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Conventional chemotherapy and radiotherapy are effective
treatments for patients with TNBC. However, the prognosis
of TNBC remains unsatisfactory. Therefore, a large volume
of research has explored the molecular markers and onco-
genic signaling pathways associated with TNBC, including
the cell cycle, DNA damage response and androgen receptor
(AR) signaling pathways, to identify more efficient targeted
therapies. However, whether these predicted pathways are
effective targets has yet to be confirmed. In the present
review, potentially carcinogenic signaling pathways in
TNBCs from previous reports were considered, and ulti-
mately five tumorigenic signaling pathways were selected,
specifically receptor tyrosine kinases and downstream
signaling pathways, the epithelial-to-mesenchymal transi-
tion and associated pathways, the immunoregulatory tumor
microenvironment, DNA damage repair pathways, and
AR and coordinating pathways. The conclusions of the
preclinical and clinical trials of each pathway were then
consolidated. Although a number of signaling pathways
in TNBC have been considered in preclinical and clinical
trials, the aforementioned pathways account for the majority
of the malignant behaviors of TNBC. Identifying the altera-
tions to different carcinogenic signaling pathways and their
association with the heterogeneity of TNBC may facilitate
the development of optimal precision medical approaches
for patients with TNBC, potentially improving the efficiency
of anticancer therapy.
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1. Introduction

Breast cancer is the leading cause of cancer-associated
mortality for women. In 2012, 1.7 million people were diag-
nosed with breast cancer worldwide, and 521,900 succumbed to
the complications (1). Given the varied prognosis and response
to treatment of patients with breast cancer, the molecular clas-
sification of breast cancer has been examined to improve the
understanding of this disease. Triple-negative breast cancer
(TNBC), which was first reported in the literature in 2005, is a
molecular subset of breast cancer. TNBC is characterized by the
absence of estrogen receptor (ER), progesterone receptor (PR)
and human epidermal growth factor receptor 2 (HER?2) expres-
sion (2), and accounts for 16% of all breast cancer cases (3).
Although TNBC tumors display relatively simple molecular
phenotypes, they are inherently heterogeneous. In particular,
TNBCs exhibit varying morphology, gene expression and
signaling pathway activity (4); thus, they have complicated
clinicopathological features, to the detriment of the prognosis
of patients with TNBC. TNBC was compared with other
breast cancer subtypes in a retrospective analysis; increased
risks of distant relapse [hazard ratio (HR), 2.6; P<0.0001] and
mortality (HR, 3.2; P<0.001) in the first five years were identi-
fied (5). As established endocrine and targeted therapies are
ineffective against TNBC, chemotherapy remains the primary
regimen for TNBC treatment (6). TNBC is highly sensitive to
cytotoxic chemotherapy (7), but this treatment is associated
with relatively low rates of pathological response (8,9). Thus,
developing a more effective therapeutic method for patients
with TNBC is necessary.

With this objective, a number of studies have investigated
the molecular classification of TNBC to determine optimal
individualized therapy strategies for TNBC. Lehmann et al (4)
indicated that TNBCs could be classified into the following
subtypes according to gene expression profiles: Basal-like
subtypes 1 and 2, immunomodulatory subtype, mesen-
chymal subtype, mesenchymal stem-like subtype, and
luminal androgen receptor (AR) subtype. Alternatively,
Burstein et al (10) reported that TNBCs could be divided
into four subtypes: Basal-like/immune-suppressed subtype,
basal-like/immune-activated subtype, mesenchymal subtype
and luminal/AR subtype. Patients with specific tumor molec-
ular abnormalities treated with molecularly matched targeted
therapy respond better to therapy compared with those treated
with non-matched targeted therapy (11). In the present review,
the molecular markers and signaling pathways frequently
dysregulated in TNBCs, and the targeted therapies in clinical
trials and preclinical studies, will be summarized.

