and ‘‘a.’’
If target[i] = ‘‘a’’ and target[i 1 1] = ‘‘b’’ = ab and
target[i 1 2] < > ‘‘c,’’ then we have the situation:

target: ‘‘ab?..’’

where ? means that the character is not yet known.

n Pattern: ‘‘abcabcacab’’: The first ? in the target rep-
resents target[i 1 2] and it is different from the char-
acter ‘‘c.’’ At this point, it is known that the search
might be continued for a match by comparing the
first character in the pattern with target[i 1 2]. How-
ever, there is no need to compare this character of
the pattern with target[i 1 1], since we already
know that target[i 1 1] is the same as the second
character of the pattern, ‘‘b,’’ and that it is not
matched with the first character of the pattern, ‘‘a.’’
Thus, by knowing the characters in the pattern and
the position in the pattern where a mismatch occurs
with a character in the target we can determine
where in the pattern to continue the search for a
match without moving backwards in the target.

The worst case performance occurs for normally dis-
tributed string patterns. In this case, the algorithm
usually runs near O(mn) in time complexity, but it
may run in O(m 1 n). This method performs well for
large patterns made of repetitive short substrings.

384 LOVIS, BAUD, Exact String Pattern-matching Algorithms

F i g u r e 4 The Knuth-Morris-Pratt algorithm.

This situation is rarely met in medical texts. Thus, in
practice, the KMP algorithm is not likely to be signif-
icantly faster than the other approaches.

The Boyer-Moore-Horspool Algorithm

The Boyer-Moore algorithm (Figure 5) is considered
the most efficient string-matching algorithm for nat-
ural language. In this method, the pattern is searched
in the target from left to right. At each trial position,
the symbol comparisons are performed to minimize
the number of trials in case of unsuccessful matches
while maximizing the pattern shift for the next trial.
In a case of mismatch, the BM algorithm combines
two different shift functions to optimize the number
of characters that can be skipped during the skip pro-
cess. These two shift functions are called the bad-char-
acter shift (or occurrence heuristic) and the good-suffix
shift (or match heuristic). The latter method is similar
to the one used in the KMP algorithm and is based
on the pending symbol causing the mismatch. For
every symbol of the pattern the length of a safe shift

is stored. This shift corresponds to the distance be-
tween the last occurrence of that symbol in the pattern
and the length of the pattern. The most interesting
property of that technique is that the longer the length
of the pattern, the longer the potential shifts. The final
pattern shift is determined by taking the larger of the
values from the two precomputed auxiliary tables. It
is important to note that both methods can be pre-
processed and kept in tables. Their time and space
complexities depend only on the pattern. However,
although there is a theoretic advantage in using the
BM algorithm, many computational steps in this al-
gorithm are costly in terms of processor instructions.
The cost in time of the computational step was not
shown to be amortized by the economy of character
comparisons. This is particularly true of the function
that computes the size comparisons in the skip tables.
Horspool proposed a simplified form of the BM al-
gorithm that use only a single auxiliary skip table in-
dexed by the mismatching text symbols.24 Baeza-Yates
showed that the Boyer-Moore-Horspool algorithm
(BMH) is the best in terms of average case perfor-

Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 385

F i g u r e 5 The Boyer-Moore-Horspool algorithm.

mance for nearly all pattern lengths and alphabet sizes
(remember that the French alphabet is somewhat larger
than the English alphabe).25 Yet, among all published
algorithms we tested, the BMH algorithm showed the
best performance in time, by far. The BMH algorithm
will be studied more deeply, as it appears to be the
best-choice algorithm in most cases. Because of its low
space complexity, we recommend the use of the BMH
algorithm in any case of exact string pattern matching,
whatever the size of the target. Despite its apparent
conceptual complexity, the BMH algorithm is relatively
simple to implement. Moreover, it can easily be ex-
tended to handle multiple matches by generating
events when a match occurs instead of leaving the al-
gorithm as in the following example:

a b c d

Example of pattern:

a b d e b c a b d d e a b c d

a b c d e f . . . y z

3 2 1 4 4 4 4 4 4

Example of text:

Construction of the skip table for the pattern:

a b c d
≠

a b d e b c a b d d e a b c d target[j]

pattern[i]

right-to-left

Search process

Loop 1:

pattern[i] = d is different than target[j] = e.
Lookup in skip table for symbol e gives value 4; therefore,
shift right four characters.