2. Receptor tyrosine kinases and downstream signaling
pathways

RTKSs are important components of signal transduction path-
ways in the regulation of proliferation, and are associated
with two downstream signaling pathways in particular: The
Ras/mitogen-activated protein kinase (MAPK) pathway, and
the phosphoinositide 3-kinase (PI3K)/AKT/mechanistic target
of rapamycin (mTOR) pathway. The RTKs include epidermal
growth factor receptor (EGFR), vascular endothelial growth
factor receptor (VEGFR) 1-3, platelet-derived growth factor
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receptor (PDGFR) a/f, insulin-like growth factor receptor
(IGFR), fibroblast growth factor receptor (FGFR), c-Met,
and transforming growth factor receptor-f3 (TGFR-p), all of
which are potential targets for TNBC therapy (4,12-16). EGFR
dysregulation is the most commonly identified in TNBC
tumors; 60-80% of TNBC tumors demonstrate EFGR overex-
pression (17,18). However, the applicability of anti-RTK drugs
against TNBC are limited on account of biochemical multi-
plicity and toxicity (19). For example, lapatinib, a dual EGFR
and HER2 TK inhibitor, is ineffective in patients with TNBC,
although it is clinically effective against HER2-positive breast
cancer. The mechanism of lapatinib resistance in TNBC may
be associated with interleukin-6 expression (20). The inhibi-
tion of Src homology phosphotyrosyl phosphatase 2 (SHP2),
an important molecule in EGFR/FGFR1/c-Met signaling (21),
was reported to suppress TNBC tumorigenesis and metastasis
in vitro (22), indicating the potential anti-tumor efficiency of
RTK inhibitors in TNBC treatment. A number of RTK inhibi-
tors have also exhibited promising anticancer therapeutic
efficacy in a clinical setting. For example, bevacizumab is an
anti-VEGF monoclonal antibody. In a single-arm and phase
II multicenter study of bevacizumab, docetaxel, and carbopl-
atin-based neoadjuvant treatment for patients with stage I1/111
TNBC, the results demonstrated a relatively high pathological
complete response rate (42%) with a low risk of adverse
events (23); additionally, adding bevacizumab to neoadjuvant
chemotherapy regimens improved the pathological complete
response rate among patients with TNBC (39.3 vs. 27.9%;
P=0.003) (24).

Ras/MAPK pathway. The Ras/MAPK pathway promotes cell
proliferation, cell differentiation and angiogenesis (25). Ras
family members, including H-Ras, K-Ras and N-Ras, can
be activated by RTKs to transmit growth signals from the
cell membrane to the nucleus via a series of phosphorylated
proteins, including Raf, MAPK kinase 1 (MEK) and extracel-
lular signal-regulated kinases (ERK) 1/2 (26). Although the
frequency of mutations in the Ras/MAPK signaling pathway
is <2% in TNBC, copy number variations of certain genes
from the Ras/MAPK pathway have been demonstrated to be
associated with TNBC (26). For example, the overexpression
of ERK is associated with a higher mortality rate in patients
with TNBC (27). The MEK inhibitor selumetinib inhibited the
motility and invasiveness of the MDA-MB-231 and SUM149
TNBC cell lines in vitro. In addition, selumetinib had a
significant effect on the prevention of lung metastasis in a
TNBC-bearing mouse xenograft model (25). These findings
may provide evidence of the applicability of MEK inhibitors
in TNBC treatment. However, certain genetic defects along the
Ras/MAPK pathway, including the loss of negative regulators
of MAPK signaling, such as phosphatase and tensin homolog
(PTEN) and certain regulatory micro (mi)RNAs, such as the
let-7 family, are also proposed to serve an important role in
TNBC development (26). The Ras/MAPK pathway negatively
regulates tumor immunogenicity by affecting the process of
tumor antigen presentation in TNBC cells; compared with
solo therapy, combining MEK inhibition and programmed
death-1 (PD-1)/programmed death ligand 1 (PD-L1) immune
checkpoint inhibitors increased the therapeutic efficiency in a
murine syngeneic TNBC model (28).
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PI3K/AKT/mTOR pathway. PI3K family members are
activated by RTKs. Activated PI3Ks phosphorylate
phosphatidylinositol-4,5-diphosphate (PIP,) to phospha-
tidylinositol-3,4,5-triphosphate (PIP;), resulting in the
downstream phosphorylation of AKT (29). Phosphorylated
AKT then activates mTOR, a serine/threonine protein kinase,
through the intermediary tuberous sclerosis complex 1/2 to
promote protein synthesis and cell growth (30,31). PTEN
serves an important tumor suppressor role in the process by
inhibiting the dephosphorylation of PIP; to PIP, (32). The
PI3K/AKT/mTOR pathway mediates a range of processes,
including cell growth, survival and migration, and tumor
formation and angiogenesis (33). The dysregulation of the
PI3K/AKT/mTOR pathway occurs frequently in TNBC.
PI3KCa-activating mutations are observed in 23.7% of TNBC
patients (34), and PTEN loss mutations, including promoter
silencing and functional suppression, are detected in 25-30%
of TNBC cases (32,35,36). With regards to outcome, the
hyperactivation of AKT and mTOR are associated with
the poor prognosis of patients with TNBC, and based on
success in preclinical experiments, dual inhibition of these
molecules may represent a promising strategy for TNBC
treatment (37-39).