This means that the distance from any character in the pat-
tern to the last position in the pattern is known and that any
character not in the pattern will produce a shift that is the
length of the pattern. This table contains an entry for every
single symbol present in the alphabet. For usual hardware
platforms, it consists of the 256 entries found in an 8-bit
ASCII table.

a b c d
≠

a b d e b c a b d d e a b c d

left-to-right shiftLoop 2:

pattern[i] = d is different than target[j] = b.
Lookup in skip table for symbol b gives value 2; therefore,
shift right two characters.

386 LOVIS, BAUD, Exact String Pattern-matching Algorithms

a b c d
=

a b d e b c a b d d e a b c d

Loop 3:

pattern[i] = d is equivalent to target[j] = d.
pattern[i – 1] = c is different than target[j – 1] = d.
Lookup in skip table for symbol d gives value 4; therefore,
shift right four characters.

a b c d
≠

a b d e b c a b d d e a b c d

Loop 4:

pattern[i – 1] = d is different than target[j – 1] = c.
Lookup in skip table for symbol c gives value 1; therefore,
shift right one character.

a b c d
=

a b d e b c a b d d e a b c d

Loop 5 (finish):

Full match after four successful comparisons.

The BMH-2 algorithm is a slight variant of the BMH
algorithm, which implements a new comparison
method. In the BM and BMH algorithms, the com-
parison loop is entered if the last character of the pat-
tern matches the current target position. In the BMH-
2 algorithm, this loop is entered only if both the last
and the middle characters of the pattern match with
their respective positions in the target. This is a more
conservative control of the right-to-left comparison
loop. For long medical words, because of the frequent
use of common suffixes and prefixes, this preliminary
comparison generally allows skipping of several char-
acter comparisons and optimizes the left-to-right shift.
Although this improvement decreases the number of
character comparisons by 80 percent in the best cases,
as described under Measures, the overall time com-
plexity is often similar to that of the BMH algorithm.
Given the increased time cost, performing the middle
comparison becomes cost-effective only for long pat-
terns, usually longer than 20 characters.

Space Complexity of the Tested Algorithms

For all algorithms, space usage of the pattern and the
target is the same. The extra space complexity of each
algorithm is self-explained in the code by the added
variables—4 bytes for the naive algorithm, 12 bytes
for the Karp-Rabin algorithm, 516 bytes for the
Knuth-Morris-Pratt algorithm, and 518 bytes for the
Boyer-Moore-Horspool algorithm. These values have
been computed with 32-bit integers. They are con-
stant.

Measures

Method

All algorithms were implemented in Object Pascal us-
ing Delphi version 4.03.26 The tests were conducted
on a 400-MHz Pentium II biprocessor PC with 256-
Mbytes of 7ns SDRAM so that all tests could be done
in memory. We used a biprocessor computer to min-
imize the variance of time measures caused by alter-
nate system interruptions or operating system pro-
cesses. All threads used by the test program were
forced to run asynchronously on the same processor.
Therefore, we expect the measures to be comparable
with what could be found in real conditions in appli-
cations.

The target text was a corpus of medical texts that has
a usual distribution of symbols and words. All tests
were done using French and English texts. The French
corpus consisted of 1,000 discharge summaries of the
surgical depatment of the University Hospital of Ge-
neva. The English corpus was the complete volume II
of the World Health Organization’s International Clas-
sification of Diseases, version 10, which was chosen
because it is a stable, well-known, and reproducible
source of text. This target text consisted of 197,550
words in 57,742 lines, corresponding to 1,606,861 char-
acters (including spaces and end-of-line separators).
All texts were converted to be compatible with the
ASCII 8-bit table. The measures we present here were
accomplished using the English corpus. Comparable
results were found when using the French corpus.