The mTOR inhibitor everolimus has been approved by
the US Food and Drug Administration (FDA), and can be
combined with the aromatase inhibitor exemestane for patients
with metastatic homologous recombination (HR)-positive
breast cancer (40). The therapeutic effect of everolimus has
been confirmed for patients with TNBC; mTOR activation
may lead to platinum therapy resistance (41), and so evero-
limus combined with carboplatin has been proposed as an
effective therapy for patients with metastatic TNBC (42).
Phase I trials have also demonstrated that patients with meta-
static TNBC who received a combination of chemotherapy
and PI3K/AKT/mTOR inhibitor-based targeted therapy had
a significantly prolonged median PFS time compared with
patients who did not receive the targeted therapy (43). Another
study reported that PI3K inhibition causes HR impairment and
increased sensitivity to poly(ADP-ribose) polymerase (PARP)
inhibition in TNBC without breast cancer associated (BRCA)
1/2 mutations. Therefore, PI3K inhibition can improve the
therapeutic efficiency of PARP inhibition in BRCA-wild type
TNBC (44). Based on this observation, a clinical trial with
BKM120 (buparlisib) and olaparib was initiated, as presented
in Table I (45-67).

A high level of crosstalk between the Ras/MAPK and
PI3BK/AKT/mTOR pathways has been detected in basal-like
breast cancer models (68), and an approach that inhibits both
pathways may be feasible. However, the high toxicity levels
of such an approach are concerning (69), so a greater under-
standing of the cross-talk mechanisms between pathways is
required before effective targeted therapy of this type with
improved tolerability can be developed.

3. Epithelial-to-mesenchymal transition and associated
pathways

EMT is an essential biological process that also assists the
migration and invasion of malignant tumor cells. Thus, eluci-
dating the molecular mechanism of the EMT process and its
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association with the occurrence, development and metastasis
of cancer is of great significance.

During EMT, epithelial cells lose the expression of
E-cadherin and acquire mesenchymal markers, including
vimentin (70). There is evidence to indicate that a number
of RTKs, including EGFR, IGFIR, hepatocyte growth factor
receptor and c-Met, non-RTKs, including Src, and embryonic
transcription factors, including Twist and Slug (71-77), can
induce EMT. Diverse signaling pathways, including MAPKs,
PI3K and nuclear factor-«xB, also promote EMT (76,78). Other
pathways, including Notch and Wnt/f3-catenin signaling
pathways, are also associated with EMT (79). Tumor cells
undergoing EMT may acquire stem cell-like phenotypes
and migratory abilities (80). Previous studies have indicated
that the genes involved in EMT and conversion to the cancer
stem cell phenotype are activated in TNBC (4,81). Additional
studies have demonstrated that EMT may induce the resis-
tance to chemotherapy and radiotherapy (82), and may thus
have potential as a therapeutic target in TNBC.

In preclinical trials, miRNAs have been demonstrated to
regulate tumor EMT and metastasis by inhibiting the expres-
sion of certain genes (83). For example, a previous study
indicated that miR-200b-3p and miR-200b-5p synergize to
suppress TNBC cell migration by inhibiting EMT (84). This
finding may provide a novel strategy for clinical treatment.
Furthermore, protein tyrosine kinase 6 (PTK6) is an intracel-
lular non-receptor kinase that can promote EMT and regulate
the metastasis of TNBC cells by modulating E-cadherin
expression. PTK6 inhibition may prevent the metastasis of
TNBC cells, and thus exhibits clinical potential for improving
the treatment strategies for patients with mesenchymal
TNBC (85). Considering the association of EMT with breast
cancer stem cells (80), aldehyde dehydrogenase 1 (ALDHI)
inhibitors were proposed as a therapeutic alternative in TNBC
therapy, targeting the characteristic ALDHI phenotypic
marker of breast cancer stem cells (86,87). A preclinical study
confirmed that LBH589, a histone deacetylase inhibitor, could
inhibit the metastasis of TNBC cells by partially reversing
EMT (88).

Wnt/f-catenin pathway. Aberrant regulation of the Wnt
signaling pathway serves an important role in tumori-
genesis (89). This regulation is associated with EMT and
self-renewal in breast cancer, as it regulates the transcription
factors Twist and Slug (90,91).

During tumorigenesis, the Wnt ligand binds to Frizzled
(Fz), a seven-pass transmembrane surface receptor, and its
co-receptor, low-density lipoprotein receptor-related 5/6
(LRP5/6), to form a Wnt-Fz-LRP6 complex. The combina-
tion of this complex with the protein Dishevelled can elicit
the phosphorylation of LRP6 and the recruitment of the axin
complex, which is composed of axin, anaphase-promoting
complex, casein kinase 1 and glycogen synthase kinase 3.
These events ultimately stabilize 3-catenin, which is degraded
by the axin complex without Wnt. The [-catenin protein is
transferred to the nucleus where it activates the transcription
of Wnt target genes (92).

Lehmann et al (4) demonstrated that TNBC has a unique
Wnt/B-catenin pathway gene expression. Other studies
have indicated that the activation of the Wnt pathway is
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associated with poor prognosis and metastasis in patients
with TNBC (93). Thus, the Wnt/B-catenin pathway could
be utilized as a target for TNBC therapy. Substantial
efforts targeting the Wnt pathway have been made, but
few have reached the clinical trial stage thus far. LGK974,
a molecular inhibitor of Wnt secretion, has been evaluated
in stage I trials in several types of cancer, including TNBC
(http://www.clinicaltrials.gov). In preclinical trials, a previ-
ously FDA-approved anti-helminthic drug niclosamide,

(Refs.)
(66)
(66)

s g which can reduce LRP6 and (-catenin levels in vitro, was
% % reported to suppress the growth of basal breast cancer xeno-
3| <3 grafts in vivo (94,95). Thus, niclosamide may be a promising
S| § 8 drug for clinical trials. Another FDA-approved, anti-leprosy
é’ ~§0 SD drug, clofazimine, was observed to suppress the growth of
“ | 8 g TNBC cells through the inhibition of the Wnt/B-catenin
E g pathway (94). Notably, the multipurpose drug suramin can
g” g inhibit the Wnt signaling pathway and the proliferation of
2.2 TNBC cells in vitro and in vivo. Such findings may pave the
S & . . .
= way for the discovery of novel targeted therapies against
E’D iﬁ) Wnt-dependent TNBC tumors (96).
g £
T E TGF-f/Smad pathway. In addition to the Wnt pathway, the
<< TGF-p/Smad pathway can also regulate cell proliferation,
Q invasion, apoptosis and metastasis, and induce EMT, and thus
ji“ E —_ has potential in targeted strategies against TNBC (97). When

secreted from cells, TGF-f remains as an inactive, latent
homodimeric polypeptide (98). TGF-f can be activated by

HGFR, hepatocyte growth factor receptor; RTK, receptor tyrosine kinase; MET, mitogen-activated protein kinase kinase 1; FGFR, fibroblast growth factor receptor; PDGFR, platelet-derived growth factor
receptor; PI3K, phosphoinositide 3-kinase; mTOR, mechanistic target of rapamycin; PIK3CA, phosphoinositide 3-kinase catalytic subunit a; AR, androgen receptor; PD-1, programmed death-1; CSF1,

EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor; PARP, poly(ADP-ribose) polymerase; i, inhibitor; mA, monoclonal antibody; VEGFR, vascular endothelial growth factor receptor;

w | O ®
E g % hyc!rolyzir.lg the latent complex. The TGF-f3 then binds to and
= § § activates 1ts. receptors, TGF-3 receptor. type 11 (TJ3RII? and I
E g= (TPRI), which are transmembrane serine/threonine kinases.
6 % LZ) This induces two TPRI and two TPRII molecules to form a
heterotetramer, and TPRII triggers the cross-phosphorylation
of TPRI, allowing the activation of substrate Smad proteins (99).
g - Smads include receptor-regulated Smads (R-Smads), common
:é;o @ % mediator Smads (Co-Smads) and inhibitory Smads (I-Smads).
= g = Among the Smad types, Smad-2 and Smad-3, as R-Smads, are
5 S the direct substrates of TBRI. The activated R-Smads combine
g - g § with Smad-4, a Co-Smad, where they induce the activation of
‘é ERSES specific genes. Inversely, Smad-7, as an I-Smad, can inactivate
S| & 58 the TGF-B/Smad pathway by disrupting the combination of
iz 4 & R-Smad with TBRI (100).
Smad-2 or Smad-3 overexpression, when combined with
" Smad-4, can induce EMT. Inversely, the reduced expression
E of Smad-2, Smad-3 and Smad-4, or the overexpression of
o Smad-7, can constrain EMT (101). Clinical evidence suggests
g - _ that ~40% of human breast cancer tumors have high TGFfl1,
E E 2 TGFp2, Smad-3 and Smad-4 expression levels, although the
£ positive TGFf gene signature occurs primarily in ER-positive
2|92 § breast tumors and lung metastases (102). In addition, a
%! g g = high TGF-B1 expression level was detected in TNBC cells
S| 88 o (MDA231, Hs578T, HCC1806) compared with non-TNBC
2| 2 8 < (BT474, ZR75-1, SKBR3) (103). Treatment with zerumbone
£ | S 8 = S Lo .
5 g qE) iy may inhibit the tumorigenicity of TNBC cells by suppressing
O | ~ & g the TGF/Smad pathway, and thus has a potential as a targeted
& drug for TNBC. LY2109761, another selective TBRI/II dual
E, éo inhibitor, can also suppress the invasion and motility of TNBC
E = cells (103). The antidiabetic agent metformin can hinder the
=l g TGF-p/Smad pathway by disrupting the activation of Smad-2
g é 2 and Smad-3 in TNBC (104). This finding may offer a novel
%‘3 é é perspective for the clinical treatment of TNBC patients.
= S
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Although chemotherapy is the central treatment meth-
odology against TNBC, patients with TNBC are likely to
eventually develop drug resistance and disease recurrence,
which is contributed to by cancer stem-like cells. The TPRI
inhibitor LY2157299 can constrain the development of
stem-like cells, indicating the potential combination of chemo-
therapy and TGF-f3 targeted drugs in clinical trials (105).

4. Androgen receptor and coordinating pathways

ER and PR are widely accepted molecular markers in the
occurrence, development and prognosis of breast cancer.
TNBC tumors lack ER and PR expression. An association
between TNBC and AR, another hormone receptor, has been
observed (4). Lehmann et al (4) classified cases of TNBC
according to gene expression profiling, in which a luminal
AR subtype, featuring increased gene expression in the AR
signaling pathway, was identified. In another study of 593
TNBC cases, a luminal AR subtype was also identified based
on the expression profiles and histopathological features of
primary TNBC tumors (106).

As a member of the steroid hormone receptor family,
AR is expressed in ~77% of breast cancer tumors (107), and
serves an important role in regulating cell proliferation (108).
Testosterone, particularly dihydrotestosterone, is the main acti-
vator of AR (109). Subsequent to ligand binding, AR is usually
bound to chaperone proteins, including heat shock proteins,
before forming a homodimer. The homodimer translocates to
the nucleus and promotes the transcription of target genes (110).