All preprocessing loads were measured within their
respective algorithms. The parameters of the function
calls of each algorithm used pointers to zero-termi-
nated strings in order to avoid variance due to mem-
ory management. All memory for strings was allo-
cated before the calls. The functions, however, were
self-contained. All function examples have been im-
plemented using the same function call prototype
—function aSearchAlgorithm(const target, pattern :
PChar; const 1Target, 1Pattern : integer) : integer—
where pattern and target are pointers to zero-termi-
nated strings, lTarget and lPattern are integers repre-
senting the respective lengths of the target and the
pattern. The functions return the value 21 in case of
error, or else they return the position in the target
where the first occurrence of pattern was found. No
preprocessing or global variables were needed for
their execution. When hashing tables were needed,
the computation was done within the function and
the time cost allocated to that function. Whenever
possible, the functions were optimized for speed, for
example, by using bitwise shifts to compute fast mul-

Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 387

F i g u r e 6 Overview of the test method.

tiplications. Time measures were done using the
motherboard’s high-resolution performance counter.
The expected precision is about 0.00083 msec. An
overview of the method is shown in Figure 6.

The corpus of text was divided into 150 slices of 3,214
characters, except the last one, which had 39 fewer
characters. All measurements were done in an incre-
mental manner for a corpus size growing in 150 steps
from the size of one slice to the whole target size. At
each of the 150 increases in size, all algorithms were
tested for the various patterns. Each measurement
was repeated ten times at each increase step. The val-
ues reported are arithmetic means of these ten mea-
surements.

If f is the position where the pattern can be found in
the target, then a regular augmentation of duration
will be observed as the size increases. This increase
will be observed until the actual size reaches the f
point. This increase of duration represents the pro-
cessing cost and is a function of the size of both the
pattern and the target. This function is equivalent to
O(f[n, m]), the complexity in time. In all algorithms
tested, this function is linear in time. A linear regres-
sion of this function permits comparison of the time
complexity of the algorithms. The slope of the regres-
sion line corresponds to the average number of char-
acters parsed per milliseconds.

Once the position f is reached, further increases of the
target size will not continue to influence the time com-
plexity. In the graphical representation of the results,
the plot of the data shows a slope almost flat after the
f position. The slight slopes remaining are due to the
increase in space complexity of the target. This flat
portion of the plot represents the stability of the al-
gorithm to reach f even if the size after f continues to
grow. The mean abscissa can be used to compare dif-
ferent algorithms with an independent t-test.

All the algorithms we considered work with an ap-
proximately constant cost in space. In the worst case,
the extra space needed for processing is a linear func-
tion of the length of the pattern, which is negligible.
Moreover, in this analysis, space complexity is similar
for all algorithms tested. It must be emphasized that
this would not be true for any algorithm. In particular,
it excludes most automata based on tree representa-
tions that typically have a quadratic cost in space.

Choice of Patterns

All tests were performed using three different pat-
terns. The first pattern tested was dyspraxia. This word
was chosen because its position is at one third of the
target. It is a short word (nine characters), composed

of a very common prefix (dys) and a rather uncom-
mon suffix (praxia). Such words tend to give an ad-
vantage to right-to-left algorithms.

The second pattern tested was polychondritis. It is a
typical-length word (14 characters) for the medical
domain, composed of three Latin/Greek roots (poly–
chondr–itis). Among these roots, the first and the last
are very common in the target corpus. For all types
of algorithms, such words tend to increase the num-
ber of comparisons that fail. The length of this word
tends to give a slight advantage to algorithms that use
skip tables.

The last pattern tested was superficial injuries of wrist
and hand. This sentence represents a typical aggrega-
tion of words used in the EPR. It is composed of six
words and 37 characters. The length of such a pattern
tends to favor algorithms that optimize the skip func-
tion. The length also favors algorithms that optimize
the comparison loop. The pattern is located at the end
of the target and therefore also demonstrates the im-
pact of space complexity on overall performance.

Detailed data of the analysis and the program
sources are available at http://www.lovis.net/pub/
patterntest.htm

388 LOVIS, BAUD, Exact String Pattern-matching Algorithms

F i g u r e 7 Baseline measures determining the noise of
the system.

F i g u r e 8 Complexity is linear in time.

Statistical Analysis

All statistics were performed using the SPSS for Win-
dows 8 statistical package. We used comparisons of
groups with independent samples. Multiple linear re-
gression was used, and all models were adjusted for
noise introduced by the precision of the internal timer.
For this purpose, 1012 measurements were performed
using three dummy function calls with conditions and
parameters similar to those that would have been
used with the real functions. The plot of the data
shows an initial increasing region that permitted a
precise analysis of time complexity during mismatch
phases. Analysis was performed using linear regres-
sion with the duration of processing as the predictor
of interest and the size the target as the response var-
iable. This made the interpretation of the slope easier.
In this case, the slope was the number of characters
analyzed in the target for each 1-msec increase of the
predictor. Means were compared using an analysis of
variance (ANOVA) and an independent two-tailed t-
test. Where appropriate, 95% confidence intervals (CI)
are given.

Results

Baseline

The baseline measurements of the system are shown
in Figure 7. They can be assimilated to the noise of
the system. The data are obtained by calling the func-
tion with parameters as used in normal conditions but
without any action performed. Mean time spent to
call function and background noise was 0.0414 6
0.0032 msec, (95% CI, 0.04136–0.04166). These data
are almost normally distributed. It must be empha-
sized that the cost in time is constant and independent
of the size of the tested target, with the exception of
a size fewer than 50 thousand characters, for which
the cost in time is slightly less. This explains the slight

left skewness of the histogram plot of these data.
However, when these algorithms were evaluated in
real conditions, this slight skewness appeared to be of
negligible importance for the interpretation of the re-
sults.

Figure 8 shows an example of the graphical output of
the data. The test was performed with the pattern am-
nesia nos. This pattern is found at position 647,906 in
the English target (ICD-10). For all algorithms, the
data presented the same global pattern. The first
phase was a linear increase for duration along with
augmentation of the size of the target, as long as the
pattern was not present in the part of the target being
analyzed. As soon as the pattern was found in the
target, the duration remained approximately constant
and independent of the size of the target that was
after the match position. This figure shows that the
time complexity increased linearly or nearly so for
each algorithm until the target contained the pattern.
On the one hand, analysis of slopes of the regression
line before the match for algorithms using the same
pattern allowed comparison of the efficiency of the
algorithm for different target sizes. On the other hand,
use of the same algorithm and different patterns al-
lowed comparison of the efficiency according to the
pattern size and provided, therefore, an experimental
observation of the O(f [n, m]) theoretic evaluation.

Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 389

Table 2 n

Search Results Using the Word ‘‘Dyspraxia’’
Slope

(char/msec)
Mean
(msec)

SD
(msec)

95% CI Mean
(msec)

Naive 4,694.21 131.93 3.88 131.14–132.72
KMP 2,622.41 229.26 4.43 228.36–230.17
KR 2,008.03 296.63 4.40 295.73–297.53
BMH 8,648.89 77.71 5.83 76.52–78.90
BMH-2 8,051.44 77.30 6.90 75.90–78.71

NOTE: Naive indicates naive algorithm; KR, Karp-Rabin algo-
rithm; KMP, Knuth-Morris-Pratt algorithm; BMH, Boyer-Moore-
Horspool algorithm; BMH-2, variant of Boyer-Moore-Horspool
algorithm.

Table 3 n

Search Results Using the Word ‘‘Polychondritis’’
Slope

(char/msec)
Mean
(msec)

SD
(msec)

95% CI Mean
(msec)

Naive 4,491.43 199.25 4.45 198.13–200.38
KMP 2,514.84 365.95 4.27 364.88–367.03
KR 2,009.18 462.21 3.33 461.37–463.04
BMH 8,544.54 108.70 5.49 107.32–110.08
BMH-2 7,635.49 108.71 5.54 107.32–110.11

NOTE: Naive indicates naive algorithm; KR, Karp-Rabin algo-
rithm; KMP, Knuth-Morris-Pratt algorithm; BMH, Boyer-Moore-
Horspool algorithm; BMH-2, variant of Boyer-Moore-Horspool
algorithm.

Table 4 n

Search Results Using the Pattern ‘‘Superficial
Injuries of Wrist and Hand’’

Slope
(char/msec)

Mean
(msec)

SD
(msec)

95% CI Mean
(msec)

Naive 4,295.91 273.58 3.28 272.47–274.49
KMP 2,570.51 468.25 3.12 467.19–469.30
KR 1,899.99 632.08 4.66 630.51–633.66
BMH 10,087.08 108.81 4.89 107.15–110.46
BMH-2 11,216.133 100.70 3.12 99.64–101.75

NOTE: Naive indicates naive algorithm; KR, Karp-Rabin algo-
rithm; KMP, Knuth-Morris-Pratt algorithm; BMH, Boyer-Moore-
Horspool algorithm; BMH-2, variant of Boyer-Moore-Horspool
algorithm.