Anti-androgens are the most common drugs for treating
AR-positive cancer, including AR-positive TNBC. In recent
research, bicalutamide (150 mg daily) was prescribed to
424 patients with AR-positive, ER and PR-negative meta-
static breast cancer. The six-month clinical beneficial rate
was 19% [95% confidence interval (CI), 7-39%], and the
median progression-free survival time was 12 weeks (95% CI,
11-22 weeks). These findings provided evidence in favor of the
application of anti-androgen therapy in ER/PR-negative and
AR-positive breast cancer (111). In a phase II clinical trial of
enzalutamide, another AR antagonist, considerable beneficial
therapeutic efficiency was demonstrated in AR-positive TNBC
patients, indicating the potential efficacy of anti-AR therapy in
clinical settings (clinicaltrials.gov: NCT01889238).

A previous study indicated that the concomitant admin-
istration of the anti-androgen bicalutamide with a EGFR,
PDGFR{ or Erkl1/2 inhibitor significantly decreased the
AR expression level when compared with the single admin-
istration of the inhibitors (112). Another study reported that
activating PIK3CA mutations are enriched in AR-positive
TNBCs, potentially providing a basis for the concomitant use
of AR antagonists with PI3K/mTOR inhibitors (4). In addi-
tion, enhanced therapeutic effects of bicalutamide combined
with the PI3K inhibitor GDC-0941 (pictilisib) or the mTOR
inhibitor GDC-0980 (apitolisib) have also been also observed
in MDA-MB-453 and CAL-148 luminal AR subtype cell xeno-
grafts, indicating that the inhibitors targeting the PI3K/mTOR
signaling pathway also notably decrease the amount of AR
protein (113). It was concluded that AR expression can be
regulated post-transcriptionally by activating the RTK, PI3K
or Erkl/2 signaling pathways (113). The combination of
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anti-androgen therapy with targeted therapy against the RTK,
PI3K and Erk1/2 signaling pathways may be a promising alter-
native treatment for AR-positive TNBC.

5. DNA damage repair pathways

The DNA damage response has recently attracted consider-
able attention in cancer research. Three major pathways
operate in this process: DNA repair mechanisms that remove
DNA lesions, cell cycle checkpoints that prevent the growth of
cells with DNA damage and apoptotic pathways that eliminate
cells with irreparable DNA lesions (114). Among the various
types of DNA damage, DNA double-strand breaks (DSB) are
of particular interest on account of their function in genomic
instability, which promotes tumorigenesis (115). DSB repair is
accomplished through the HR or non-homologous end-joining
pathways (116). BRCA1 and BRCA2 are critical genes modu-
lating DSB repair through HR (117).

TNBC is commonly associated with BRCA1/2 mutations.
A germline mutation in BRCA1 or BRCA2 is present in ~15%
of patients with TNBC; TNBC cases account for 70% of cases
of breast cancer with BRCA1 mutation, and 16-23% of those
with BRCA?2 mutation (118). TNBC also has similar clinical
and pathological features as breast cancer with a BRCA1/2
mutation. For instance, the patients are more likely to be
young and present with a high grade and lymph node invasion
ratio (119,120). In addition, BRCA1/2 mutations have been
confirmed to be indicators of a poor TNBC prognosis (121).
In a study of 182 women with TNBC, >50% were carrying
inherited BRCA1 mutations, thus demonstrating the close
association between TNBC and BRCA1 (122).

Polyadenosine 5'-diphosphoribose produced by PARP
enzymes serves an important role in the repair of DNA
damage (123). Where there is a defect in DNA repair genes,
such as BRCA in TNBC, a PARP inhibitor may be a desirable
choice for therapy. In an open-label phase II clinical study,
results indicated that the combination of PARP inhibitor
iniparib and conventional chemotherapy drugs, including
gemcitabine and carboplatin, could produce significant clin-
ical benefit rates (from 34 to 56%; P=0.01) and a high overall
response rate (from 32 to 52%; P=0.02) in patients with TNBC.
The median progression-free and overall survival times were
also prolonged, with an extension from 3.6 to 5.9 months
(progression HR, 0.59; P=0.01) and from 7.7 to 12.3 months
(mortality HR, 0.57; P=0.01), respectively (124). In addition,
in a phase I trial of the oral PARP inhibitor olaparib for meta-
static TNBC, 7 (37%) out of 19 patients receiving olaparib in
combination with weekly paclitaxel had confirmed partial
responses (125). Data regarding the safety of PARP inhibitor
treatment for advanced TNBC and/or BRCA-mutated breast
cancer from clinical trials is summarized in Table I; the side
effects of PARP inhibitors are well tolerated. Interestingly, in
the TNBC patients with BRCA downregulation, the sensitivity
to PARP inhibitor treatment was enhanced when combined
with PI3K inhibition, as the blockade of PI3K impaired HR,
inducing sensitization to PARP inhibitors (44), providing
a theoretical basis for the combination of PI3K with PARP
inhibitors for these patients.