Table 5 n

Slope Variation According to Pattern Size
(Characters per Millisecond)

9 chars/msec 14 chars/msec 37 chars/msec

Naive 4,694.21 4,491.43 4,295.91
KMP 2,622.41 2,514.84 2,570.51
KR 2,008.03 2,009.18 1,899.99
BMH 8,649.89 8,544.54 10,087.08
BMH-2 8,051.44 7,635.49 11,216.133

NOTE: Naive indicates naive algorithm; KR, Karp-Rabin algo-
rithm; KMP, Knuth-Morris-Pratt algorithm; BMH, Boyer-Moore-
Horspool algorithm; BMH-2, variant of Boyer-Moore-Horspool
algorithm.

Search for Dyspraxia

The first test was done using the word dyspraxia. This
word was found at position 599,410 in the target text.

The difference in performance was highly significant
for all group mean comparisons (p < 0.0001) except
between BMH and BMH-2, where the p value was
0.661 (Table 2). It is worth noting that BMH is 1.68
times faster than the naive algorithm.

Search for Polychondritis

The word polychondritis was found at position 939,424
in the target text.

Means were very different between all groups (p <
0.0001) except BMH and BMH-2, where the p value
was 0.99 (Table 3).

Search for Superficial Injuries of Wrist and Hand

The phrase superficial injuries of wrist and hand was
found at position 1,224,835 in the target text.

Means were highly different between all groups (p <
0.0001), including BMH and BMH-2 (Table 4). How-
ever, the mean difference of 8.11 msec (95% CI, 6.18–
10.03) in favor of BMH-2, while significant, was prob-
ably negligible in practice, since it represents less than
10 percent improvement.

Performance According to Pattern Size

Algorithms that do not use a skip table to optimize
the shift function are rather independent of the pat-
tern size in their time complexity. This was not the
case for the two BMH algorithms. In the latter, one
sees that the greater the pattern size, the longer the
skip shift in case of mismatch and, therefore, the faster
the algorithm. However, as illustrated with the word
polychondritis, when the pattern ends with a suffix that
appears frequently in the target, the BMH algorithms
lose performance, because the loop comparison is
more complex than the one in the naive algorithm.
This fact was even more strongly illustrated with the
BMH-2 algorithm, as a greater loss in the case of
polychondritis and a greater win in the case of the long-
est pattern. Nevertheless, the BMH algorithms were
still faster in all three cases (Table 5).

The overall results of all algorithms tested are pre-
sented in Figure 9, using the number of characters
analyzed per millisecond. In this figure, for each pat-
tern tested, the fastest algorithm received the index
value of 1. The other algorithms for the same pattern
are represented as fractions of the fastest. For exam-
ple, for the pattern of nine characters, the KR algo-

390 LOVIS, BAUD, Exact String Pattern-matching Algorithms

F i g u r e 9 Overall performance of the five algorithms
tested.

rithm performs the search at one fourth the speed of
the BMH algorithm. This figure emphasizes the ex-
treme speed of the BMH algorithm and the slight ad-
vantage to implement an optimized control for the
optimization loop for long patterns. It shows also that
the naive algorithm, compared with the BMH algo-
rithm, performs less well with long patterns than with
short ones.

Reproducibility

There are several limitations to this study. The per-
formance of all algorithms tested may vary with the
processors and the way they handle memory accesses,
integer manipulation, and floating operations. On a
given hardware, algorithms may behave differently
according to the language used to implement them.
In a given language, different versions of compilers
may lead to different results. Finally, the program-
ming style will affect the results. In our experience,
however, it seems that the relative performance of
each algorithm, one to the other, is stable across all
these factors except the programmer’s style.

The measures of performance have been performed
on various texts in French and English. These texts
include ICD-10, MEDLINE abstracts, discharge letters,
and several nonmedical texts. The relative perfor-
mance of all algorithms tested has been similar to that
of the algorithms presented in this paper using ICD-
10.

Conclusion

The BMH algorithm is a fast and easy-to-implement
algorithm. The performance of this algorithm can
barely be improved when working with medical lan-
aguage, except for long patterns. It typically performs
better than the naive algorithm, which is mostly used

for string pattern matching. Considering the growing
amount of text handled in the EPR, the BMH algo-
rithm is worth implementing in any case. Other al-
gorithms that could theoretically perform better do
not, compared with the BMH algorithm under real
conditions. If long patterns are used, a more conser-
vative control of the right-to-left comparison loop can
slightly improve the time performance of the BMH
algorithm.