In addition to the aforementioned BRCA1/2 genes, other
breast cancer predisposition genes, including RADSID,
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Figure 1. Molecular mechanisms of TNBC. RTKs promote tumorigenesis through the Ras/mitogen-activated protein kinase and PI3K/Akt/mTOR pathways.
The phosphorylation of ERK, the Wnt/p-catenin pathway and the TGF-f/Smad pathway activates EMT, and regulates the migration and invasion of tumor
cells. In the AR pathway, AR can bind to chaperone proteins to promote the transcription of target genes in the nucleus. At the genetic level, BRCA1/2 mutations
can also promote the development of TNBCs. In the tumor microenvironment, tumor-infiltrating lymphocytes and the immune checkpoint system can allow
evasion from recognition by the host immune system. TNBC, triple negative breast cancer; RTK, receptor tyrosine kinase; PI3K, phosphoinositide 3-kinase;
mTOR, mechanistic target of rapamycin; ERK, extracellular signal-regulated kinase; TGF, transforming growth factor, EMT, epithelial-mesenchymal transi-
tion; AR, androgen receptor; BRCA, breast cancer-associated; PD-(L)1, programmed death (ligand) 1; EGFR, epidermal growth factor receptor; PDGFR,
platelet-derived growth factor receptor; VEGFR, vascular endothelial growth factor receptor; FGFR, fibroblast growth factor receptor; IGFR, insulin-like
growth factor receptor; LRP, LDL receptor-related protein; Frz, Frizzled; TR, transforming growth factor § receptor; miRNA, microRNA; GSK3, glycogen
synthase kinase 33; HSP, heat shock protein; MEK, mitogen-activated protein kinase kinase 1; PIP,, phosphatidylinositol 4,5-bisphosphate; PTEN, phospha-
tase and tensin homolog; Dvl, Dishevelled; CDKs, cyclin-dependent kinase; HR, homologous recombination; PARP, poly(ADP-ribose) polymerase.

MREI11A, checkpoint kinase 2, mutL homolog 1, mutS
homolog 6 and partner and localizer of BRCA2, have
been confirmed to be associated with the development and
progression of TNBC (126). It was previously reported that
the cytoplasmic expression and lack of nuclear expression of
RADSI1 were associated with TN phenotypes, the aberrant
expression of BRCA1 and a poor prognosis for patients (127),
indicating that RADS1 may be a promising biomarker
for selecting patients who are suitable for treatment with
DNA-damaging agents.

6. Immunoregulatory tumor microenvironment

An increasing number of studies have demonstrated that
the tumor microenvironment, particularly the immune
microenvironment, is associated with the development and
progression of breast cancer (128). Lehmann ef al (4) and
Burstein ef al (10) reported that a subtype of TNBC displayed
upregulated immunological responses, immune cell markers
and immune transcription factors, implying the dysregulation
of immune pathways in TNBC, and that the immunothera-
peutic approach may be a valuable treatment strategy for
patients with TNBC (4,10).

Tumor infiltrating lymphocytes. High levels of stromal
lymphocytic infiltration was confirmed to be associated with
improved TNBC prognosis in two adjuvant phase III trials.
Results of one trial indicated that compared with the patients
who had a lower level of stromal lymphocytic infiltration,
patients with high lymphocytic infiltration had a 14% reduced
risk of recurrence (P=0.02), an 18% reduced risk of distant
recurrence (P=0.04) and a 19% reduced risk of mortality
(P=0.01) for every 10% increase in stromal lymphocytic infil-
tration (129). Another phase III randomized adjuvant breast
cancer trial reported similar results, indicating that an increase
in lymphocytic infiltration was associated with an improved
prognosis in node-positive and ER-negative/HER2-negative
breast cancer, regardless of chemotherapy (130). In addition,
the presence of tumor-infiltrating lymphocytes predicted a
better clinical response to neoadjuvant chemotherapy (131).
Therefore, the existence of tumor-infiltrating lymphocytes can
be regarded as a prognostic parameter for the prediction of the
response to clinical treatment of patients with TNBC.

Immune checkpoint system. Tumor cells can evade the
recognition and destruction by the host immune system
through the immune checkpoint system; blocking the immune
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checkpoint system is a promising treatment for achieving
effective antitumor immunity. PD-1 is a well-established
immune checkpoint protein and cell-surface receptor that
disrupts the T-cell response by triggering inhibitory path-
ways (132). Notably, PD-1 is expressed in 20% of TNBC
tumors (133). PD-L1 is the ligand of PD-1, and is expressed
in 58.6% of TNBC tumors (66,134). PD-L2 is expressed on
the surface of dendritic cells, macrophages, mast cells and B
cells (135). Antibodies to inhibit PD-1 signaling are currently
being assessed for clinical use. For example, pembrolizumab,
a monoclonal antibody against PD-1, has demonstrated an
overall response rate of 18.5% in a phase Ib study (n=32) of
patients with PD-L1-positive TNBCs (66). Furthermore, a
preliminary phase I trial study suggested that the monoclonal
anti-PD-L1 antibody MPDL3280A prolonged progression-free
survival time and produced durable therapeutic effects in
certain patients with TNBC (136).

In addition, there is an association between the immune
response and the Ras/MAPK pathway in TNBC. A study
has indicated that the RassMAPK pathway negatively regu-
lated antitumor immunity by affecting antigen presentation,
including that of MHC-I, MHC-II and PD-1, and it was veri-
fied that a combination of MEK inhibition and PD-1/PD-L1
antibodies increased the effect of treatment in murine synge-
neic tumor models (26). An additional study identified that an
oncolytic viral therapy (NV1066) eliminated >70% of the cells
from all the TNBC cell lines tested by day 7, and effectively
reduced the tumor size compared with control treatment
groups (57 vs. 438 mm; P=0.002) through downregulating the
Ras/MAPK pathway (137).

7. Conclusion

TNBC is attracting increasing attention on account of
its unique clinical pathology and molecular features.
Chemotherapy remains the exclusive effective systemic treat-
ment for patients with TNBC. These patients exhibit varied
therapeutic responses and prognoses. Thus, individualized
treatment and prognostic analysis in patients with TNBC can
be difficult, particularly when this depends on conventional
clinical and pathological features, including the histological
grade, primary tumor size, lymph node metastasis status and
ER/PR/HER2 expression. With the emergence of targeted
therapy, screening more reliable molecular markers is
imperative, and comprehensively understanding the signaling
pathways that regulate biological behaviors may facilitate the
establishment of a precise molecular classification for TNBC
and effective therapeutic regimens.

In the present review, TNBC-associated tumorigenic
signaling pathways were summarized in five categories,
specifically RTKs and downstream signaling pathways, epithe-
lial-to-mesenchymal transition and associated pathways,
immunoregulatory tumor microenvironment, DNA damage
repair pathways, and AR and coordinating pathways. These
pathways are illustrated in Fig. 1 to demonstrate the interac-
tions across the entire network, and the relevant drugs against
specific pathways are summarized in Table I. Enhancing the
understanding of the molecular heterogeneity of TNBCs can
lay the foundation for the individualized treatment of patients
with TNBC.
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It is worth noting that a study concerning the efficacy
of a number of biological agents, including bevacizumab,
sunitinib, sorafenib, lapatinib, iniparib and cetuximab, in
metastatic TNBCs indicated that a significant PFS improve-
ment was obtained following treatment with bevacizumab
or cetuximab, indicating the importance of targeted therapy.
Regrettably, the impact of the other agents in the study on
patient survival was not significant (138), possibly due to
concurrent abnormalities occurring in a number of the
patients. If that is correct, the concurrent inhibition of
tumorigenic pathways may inhibit the cancer process (45).
Therefore, the understanding of the signaling crosstalk and
feedback among the TNBC-associated tumorigenic signaling
pathways needs to be improved to allow effective treatments
with tolerable side effects to be developed.
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