References n

1. Friedman C, Hripcsak G, Shagina L, Liu H. Representing
information in patient reports using natural language pro-
cessing and the extensible markup language. J Am Med In-
form Assoc. 1999;6(1):76–87.

2. Stein HD, Nadkarni P, Erdos J, Miller PL. Exploring the
degree of concordance of coded and textual data in an-
swering clinical queries from a clinical data repository. J Am
Med Inform Assoc. 2000;7:42–54.

3. Charlet J, Bachimont B, Brunie V, el Kassar S, Zweigenbaum
P, Boisvieux JF. Hospitexte: toward a document-based hy-
pertextual electronic medical record. Proc AMIA Symp.
1998:713–7.

4. Lovis C, Baud RH, Planche P. Power of expression in the
electronic patient record: structured data or narrative text?
Submitted to Int J Med Inform.

5. Lovis C, Baud RH, Scherrer JR. Internet integrated in the
daily medical practice within an electronic patient record.
Comput Biol Med. 1998;28:567–79.

6. Hume SC, Sunday D. Fast string searching. Software Prac-
tice and Experience. 1991;21(11):1221–48.

7. Sedgewick R. Algorithms. Reading, Mass: Addison-Wesley,
1983;19:241–55.

8. Forrest S. Genetic algorithms: principles of natural selection
applied to computation. Science. 1993;261(5123):872–8.

9. Notredame C, Holm L, Higgins DG. COFFEE: an objective
function for multiple sequence alignments. Bioinformatics.
1998;14(5):407–22.

10. Baud RH, Lovis C, Rassinoux AM, Scherrer JR. Morphose-
mantic parsing of medical expressions. Proc AMIA Symp.
1998;760–4.

11. Lovis C, Baud RH, Rassinoux AM, Michel PA. Medical dic-
tionaries for patient encoding systems: a methodology. Artif
Intel Med. 1998;14(1–2):201–14.

12. Pacak MG, Norton LM, Dunham GS. Morphosemantic anal-
ysis of -itis forms in medical language. Methods Inf Med.
1980(19):99–105.

13. Norton LM, Pacak MG. Morphosemantic analysis of com-
pound word forms denoting surgical procedures. Methods
Inf Med. 1983;(22):29–36.

14. Wolff S. The use of morphosemantic regularities in the med-
ical vocabulary for automatic lexical coding. Methods Inf
Med. 1984;(23):195–203.

15. Dujols P, Aubas P, Baylon C, Grémy F. Morphosemantic
analysis and translation of medical compound terms. Meth-
ods Inf Med. 1991(30):30–5.

16. Hume SC, Sunday D. Fast string searching. Software Prac-
tice and Experience. 1991;21(11):1221–48.

17. Pirklbauer K. A study of pattern-matching algorithms.
Structured Programming. 1992;(13):89–98.

18. Gonnet GH, Baeza-Yates R. Text Algorithms: Handbook of
Algorithms and Data Structures in Pascal and C. 2nd edi-

Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 391

tion. Wokingham, U.K.: Addison-Wesley, 1991(7):251–88.
19. Knuth DE, Morris JH Jr, Pratt VR. Fast pattern matching in

strings. SIAM J Comput. 1997;6(1):323–50.
20. Boyer RS, Moore JS. A fast string searching algorithm. Com-

mun ACM. 1977;20(10):762–72.
21. Karp RM, Rabin MO. Efficient randomized pattern-match-

ing algorithms. IBM J Res Dev. 1987;31(2):249–60.
22. Knuth DE, Morris JH Jr, Pratt VR. Fast pattern matching in

strings. SIAM J Comput. 1977;6(1):323–50.

23. Horowitz E, Sahni S. Fundamentals of Data Structures in
Pascal. 4th ed. Woodland Hills, Calif: Computer Science
Press, 1994:86–7.

24. Horspool RN. Practical fast searching in strings. Software
Practice and Experience. 1980;10(6):501–6.

25. Baeza-Yates RA. Improved string matching. Software Prac-
tice and Experience. 1989;19(3):257–71.

26. Borland International. Delphi, version 4.03. Available at:
http://www.borland.com or http://www.inprise.com.

